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Abstract A review on phthalate esters or phthalic acid esters
(PAEs), chemicals of concern since a few decades ago that are
widely used as plasticizers in food processing and packaging,
is presented taking into account the background of such com-
pounds, the metabolism, human exposure to PAEs, the
sources and occurrence in food as well as the toxicological
aspects and human health effects. In addition, 45 novel re-
search articles that were published between 2002 and 2017
were identified and their results were tabulated showing the
PAEs analysed, foodmatrix of PAEs, methods of sample prep-
aration/extraction, methods of instrumental analysis and quan-
titation, percentage recovery and limit of detection (LOD) of
the instrument for ease of comparison and referencing. In
general, it was found that in the last 15 years, the number of
PAEs analysed has increased from the commonly analysed 8
PAEs, namely dimethyl phthalate (DMP), diethyl phthalate
(DEP), diisobutyl phthalate (DIBP), di-n-butyl phthalate
(DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate
(DCHP), di-n-octyl phthalate (DNOP) and di-(2-ethylhexyl)
phthalate (DEHP) to as many as 23 PAEs. The methods of
sample preparation have also progressed from the simple
liquid-liquid extraction using organic solvents to solid-phase

microextraction techniques to the more recent head-space or
direct immersion solid-phase microextraction methods.
Whereas for the analysis of PAEs, gas chromatography and
liquid chromatography are still the preferred methods with
improved LOD of analysis ranging from approximately
10 ppm for fatty foods to 1–60 ppt for water, juices and
cooking oil samples.

Keywords Phthalates . PAEs . Food packaging . Sample
preparation . Gas chromatography . Liquid chromatography

Introduction

Food products are complex mixtures comprising of naturally
occurring compounds such as lipids, carbohydrates, proteins,
vitamins, organic acids and aromas and other different sub-
stances which generally originate from mechanical proce-
dures, agrochemical treatments and packaging materials.
They are produced and distributed around the world, hence
prompting extremely stringent regulations to ensure the nour-
ishment quality and safety in reference to food contaminants
(Gallart-Ayala et al. 2013). Food contaminants may be re-
ferred to as the presence of an array of redundant chemical
compounds other than accustomed ingredients or natural food
constituents which can derive from field environmental pol-
lutants. For instance, these contaminants may include but not
limited to those derived from chemical industrial waste which
may be waterborne or airborne, from leached pesticides or
chemicals used in agricultural practices, those that are intro-
duced through inattentiveness in transporting raw products or
in the procedures during food transformation processes, as
well as those that may arise from unsuitable packaging mate-
rials (Moret et al. 2012). Grob et al. (2006) reported that edu-
cated consumers had listed pesticides as the main source of
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food contamination, followed by environmental chemicals
such as polychlorinated biphenyl (PCBs) and veterinary drugs
and only a few would acknowledge food packaging materials
in defiance of the fact that the measure of material migrating
from food packaging into food may be 100 times more prom-
inent than the contribution of pesticides and environmental
pollutants (Moret et al. 2012).

Food packaging may contain chemical (organic or inorgan-
ic) food packaging contaminants that may be intentionally
added for a technical purposes, the presence of impurities
from starting materials or manufacturing by-products, or the
presence of contaminants arising from packaging or material
recycling. The migration of different types of chemicals par-
ticularly phthalates from the packaging into food is highly
diverse depending on the type of packaging materials as sum-
marized in Table 1. The physiochemical properties of the mi-
grant such as the level of contamination of lipophilic sub-
stances in high-fat-content food, storage temperature and du-
ration of storage, would also affect the extent to which the
migration may occur. For non-inert materials such as plastics,
elastomers, paper and board, chemical contaminants may mi-
grate from the outside of the packaging or from the packaging
material itself. Paper-based packaging materials tend to have
large pore size that permits migration of small molecules from
the outside into the food. For example, when beverage cartons
or paper cups are stacked on top of each other, the outside
layer comes into contact with its inside layer and thus trans-
ferring chemical contaminants, such as printing ink compo-
nents, to the direct food contact side (Muncke 2014). Inert
materials such as stainless steel, glazed ceramic or raw glass
may contain heavy metals. These chemicals are often on the
inside surface and hence are in direct contact with the food and

can migrate into food by surface exchange. Furthermore, plas-
ticizers like epoxidized soybean oil or phthalates can contam-
inate glass-packaged oily foods following migration of chem-
ical contaminants from the closure’s gasket and hence, atten-
tive manufacturing is required. The migration of chemical
contaminants into food may also occur when small-sized
monomers are released from the degradation of polymer
which is often the case of reusable food contact materials like
plastic kitchenware. A polymer will degrade and subsequently
release monomers under highly acidic or alkaline conditions
(Muncke 2014). Another factor that may affect the migration
of the contaminants is temperature as performed by Jeddi et al.
(2015) in which she concluded that drinking water from poly-
ethylene terephthalate (PET)-bottles stored at high tempera-
ture (>25 °C) would cause significant phthalates migration
compared to low temperature.

Phthalates

Background

Phthalates, or commonly known as phthalic acid esters
(PAEs), are derivatives of phthalic acid, the esters of 1,2-
benzenedicarboxylic acid in which the acid groups are in the
ortho-position (Gallart-Ayala et al. 2013; Muncke 2014; Van
Holderbeke et al. 2014; Ventrice et al. 2013; Benson 2014;
Cirillo et al. 2013). PAEs are synthetic organic chemicals that
were introduced in the 1920s (Fasano et al. 2012). They were
manufactured by reacting phthalic anhydride with various al-
cohols (Benson 2014) starting from methanol (MeOH) and
ethanol (EtOH) for the smaller compounds, up to iso-decanol,

Table 1 Different types of food
packaging materials with
phthalates as possible
contaminant (Muncke 2014;
Jeddi et al. 2015; Bueno-Ferrer
et al. 2010)

Packaging type Materials Contaminants

Plastic Polyethylene terephthalate (drinking water
plastic bottles)

Formaldehyde

Acetaldehyde

Antimony

Ultraviolet (UV) stabilizers

Phthalates

Plastic Polyvinylchloride (PVC) (domestic films) Vinyl chloride

Phthalates

Epoxidized soybean oil (ESBO: glass jar
closures)

Carton (for dry
food)

Mineral oils

Phthalates

Benzophenones

Glass Glass container, closure with gasket Phthalates

Epoxidized soybean oil (ESBO: glass jar
closures)

Lead
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straight chain or with some branching, producing a large va-
riety of PAEs and thus providing a wide range of different
properties for different possible uses (Moret et al. 2012). The
physico-chemical characteristics of PAEs, and consequently
their applications and uses, vary with the chemical structure of
the side chains in which the PAEs can be classified into (1)
low molecular weight PAEs with R and R side chains with up
to six carbons and classified as very dangerous substances in
Europe and in REACH (Registration, Evaluation,
Authorization, and Restriction of Chemical substances) and
(2) high molecular weight PAEs with side chains of more than
six carbons but do not appear as substances that can cause
problems to health (Moret et al. 2012; Ventrice et al. 2013).
PAEs with shorter alkyl chain such as dimethyl phthalate,
diethyl phthalate and dibutyl phthalate are commonly used
in cosmetics and personal care products while longer
branching alkyl chain such as butylbenzyl phthalate,
dicyclohexyl phthalate, diethylhexyl phthalate and di-n-octyl
phthalate are widely used as plasticizers (Cirillo et al. 2013).
Figure 1 shows the general chemical structure of PAEs and the
chemical structure, acronym, CAS number, molecular weight,
boiling point, density and the uses of the most commonly used
PAEs namely dimethyl phthalate, diethyl phthalate, diisobutyl
phthalate, di-n-butyl phthalate, butyl benzyl phthalate,
dicyclohexyl phthalate, di-n-octyl phthalate and di-(2-
ethylhexyl) phthalate as listed in Table 2.

Metabolism of Phthalates

The metabolism and elimination of phthalates are rather com-
plex, requiring three distinct steps, for example the metabo-
lism of DEHP as illustrated in Fig. 2. The first step occurs at
different parts of the body, for instance the mouth or skin,
stomach, intestines or blood where the phthalate diester is
cleaved into respective hydrolytic monoesters. In the second
step, modification of the alkyl chain of the resulting hydrolytic
monoester by various oxidation reaction takes place, in which
the extent of the oxidative modification increases as the alkyl
chain length of the phthalate monoester increases. This there-
fore decreases their water solubility as oxidative metabolites

are more water soluble than the corresponding hydrolytic
monoester. The low molecular weight phthalates are often
metabolized to their hydrolytic monoesters (primary metabo-
lites) whereas the high molecular weight phthalates of 8 or
more carbons in the alkyl chain are metabolized to their hy-
drolytic monoesters, which are then transformed into oxida-
tive products (secondarymetabolites). Finally in the third step,
conjugation of both the hydrolytic monoester and the oxidized
secondary metabolites with glucuronic acid occur which are
eventually excreted in urine (Yen et al. 2011; Koch and
Calafat 2009).

Human Exposure to Phthalates

PAEs are primarily used as plasticizers and solvents as well as
stabilizers for colour and fragrances (Duty et al. 2005a). They
are also present in printing inks, lacquers, building materials
(flooring, furniture and electric cables) (Ni et al. 2016; Butte
and Heinzow 2002), paints, pesticides, baby toys, personal
care and cosmetics (deodorants, perfumes and hair products),
pharmaceutical products as well as medical devices (Fig. 3)
(Du et al. 2016; Del Carlo et al. 2008; Shen 2005; Cinelli et al.
2013; Gómez-Hens and Agui la r-Cabal los 2003;
Sathyanarayana et al. 2008; Vera et al. 2011). Extensive in-
dustrial applications of PAEs in these many products have
caused widespread exposure to human mainly through inges-
tion, inhalation, dermal contact (Cirillo et al. 2013; Adibi et al.
2003; Rudel et al. 2003) and medical devices (He et al. 2015;
Zeman et al. 2013; Jeddi et al. 2015; Schecter et al. 2013;
Swan 2008). It is possible to find PAEs in the environment
(Rudel et al. 2003; Staples et al. 2008) as they are easily
released into water, air and soil and are released slowly from
worn down manufactures without PAEs being chemically
bound in plastics or other products (Gómez-Hens and
Aguilar-Caballos 2003). Although PAEs can be easily degrad-
ed in atmosphere by oxygen and UV radiation, they may per-
sist for a long time in solution.

Ingestion

PAEs ingestion may occur through food, water and from the
uses of their packaging particularly DEHP (Schettler 2006). In
fact, the main source of PAEs exposure in the general popu-
lation is from dietary intake (Cirillo et al. 2013; Fasano et al.
2012; He et al. 2015; Sioen et al. 2012; US Agency for Toxic
Substances and Disease Registry 2012; Fromme et al. 2007;
Wormuth et al. 2006). PAEs are mainly used as plasticizers
due to their ability in increasing flexibility, workability and
durability. However, Jeddi et al. (2015) and supported by
Dewalque et al. (2014) have reported that children are more
exposed than adults as they consume more food and water
such as breast milk, infant formulas and plastic-packed food
per unit body weight. In addition, they are also exposed by

Fig. 1 Generic chemical structure of PAEs where R and R′ groups can be
linear, branched or cyclic rings
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Table 2 Name, chemical structure, acronym, CAS number, molecular weight, boiling point, density (retrieved fromMSDS of Chem Service Inc) and
the uses of commonly used PAEs

Compound CAS no. MW/gmol-1 Bp/°C ρ/g mL-1 Uses

Dimethyl phthalate (DMP)

OCH
3

O

O

OCH
3

131-11-3 194.20 283.7 1.194 Plasticizers, additives in plastics (Wang et al. 2004)

Diethyl phthalate (DEP)

O

O

O

O

CH
3

CH
3

84-66-2 222.24 295 1.118 Personal care products, cosmetics (Heudorf et al. 2007), perfume and fragrance 

products (Romero-Franco et al. 2011, Api 2001), medicine coatings (Hauser et al. 

2004)

Diisobutyl phthalate (DiBP)

O

O

O

O

CH
3

CH
3

CH
3

CH
3

84-69-5 278.35 296.5 1.04 Similar properties as DBP and can be used as substitute of it (Koch et al. 2012)

Di-n-butyl phthalate (DBP)

O

O

O

O

CH
3

CH
3

84-74-2 278.35 340 1.047 PVC plastics, latex adhesives, cosmetics, personal care products, solvent for dyes

(Heudorf et al. 2007), medicine coatings (Hauser et al. 2004)

Compound (Acronym) CAS no. MW/gmol
-1

Bp/ °C ρ/g mL
-1

Uses

Butyl benzyl phthalate (BBP)

O

O

O

O CH
3

85-68-7 312.39 370 1.11 Vinyl tiles, artificial leather, traffic cones (Heudorf et al. 2007), hairspray 

(Romero-Franco et al. 2011; Houlihan et al. 2002 )

Dicyclohexyl phthalate (DCHP)

O

O

O

O

84-61-7 330.42 224 1.383 Printing ink on plasticizer (Castle et al. 1989)

Di-n-octyl phthalate (DnOP)

O

O

O

O

CH
3

CH
3

117-84-0 390.56 242 0.982 Garden hoses, pool liners, flooring tiles, toys (Schettler 2006), bottle cap liners, 

and as an indirect food additive (Heudorf et al. 2007)

Di-(2-ethylhexyl) phthalate (DEHP)

O

O

O

O

CH
3

CH
3

CH
3

CH
3

117-81-7 390.56 384 0.981 Building products (wallpaper, wire and cable insulation), car products (vinyl 

upholstery, car seats), clothing (footwear, raincoats), food packaging, children's 

products (toys, grip bumpers) (Heudorf et al. 2007), nail polish and perfume 

(Romero-Franco et al. 2011; Koo and Lee 2004), medical devices (Romero-

Franco et al. 2011; Schettler 2006)

Food Anal. Methods (2017) 10:3790–3814 3793



indoor dust and by sucking plastic teats, toys and mouthing
contaminated hands and other objects (Sathyanarayana et al.
2008; Jeddi et al. 2015; Clark 2003; Calafat et al. 2004;
Mortensen et al. 2005). Other than that, human are also ex-
posed to PAEs by ingestion of dust from floor and carpet tile
and products used in automotive interiors (Benson 2014).

Inhalation

Inhalation of PAEs can occur mainly from house dust and
indoor air including inside automobiles where PAEs release
from plasticized components can occur. However, PAEs
exposure through dust and indoor air depends on the PAE

sources such as building materials, PVC flooring and
furnishing and PVC accessories. A study by Oie et al.
(1997) reported a mean total PAE content of 960 μg/g of dust
in 38 homes in Norway with DEHP as the main compound.
Another study by Rudel et al. (2001) has reported a total PAEs
concentration ranged from 0.3 to 524 μg/g dust and from
0.005 to 28 μg/m3 indoor air from 120 US homes with
DEHP ranging from 20 to 114 ng/m3 and DBP ranging from
101 to 431 ng/m3. Hobbies such as clay modelling may also
represent as a source of PAEs exposure by inhalation in which
polymer clay is reported as a major source of air-dispersed
PAEs. This material is softened by various PAEs and can be
dispersed in air during the firing of the modelled clay. Another
source for the PAEs inhalation is from the use of perfumes and
hairsprays (Cirillo et al. 2013; Blount et al. 2000).

Dermal Contact

Direct contact with clothing, personal care products, synthetic
modelling clay, cleaning products, insecticides and denture
materials that contain PAEs may lead to absorption of PAEs
through the skin. In terms of frequency of use, Blount et al.
(2000) has considered personal care products such as cos-
metics as the main exposure source for women. A study by
Duty et al. (2005b) suggested that the main source of expo-
sure for men was from using eau de cologne and aftershave.
This is due to the uses of PAEs as lubricants in cosmetics and
personal care products. In the case of infants, PAEs exposure

Fig. 2 Metabolism of DEHP

Fig. 3 Sources of PAEs
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is mostly from their mothers who use lotions, powders and
shampoo as studied by Sathyanarayana et al. (2008).

Medical Devices

Medical devices have been shown to expose human to PAEs
via ingestion mainly from the use of PVC bags which are
softened by DEHP that are employed in enteral nutrition.
The leaching of the plasticizer may be caused by the lipid
content of the enteral/nutritional formulas (Cirillo et al.
2013). In addition, many drugs and medicines such as antibi-
otics, antihistamines, laxatives, herbal preparations and nutri-
tional supplements are coated with synthetic polymers con-
taining PAEs that can leach into the gastrointestinal tract dur-
ing drug release and thus become an important source of PAEs
ingestion (Hauser et al. 2004; Hernández-Díaz et al. 2009).
Furthermore, exposure from medical devices such as intrave-
nous exposure may also occur. DEHP which is often the main
PAE is released from PVC devices that are normally
employed for intravenous therapies such as transfusion of
blood and blood products, extracorporeal membrane oxygen-
ation and dialysis (Lee et al. 1999). As reported by Calafat
et al. (2004) and Green et al. (2005), premature babies under-
going intensive medical care in neonatal intensive care units
were found to be exposed to higher concentration of DEHP
than adults.

Medical devices may also be a source of human exposure
to PAEs by inhalation with regard to respiratory therapy.
DEHP may transfer into respiratory gases passing through
tubes that are made of PVC plasticized by PAEs (Cirillo
et al. 2013).

Sources and Occurrence of PAEs in Food

Between 2009 and 2011, by the order of Belgian Federal
Public Service of Health, Food Chain Safety and
Environment, a Belgian research project PHTAL (acronym
for phthalate) was conducted whose main objectives were to
obtain data of phthalates in all kinds of food products and
packaging materials sold in the Belgian market (Fierens
et al. 2012), to understand possible contamination pathways
of phthalates in the Belgian food market (Van Holderbeke
et al. 2014) and to estimate dietary exposure to phthalates of
the Belgian population (Sioen et al. 2012). Contamination of
PAEs in food is found to be most likely due to their transfer
from materials in contact with the food during processing,
handling or transportation (Wormuth et al. 2006; Sakhi et al.
2014; Cao 2010). As the PAEs are not chemically bonded to
polymers but remain present as a freely mobile and leachable
phase, they can potentially leach and easily migrate (Ni et al.
2016; Moskovkin 2002) into food and beverages from the
enclosing materials (Gómez-Hens and Aguilar-Caballos

2003). This has therefore made food as a major source of
exposure of phthalates in humans (Fasano et al. 2012;
Fromme et al. 2007; Wormuth et al. 2006; Clark et al. 2011;
Rudel and Pevorich 2009). In addition to this, this project also
found that PAEs were illegally substituted for food grade
emulsifiers in formatting clouding agents that are meant to
provide turbidity to selected food products, mainly beverages
(Self and Wu 2012; Espachs-Barroso et al. 2005), and were
also used to give a characteristic colour, flavour and mouth-
feel in beverages (Jasentuliyana et al. 1998).

Toxicological Aspects and Human Health Effects

The toxicity of PAEs to human being has been reported over
20 years ago (Chronic Hazard Advisory Panel 1985; Ventrice
et al. 2013; Moret et al. 2012; Ni et al. 2016; Martino-Andrade
and Chahoud 2010; Okamoto et al. 2011) prompting concerns
on the development of reproductive systems (He et al. 2015;
Martino-Andrade and Chahoud 2010; Matsumoto et al. 2008;
Kamrin 2009; Fisher 2004; Scholz 2004). PAEs have been
categorized as a Bchemical of concern^ by the United States
Environmental Protection Agency (EPA) (Cao et al. 2016;
U.S. EPA 2012) and are classified by most countries as carci-
nogenic, mutagenic and toxic to reproductive health (Gallart-
Ayala et al. 2013). PAEs are considered to be potential
endocrine-disrupting chemicals (EDC) (European Union
Risk Assessment Report 2003; Cariou et al. 2016;
Chauvigné et al. 2009; Eveillard et al. 2009) which are com-
pounds of known toxicity even at low concentrations that are
able to mimic or block the action of natural hormones affect-
ing the normal biology function in animals and humans and
are able to interfere with androgen signalling and production
(Cacho et al. 2012; Laws et al. 2000).

Exposure in male adults, mainly to DEHP, may cause al-
terations in pulmonary functions and sperm properties
resulting in reduced sperm counts and mobility in such a
way that it can cause seminiferous tubule atrophy, decreased
testis weight, decreased sperm production and decreased tes-
ticular zinc level, in which testicular effects can lead to infer-
tility (Ventrice et al. 2013; Foster et al. 1980; Li et al. 2012a).
With regard to women, it was observed that the target of PAEs
toxicity was in ovaries and in particular steroid hormone pro-
duction (Ventrice et al. 2013).

Even though PAEs are rapidly hydrolysed into their corre-
sponding monoesters and then metabolized and eventually
excreted with urine and faeces (Itoh et al. 2005), they have
been detected in serum, amniotic fluids and breast milk
(Ghisari and Bonefeld-Jogersen 2009) and hence showing a
negative relationship between high PAEs exposure and chil-
dren’s intelligence and behaviour as reported by several epi-
demiological studies (Nelson 1991; Ventrice et al. 2013; Cho
et al. 2010). Human exposure to PAEs (mainly DEHP) can
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begin in utero, resulting in a shorter pregnancy duration (Yen
et al. 2011; Latini et al. 2003). In addition to this, from the
recent epidemiological studies, PAEs exposure have also been
associated with shorter gestational age (Whyatt et al. 2009;
Adibi et al. 2009), shorter anogenital distance (Suzuki et al.
2011; Marsee et al. 2006), precocious puberty (Lomenick
et al. 2010), pubertal gynecomastia (Durmax et al. 2010),
premature thelarche (McKee 2004), low birth weight (Zhang
et al. 2009), attention deficit hyperactivity disorder (Kim et al.
2009; Engel et al. 2010), low intelligence quotient (Cho et al.
2010), thyroid dysfunction and growth retardation (Boas et al.
2010) and hypospadias (Ormond et al. 2009) in infants and
children.

As mentioned above, PAEs are considered to be carcino-
genic in which they are responsible in causing cancer due to
the peroxisome-proliferator-activated-receptor-α (PPARα)
activated by the ability of PAE monoesters that increases as
the chain length increases (Cirillo et al. 2013; Bility et al.
2004). Studies in rodents have shown that PAEs can cause
hepatic cancer, liver tumours, testicular Leydig cell and pan-
creatic acinar cell tumours (Ventrice et al. 2013; Cirillo et al.
2013).

Other health effects caused by PAEs exposure also include
airway remodelling causing asthma, allergies (Ventrice et al.
2013; Jaakkola et al. 1999; Jaakkola and Knight 2008) and
respiratory symptom (Cirillo et al. 2013; Polakoff et al. 1975;
Falk and Portnoy 1976; Brooks and Vandervort 1977; Eisen
et al. 1985; Markowitz et al. 1989; Nielsen et al. 2007) obesity
and diabetes due to low testosterone level (Ding et al. 2006;
Selvin et al. 2007) and autism spectrum disorders (ASDs)
(Weintraub 2011) as PAEs can also interfere with neurological
development. Several animal studies have also revealed that
their effect on the dopamine system in the central nervous
system in which a low dose of PAEs can impair tyrosine hy-
droxylase immunoreactivity (Ishido et al. 2004) causing the
loss of mid-brain dopaminergic neurons and thus decreasing
tyrosine hydroxylase biosynthetic activity (Tanida et al.
2009).

Analysis Approach

It is particularly difficult to perform an effective measurement
of PAEs content in food as food samples can be easily con-
taminated within laboratory environment and activities as
glassware, solvents and reagents used may contain traces of
PAEs. Hence, analysis of PAEs contamination in/from food
packaging migrating into food products represents a challeng-
ing task that will necessitate suitable precautions to avoid any
contamination. Due to the complexity of matrices and low
concentration levels expected in samples, assessment of
PAEs contamination would thus require efficient pre-
concentration and clean-up procedures to ensure the quality

of analytical determination results. Other typical steps re-
quired in the analysis procedures for food sample preparation
are sampling, homogenization and extraction (Cirillo et al.
2013).

Sample preparation is a more or less complex procedure in
accordance to the characteristics of the food matrix. In parallel
to assessing the migration of chemicals from packaging into
food, determining the migration of chemicals from packaging
into food simulants (extractant used as food substitutes for
analysis; solvents, oil or polymeric resin that can be used to
mimic chemical properties of food to simplify the chemical
analysis of migrants from food contact materials) may also be
of interest as they represent a different group of food. Food
simulants vary depending on their chemical properties as
shown in Table 3 in which they may migrate variably depend-
ing on migration test conditions such as temperature and pe-
riod of exposure. However, chemical migration into actual
food is expected to be lower than the migration into food
simulants; hence, food simulants are believed to overestimate
the real migration. In contrast, all food simulants can be used
for overall migration testing such as in assessing a mixture of
chemicals that can migrate from the entire packaging into
food. The use of distilled water as food simulant is also com-
mon for this purpose (unspecific analysis) (Muncke 2014).

Blank Problems

Due to the widespread use of products containing PAEs, PAEs
have become ubiquitous environmental contaminants. They
therefore have become the main cause of blank problems as
well as increasing the risk of secondary contamination that
may occur during sampling, sample preparation, extraction
and/or instrumental analysis and therefore leading to
overestimated contamination levels. As PAEs are commonly
present in laboratory environment, Frankhauser-Noti and
Grob (2007) reported the presence of DBP and DEHP in the
laboratory air to be 3 and 2.4 μg/m3 respectively; in organic
solvents and chemicals for instance 100 μg/L of DBP and
DEHP were found in commercially available hexane (Grob
et al. 2006), which are adsorbed on glassware and other de-
vices used for the analysis. PAEs are also present in materials
commonly used in laboratory activities such as tubing, caps,
stoppers, glass wool, filter paper or fibres, cartridges and stir
bar used in specific sample preparations. In addition, a 1.5-mL
autosampler vial was also estimated to contain 10 and 4 ng of
DBP and DEHP, respectively (Frankhauser-Noti and Grob
2007).

It is best to keep PAEs analysis to be as quick and as simple
as possible by keeping the sample preparation to minimum,
with minimal extraction steps and pre-concentration of the
extracts, which can be done by minimizing the use of solvents
and chemicals, glassware and the exposure of sample in air. In
order to reduce the primitive contamination in solvents,
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redistilling the solvents can be done even though Frankhauser-
Noti and Grob reported redistilling solvent is not efficient
enough and is not always possible in routine analysis labora-
tories as contamination during and after distillation is still
possible. However, they reported that the best solution was
to perform a dispersive solid-phase extraction (SPE) in dis-
tilled solvent such as adding active aluminium oxide to reser-
voir which is able to absorb the presence of all polar materials
in the solvent, taking into account the amount of aluminium
oxide added and the time of shaking to allow aluminium oxide
to absorb PAEs present in the solvent. However, this alterna-
tive is only applicable for organic solvents and not in more
polar solvents as PAEs would be extracted from aluminium
oxide instead of being purified. The solvent bottles then
should be closed after use to avoid contact with air.

With regard to the glassware used, removal of more than
90% of DBP and DEHP (Frankhauser-Noti and Grob 2007)
can be achieved by solvent rinsing followed by heating at
400 °C for 1–2 h (David et al. 2003) or heated in the oven at
400 °C for several hours or overnight and then kept in a desic-
cator containing aluminium oxide or covered with aluminium
foil to avoid adsorption of PAEs from the air. For materials that
cannot be cleaned by heating, they should be rinsed with puri-
fied solvent drawn from a bottle containing aluminium oxide.
In conclusion, it is best not to expose any solvents andmaterials
used to the air during the preparation, extraction steps until the
end of the analysis determination (Moret et al. 2012).

Water and Beverages

In general, PAEs from non-fatty liquid samples such as water,
beverages and alcoholic solution can be extracted commonly
by liquid-liquid extraction (LLE) in which the sample is
mixed with organic solvents with higher affinity for PAEs in
order to change the equilibrium in favour of the organic sol-
vent with no additional clean-up required. Different extraction
solvents can be used as proposed by several researches for
instance dichloromethane (CH2Cl2) (Shelton et al. 1984;
Bošnir et al. 2007; Fierens et al. 2012; He et al. 2015; Paz
Otero et al. 2015), n-hexane (Holadová and Hajŝlova 1995),
cyclohexane (Tienpoint et al. 2005), diethyl ether (Ejlertsson
and Svensson 1995) and ethyl acetate (Jonsson and Borén
2002). However, in comparison with conventional LLE
(Ostrovský et al. 2011), Rezaee et al. (2006) has proposed
using dispersive liquid-liquid microextraction (DLLME) of
better efficiency, simplicity and rapidity in 2006. Later on in
2011, ultrasoundDLLME using carbon tetrachloride (CCl4) as
extractant was applied to extract six PAEs in bottled milks. In
2013, ultrasound-vortex-assisted extraction was established
by Cinelli et al. (2013) to extract PAEs in wine. Despite the
advantages of DLLME, its main drawback is the use of
chloro-containing organic extractants that could lead to envi-
ronmental pollution. Therefore, recyclable ionic liquids (salt
in liquid state for example sodium chloride), which are non-
volatile and non-toxic were used as green extractants and were
combined with DLLME to extract PAEs from alcoholic bev-
erages (Fan et al. 2014). However ionic liquids are unstable
and tend to decompose when in touch with metallic catalysts.
In addition a few toxic solvents and extremely complex puri-
fication process are required to synthesize an ionic liquid and
thus leading to high cost limiting their wide application (Yang
et al. 2015). In 2016, Pérez-Outerial et al. determined PAEs in
liquid samples by UA-DLLME (ultrasound-assisted-disper-
sive liquid-liquid microextraction) followed by solidification
of floating organic drop by using n-hexadecane as extracting
solvent.

Other than LLE, solid-phase extraction (SPE) is also a
commonly used method where SPE columns use polar sta-
tionary phase such as C18 (Khedr 2013), C8, polystyrene,
XAD-2 adsorbents (Cinelli et al. 2014) and multiwall carbon
nanotubes (MWCNTs) (Casajuana and Lacorte 2003; Cai
et al. 2003; Mohamed and Ammar 2008; Del Carlo et al.
2008) to selectively adsorb PAEs while polar compounds that
are not of interest are eluted and separated from analytes of
interest. Even though this technique allows the use of solvents
to be reduced and hence improving extraction efficiency and
yielding more purified extracts, it is time consuming and it
often requires extensive sample handling and treatment of
sample prior to analysis, which then lead to high blank values.
In addition to the conventional SPE, magnetic solid-phase
extract ion (MSPE) using magnet ic nanosorbents

Table 3 List of food simulants based on studies published by Muncke
(2014)

Food simulant Abbreviation Use

10% ethanol Food
simulant
A

Aqueous food

3% acetic acid Food
simulant
B

Aqueous and/or acidic
(pH <4.5) food

20% ethanol Food
simulant
C

Aqueous, alcoholic
(≤20% ethanol)
and/or fatty food

50% ethanol Food
simulant
D1

Fatty food, alcoholic
(>20% ethanol)
and/or emulsions
(oil-in-water)

Vegetable oil Food
simulant
D2

Fatty, with free fats
contacting the food
contact material
surface

Tenax
(poly(2,6-iphenyl-p--
phenylene oxide), particle
size 60–80 mesh and pore
size 200 nm

Food
simulant
E

Dry foods (for specific
migration testing)

Distilled water – Overall migration
testing

Food Anal. Methods (2017) 10:3790–3814 3797



incorporating multiwall carbon nanotubes (MWCNTs) (Guan
et al. 2010), single-walled carbon nanotubes (SWCNTs)
(Rastkari et al. 2010) and graphene (Wu et al. 2011) have been
employed. In 2011, analysis of PAEs in water was performed
using a newly synthesized polypyrrole-coated Fe3O4 magnet-
ic microsphere (Meng et al. 2011) and later on in 2013, it was
applied to analysis of PAEs in soybean milk (Wang et al.
2013). In the same year, Tahmasebi et al. (2013) has success-
fully synthesized a novel type of polythiophene-coated Fe3O4

supermagnetic nanosorbent as a new sorbent for SPE in anal-
ysis of PAEs in water.

In contrast to SPE, solid-phase microextraction (SPME) is
more efficient, simple and solvent-free and does not require
any prior sample preparation. The conventional SPME device
looks like a syringe composed of fused silica fibre coated with
a thin layer of sorbents which plays an important role in its
high selectivity and fixed with a needle that usually employs a
miniature automatic device to integrate sampling, extraction,
purification, concentration and injection in one procedure
(Moret et al. 2012). This technique permits simpler sample
preparation and reduce the risk of secondary contamination.
The extraction of target analytes from liquid samples can be
performed either by direct immersion SPME (DI-SPME) or
headspace SPME (HS-SPME) in which both techniques were
used in several studies for determination of water since late
1990s (Peñalver et al. 2000, 2001; Luks-Betlej et al. 2001;
Polo et al. 2005; Montuori et al. 2008; Cao 2008). In recent
years, Carillo et al. (2007, 2008) have developed a method
based on HS-SPME to extract PAEs from wine samples using
PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre.
However, the fibres showed tendency to break and are rela-
tively expensive.

Another approach of analysing liquid samples is stir bar
sorptive extraction (SBSE) in which PDMS is also used as a
coating for the stir bar, which is usually immersed in sample
solution to extract the target analytes and then thermally
desorbed for separation and detection. This method allows a
higher performance resulting in higher sample capacity and
recovery, thus giving better sensitivity than LLE and SPE. In
the case of liquid samples, no clean-up procedure is necessary
when using this approach.

Oils and Fatty Extracts

When extracting PAEs from fatty matrices, it is crucial to
apply clean-up procedures due to the co-extraction of the lipid
components mostly represented by triacylglycerols. The two
commonly clean-up procedures applied are liquid-liquid par-
tition with acetonitrile (ACN) (Sørensen 2006) and gel per-
meation chromatography (GPC) both of which involve liquid-
liquid partition to remove fats and oils in fatty extracts that is
often performed by size exclusion chromatography (SEC),
where extracts are injected onto a column packed with

Biobeads SX3 or PLgel and eluted with CH2Cl2/cyclohexane
(Tsumura et al. 2001; Castle et al. 1988, 1990) or ethyl acetate/
cyclohexane (Blüthgen and Heeschen 1998; Petersen and
Breindahl 2000) or pentane/methyl tert-butyl ether (MTBE)
(Hogberg et al. 2008). In addition to this, the column may be
packed with Florisil, silica gel or other phases to perform the
clean-up.

With regard to liquid fatty matrices, extraction methods
will be briefly described in the solid foods section below. In
the case of vegetable oils, PAEs determination can be analysed
by conventional LLE technique usually performed by using
ACN followed by clean-up using different SPE phase such as
silica or Florisil. Treatment with aluminium oxide prior to
clean-up step was proposed byMariani et al. (2006) to remove
co-extracted free fatty acids that may cause interference in the
chromatographic analysis.

New approach for the extraction of PAEs from virgin oil
samples has been developed in López-Feria et al. 2009 by
López-Feria et al. using surfactant-coated carbon nanotubes
as extractant where the phase containing the extract analytes is
transferred into a headspace vial and added with sodium chlo-
ride to facilitate the release of the target analytes to the head-
space. Other more recent approaches to further simplify sam-
ple preparation are SPME and the analysis with PTV injection
system (programmed temperature vaporizer). Frankhauser-
Noti and Grob (2006) have described PTV injection technique
as a very useful method as it allows direct injection of a diluted
oily solution without prior extraction and clean-up steps in
which the injector is kept below the solvent evaporation tem-
perature during the injection of sample and is then rapidly
heated. The analytes present in the sample are subsequently
evaporated as characterized by different volatilities and then
compounds of interest are transferred into the separation col-
umn leaving high-boiling components in the inlet to avoid
their entrance in the analytical column. A system known as
backflush system will then allow the cleaning of the pre-
column and the inlet. Although PTV injector and the conven-
tion split/splitless injector are rather similar in injecting the
sample into a liner place inside the volatilizing chamber where
it is evaporated, the difference between the two is that the PTV
injector can be rapidly heated and cooled during the injection
and analysis, whereas the conventional split/splitless injector
only works in isothermal conditions. Therefore, the PTV in-
jection technique is able to simplify sample preparation and
eliminate problems of secondary contamination.

Solid Foods

The commonly used method of extraction of PAEs from non-
fatty solid foods after homogenization such as fruits and veg-
etables is LLE by direct extraction with ACN or mixtures of
ACN and water in which some cases need to be followed up
by a further extraction with 1:1 mixtures of n-hexane/CH2Cl2
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or cyclohexane/CH2Cl2 (Page and Lacroix 1995; Lau and
Wong 1996). A less common technique of Soxhlet liquid ex-
traction (SLE) is also used which has been proposed by
Sablayrolles et al. (2005) where frozen, lyophilized and
ground samples are extracted with n-hexane. The extract can
then be purified using a Florisil SPE cartridge after concentra-
tion and finally target compounds are eluted by a 9:1 mixture
of n-hexane/acetone.

In the case of fatty solid foods such as dairy products, meat
products, chocolates and retail products, it is necessary to
extract the lipid fraction first as PAEs may be co-extracted
with it. This is then followed by LLE with a mixture of sol-
vents such as of acetone/n-hexane as proposed by Page and
Lacroix (1995), Castle et al. (1988) and MAFF (1996a, b,
1998), MeOH/n-hexane by Sharman et al. (1994) and Castle
et al. (1990), n-hexane/CH2Cl2 by Yano et al. (2002),
MeOH/n-hexane/MTBE by Sørensen (2006), pentane/ace-
tone/n-hexane/MTBE by Hogberg et al. (2008), ACN/n-hex-
ane by Page and Lacroix (1995), Tsumura et al. (2001, 2002,
2003) and Yano et al. (2005) or with singly solvent such as n-
hexane as proposed by Guo et al. (2010) and Jarošová (2006),
CH2Cl2 by Page and Lacroix (1995), pentane by Petersen and
Breindahl (2000) and ACN by Cariou et al. (2016).

In addition to the LLE step, Guo et al. (2010) proposed the
addition of aluminium oxide and sodium chloride solution to
decrease interference from proteins, fats and other
components whereas Tsumura et al. (2001, 2002, 2003) has
proposed the addition of sodium chloride to eliminate water
for PAEs analysis in fresh foods. On the other hand, Page and
Lacroix (1995), Yano et al. (2002) and Petersen and Breindahl
(2000) proposed treatment with potassium hydroxide, potas-
sium oxalate or other destabilizing agents to damage the
phospholipid-protein membrane of the fat globules in PAEs
analysis of cheese, milk, infant foods and other dairy products.
Likewise, sodium sulphate is also used to remove water from
the extract followed by evaporation to concentrate the sample
extract under nitrogen flow and finally redissolving the resi-
due with various solvents. PAEs analysis in fatty extracts
should undergo clean-up procedures such as gel permeation
chromatography (GPC) (Fierens et al. 2012) and gas-purge
microsyringe extraction (GP-MSE) (He et al. 2015). Other
extraction methods include the use stir bar sorptive extractive
(SBSE) (Cacho et al. 2012), direct analysis in real time–stan-
dardized voltage and pressure (DART-SVP) (Self and Wu
2012) and ultrasonic extraction (UE) (He et al. 2015; Cacho
et al. 2012).

Packaging Materials

In the analysis of PAEs determination in food packaging ma-
terials, it is necessary to apply migration tests using food
simulants and standardized migration test conditions
depending on the type of food. Fasano et al. (2012) has

performed two extraction methods to analyse PAEs which
are incubation for 10 days at 40 °C and ultrasonic extraction
in which the food simulants are extracted by SPE. In the same
year, Cacho et al. (2012) has proposed a method in determin-
ing PAEs in vegetables and migration studies from their pack-
ages by SBSE with prior extraction with ethanol.

Another method for PAEs analysis from packaging is ultra-
sonic method with n-hexane as the extracting solvent as per-
formed by Fierens et al. (2012) and later on by VanHolderbeke
et al. (2014). However, Van Holderbeke has employed modi-
fications from the original method by Fierens which include
adding a step where exchanging the sample extracts was done
with CH2Cl2 followed by purification with GPC.

Nevertheless, a direct analysis of the sample extracts from
paper and board packaging was performed by Nerin et al.
(2002) with supercritical fluid extraction (SFE) using ethanol
that did not require pre-treatment of the samples. In addition,
Soxhlet extraction using hexane is also applied to analyse
PAEs in polymer-coated sample cup. A more recent approach
of PAE determination is the development of magnetic dummy
molecularly imprinted dispersive solid-phase extraction
(MAG-MIM-dSPE) (Qiao et al. 2014) for selective determi-
nation of PAEs in plastic bottled beverages using DINP
(diisononyl phthalate) as a template mimic resulting in a suc-
cessful analysis of 5 PAEs.

Other Extraction Methods

In 2012, dispersive SPE (d-SPE) approach was performed for
clean-up of 17 PAEs in fatty food after being extracted with
organic solvents (Li et al. 2012b). In 2013, 15 PAEs were
analysed in vegetable juices by using hollow fibre-liquid
phase microextraction (HF-LPME) (Zhu et al. 2013). Later
on, a new extraction method based on membrane filtration-
enrichment using nylon membrane as solid-phase support was
proposed by Chen et al. (2014).

As proposed by Anastassiades et al. (2003), a method
known as QuEChERs (quick, easy, cheap, effective, rugged
and safe) was first used to extract pesticides from foods in
which the procedures include homogenization of sample, ex-
traction with ACN, dehydration with magnesium sulphate
followed by removal of impurity with primary secondary
amine (PSA) and finally analysis using GC-MS or LC-MS.
Later on in 2014, QuEChERs was successfully applied in
extracting 23 PAEs from grape jelly, seasoning powder, egg
noodles and grapefruit sauce (Xu et al. 2014, Yang et al.
2015).

Instrumental Determination

The most common quantitative methods used for PAEs deter-
mination are mainly gas chromatography (GC) and liquid

Food Anal. Methods (2017) 10:3790–3814 3799
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chromatography (LC). PAEs have low molecular weight, rel-
atively low polarity, thermally stable and sufficiently volatile
to be analysed by GC methods. GC-MS equipped with a DB-
5M S c o l u m n c o a t e d w i t h 5% p h e n y l - 9 5%
dimethylpolysiloxane carried out in selected ion monitoring
(SIM) mode is one of the most widely used techniques for the
analysis (Casajuana and Lacorte 2003; Blüthgen and
Heeschen 1998; Petersen and Breindahl 2000; Frankhauser-
Noti and Grob 2006; Yang et al. 2015; Gärtner et al. 2009).
Even though low detection limit is strongly influenced by the
secondary contamination problems, GC techniques however
can allow low detection limits to be achieved especially by
splitless injection. Other than GC-MS, electron ionization
(EI)-MS, chemical ionization (CI)-MS using methane as the
reagent gas in either positive or negative mode, GC-MS/MS
under positive chemical ionization using isobutene as reagent
gas and gas chromatography-flame ionization detector (GC-
FID) have also been used for identification and quantification
of PAEs in food samples (Moret et al. 2012).

LC such as HPLC using C18-columns running either in
isocratic or gradient elution have also been widely used for
the determination of PAEs in food samples due to its ability in
analysing thermally-unstable and non-volatile organic
chemicals (Moret et al. 2012; Yang et al. 2015). The recover-
ies (R), relative standard deviations (RSD), limit of detections
(LOD) and limit of quantifications (LOQ) may vary when
using different extraction and instrumental analysis which
are summarized in Table 4 with the analytes stated only fo-
cusing on the most common PAEs. However, even though the
analysis depends on the pre-treatment step, instrumental con-
ditions and the sample matrix in which they are obtained,
several studies had concluded that GC methods are able to
obtain better LODs than HPLC methods (Moret et al. 2012;
Bošnir et al. 2007; Ostrovský et al. 2011; Kozyrod and
Ziaziaris 1989; Petersen 1991; Prokůpková et al. 2002).

Comparison of Sample Preparation Methods

Based on the literature review, the advantages and drawbacks
of various sample preparation/extraction methods of PAEs
analysis in food/beverages and food packaging materials are
presented in Table 5. In the authors’ opinion, QuEChERS is
an interesting method as its simplicity in sample preparation
and extraction with the use of low quantities of organic sol-
vent, low cost, as well as requiring only a short amount of time
has gained particular interest from researchers. This method is
highly efficient in detecting target compound where it has
successfully extracted 23 PAEs from food samples when
paired with HPLC-MS/MS. A recent study performed by
Dong et al. (2017) using the QuEChERS-GC/MS method
was able to analyse 14 PAEs from wheat samples; with satis-
factory recoveries between 84.8–120.3% and RSD of 0.6–T
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Table 5 Advantages and drawbacks of each sample preparation/extraction method used

Sample preparation/extraction
methods

Extractants/adsorbents Advantages Drawbacks

Liquid-liquid extraction (LLE) ➢ Organic solvents ➢ Non-fatty liquid samples: no
clean-up procedure

➢ Low cost
➢ Reduced extraction time

➢ Oils and fatty extracts: clean-up
using different SPE phase such
as silica or Florisil

➢ Fatty solid foods: some
proposed additional step

• The addition of aluminium oxide
and sodium chloride solution to
decrease interference from
proteins, fats and other
components

• The addition of sodium
chloride/sodium sulphate to
eliminate water

• Clean-up with gel permeation
chromatography (GPC) and
gas-purge microsyringe
extraction (GP-MSE)

Dispersive liquid-liquid
microextraction (DLLME)

➢ Commonly chloro-containing
organic extractants, or

➢ Ionic liquids as green extractants

➢ Better efficiency, simplicity and
rapidity than LLE

➢ Only few microliters organic
solvent is required

➢ Fast
➢ Inexpensive
➢ Only involve simple equipment
➢ Low cost

➢ Possible environmental
pollution due to the
chloro-containing organic
solvents but only microliters are
used

➢ Ionic liquids are
• Unstable
• Tendency to decompose when in

contact with some metallic
catalysts

• The synthesis of ionic liquids
requires few toxic solvents

• Complex purification process
• High cost
• Limited wide application
➢ Samples are not well separated:

may require further
centrifugation

➢ Disperser solvent peaks may
overlap with analyte peaks

Ultrasound-assisted dispersive
liquid-liquid microextraction
(UA-DLLME)

➢ Reduce the volume of solvent
used

➢ Simple, inexpensive and more
reliable than DLLME

Ultrasound-vortex-assisted
dispersive liquid-liquid
microextraction (USVADLLME)

➢ Reduce the volume of solvent
used

➢ Improve extraction efficiency
➢ Able to analyse matrices with

large alcohol content
➢ Able to detect trace and

ultra-trace levels

Magnetic stirring-assisted
dispersive liquid-liquid
microextraction (MSA-DLLME)

➢ Low-density extraction solvent
(dodecane)

➢ Simple, fast and efficient
➢ No disperser solvent which

increase extraction recovery

➢ Use of dodecane result in poor
response of DMP

Air-assisted liquid-liquid
microextraction (AALLME)

➢ 1,1,2,2-Tetrachloroethane ➢ Higher efficiency
➢ Clear blank chromatogram

➢ Possible environmental
pollution due to the
chloro-containing organic
solvents but only microliters are
used

Low density solvent-based
vortex-assisted
surfactant-enhanced-
emulsification liquid-liquid
microextraction
(LDS-VSLLME)

➢ Toluene (extraction solvent)
➢ Cetyltrimethyl ammonium bromide

(surfactant)

➢ Reduced amount of organic
dispersive solvent compared to
conventional DLLME

➢ High extraction efficiency due
to the surfactant and vortex
agitation

➢ Fast, efficient, simple,
cost-effective

➢ Extraction efficiency decreased
with increasing salt content in
water samples

Solid-phase extraction (SPE) ➢ C18
➢ C8
➢ Polystyrene
➢ XAD-2 adsorbents
➢ Multiwall carbon nanotubes

(MWCNTs)

➢ Reduce the use of solvents
➢ Improving extraction efficiency
➢ Yield more purified extracts

➢Often requires extensive sample
handling and treatment of
sample prior to analysis

➢ High blank values
➢ Requires clean-up using Florisil
➢ Clogging of cartridges

➢ XAD-2 adsorbents
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Table 5 (continued)

Sample preparation/extraction
methods

Extractants/adsorbents Advantages Drawbacks

Molecularly imprinted
polymer-solid-phase extraction
(MISPE)

➢ Polymer ➢ Higher selectivity, sensitivity
and reliability than SPE

➢ Usually require a polymer
synthesis step

Magnetic dummy molecularly
imprinted dispersive solid-phase
extraction (MAG-MIM-dSPE)

➢ Magnetic nanosorbents such as:
• Multi-walled carbon nanotubes

(MWCNTs)
• Single-walled carbon nanotubes

(SWCNTs)
• Graphene
• Phthalates
• Polypyrrole-coated Fe3O4 magnetic

microsphere
• Polythiophene-coated Fe3O4

supermagnetic nanosorbent

➢ Simple
➢ Low cost
➢ Environmentally friendly
➢ Able to eliminate co-existent

interferents
➢ Polypyrrole-coated Fe3O4 has

large surface area, thus
• Convenient
• Fast separation ability
• Prevent aggregation of

microspheres
• Improve dispersibility
➢ Polythiophene-coated Fe3O4

• Shorter extraction time as no time
consuming column passing,
filtration or centrifugation

• Low consumption of organic
solvent

•Higher adsorption capacity due to
higher surface area-to-volume
ratio thus more efficient extrac-
tion

➢ Magnetic sorbents should be
modified

• To increase monodispersity
➢ New coatings should be

developed
• To protect magnetic cores
• To enhance dispersity in sample

solutions
• To obtain multifunctional

magnetic sorbents

Solid-phase microextraction
(SPME)

➢ PDMS/DVB
(polydimethylsiloxane/-
divinylbenzene) fibre

➢ In comparison to SPE, SPME is
• Simple and efficient
• Low cost
• Solvent-free
•Does not require any prior sample

preparation
• Able to reduce the risk of

secondary contamination
• High sensitivity

➢ Limited life-time with the use of
fibre due to the fragility and
degradation

➢ Batch- to-batch variation, arte-
fact formation and low repeat-
ability

➢ Low capacity

Headspace SPME (HS-SPME) ➢ No sample manipulation is
required and hence minimizing
cross contamination from
glassware, solvents and samples

➢ Fibres have tendency to break
and are relatively expensive

Direct immersion SPME
(DI-SPME)

➢ Simple, reduce the volume of
solvents used, better linearity,
repeatability and sensitivity

Stir bar sorptive extraction (SBSE) ➢ PDMS ➢ Higher sample capacity,
recovery and sensitivity
improvement by a factor of
100–1000 in comparison with
SPME

➢ Better sensitivity than LLE and
SPE

➢ Low detection limits at the
sub-ng/L level

➢ No clean-up required for liquid
samples

➢ Limited to PDMS sufficiently
enriched substances

➢ Batch- to-batch variation, arte-
fact formation and low repeat-
ability

Soxhlet extraction ➢ Organic sovents ➢ Simple, minimum sample
handling

➢ Sample-fresh solvent
➢ No filtration procedure
➢ Good reproducibility and

efficiency
➢ Minimal steps required prior to

extraction

➢ Time consuming
➢ Requires large amount of

solvent and sample
➢ Contamination and may cause

loss of some analytes in the
pre-concentration steps

Ultrasonic extraction (UE) ➢ Organic solvents
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9.0% for intra-day and inter-day precision, respectively,
whereas the LOD ranged from 0.1–2.5 μg/kg.

On the other hand, 3 different extraction methods as
performed by Fierens et al. in 2012 has analysed as many
as 400 food samples of various matrices. High-fat and
low-fat food were extracted with acetone/n-hexane mix-
ture followed by centrifugation and a clean-up by gel

permeation chromatography, while a liquid-liquid extrac-
tion with dichloromethane was used for aqueous-based
beverages and in the case of food packaging materials,
ultrasonic extraction with n-hexane was carried out. This
study has successfully analysed 8 PAEs with LOD levels
in the range of 0.003–0.3 ppb, recoveries between 82 and
104% and RSD of below 14%.

Table 5 (continued)

Sample preparation/extraction
methods

Extractants/adsorbents Advantages Drawbacks

➢ Simple, minimum sample
handling

➢ May requires additional steps
prior to extraction such as
migration test in which the food
simulants are then extracted
with SPE

➢ Or additional step where
exchanging the sample extracts
was done with CH2Cl2 followed
by purification with GPC or
GP-MSE

Supercritical fluid extraction (SFE) ➢ CO2

➢ Ethanol
➢ Methanol

➢ Easy, requires minimum
handling and time

➢ Requires only small amount of
organic solvent

➢ Safe and environmentally
friendly

➢Additional migration tests could
be avoided as SFE technique
provides a good way to evaluate
the potential chemical migration
to food, thus assuming 100%
migration

➢ No pre-treatment is required

➢ High cost as it requires high
pressure

➢ The optimization of SFE
procedure may need to be
carried out depending on
experimental design

Acelerated solvent extraction (ASE) ➢ Organic solvents ➢ Fast extraction
➢ Low amount of solvents used
➢ Better analyte recovery

➢ High cost with the use of high
temperature and pressure

➢ Use of deuterated
corresponding phthalates which
are costly

➢ Migration test is required and
performed over a period of
2 months

Direct analysis in real time (DART) ➢ (Ionizes gases, liquids, solids) ➢ Direct and rapid analysis
➢ No sample pre-treatment is re-

quired
➢ Analysis under ambient

conditions
➢ Reduced cross contamination

➢ High cost
➢ High LOD

Membrane filtration-enrichment
SPE

➢ Nylon membrane ➢ More rapid, sensitive and
selective than conventional SPE

➢ Selection of membranes may be
difficult if multiple analytes are
analysed simultaneously

➢ Large amount of solvent is used

QuEChERs (quick, easy, cheap,
effective rugged and safe)

➢ Organic solvents ➢ Fast, simple and inexpensive
➢ Low solvent usage and waste
➢ Minimum handling
➢ Only requires few devices to

carry out this procedure; small
work space, mobile lab

➢May require primary secondary
amine to remove possible
co-extracted matrix ingredients
that can be mistaken as analyte
and eluted at the same time

Hollow fibre-liquid phase
microextraction (HF-LPME)

➢ Organic solvents ➢ Higher efficiency than SPME ➢ Manipulation of hollow fibre
may introduce contamination
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In 2012, Guo et al. also did a study on analysing 9 PAEs
from 78 various food samples which were sorted into 3 dif-
ferent matrices for extraction such as liquid samples, solid
food sample and cooking oil. Although this study has only
performed extraction simply by liquid extraction and a liquid-
liquid partition clean-up in the case of solid food samples and
cooking oil, it was able to achieve detection limit down to
1 ppt level.

Conclusion

The widespread use of products containing PAEs has caused
growing concerns on their effects on human health; this has
prompted researches in the development of sample prepara-
tion and analytical methods for the determination of PAEs in
the last two decades. This review shows that there has been an
increase in the number of PAEs being analysed in increasing
types of food matrices especially in the last 5 years. Methods
of sample preparation have progressed towards the use of
green extractants as well as minimizing the use of organic
solvent that could lead to environmental pollution. GC and
HPLC with various detectors such as MS, FID and ECD are
still widely used as the preferred instruments for the PAEs
analysis with the levels of LOD improved to as low as 1 ppt
level.
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