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Abstract Retrogradation behavior is an important physico-
chemical property of starch during storage. A fast and sensitive
method was developed for determining the retrogradation de-
gree (RD) in corn starch by mid-infrared (MIR), Raman spec-
troscopy, and combination of MIR and Raman. MIR and
Raman spectra were collected from different retrogradation
starch and then processed by partial least squares (PLS), interval
PLS (iPLS), synergy interval PLS (siPLS), and backward inter-
val PLS (biPLS). Two different levels of fusion data extracted
from MIR and Raman spectra were analyzed by PLS. The de-
veloped models demonstrated that both MIR and Raman tech-
niques combined with chemometrics can be used to determine
the RD in starch. The PLS model built by medium-level fusion
approach achieved the most satisfied performance with a corre-
lation coefficient of 0.9658. Integrating MIR and Raman tech-
nique combined with chemometrics improved the prediction
performance of RD in comparison with a single technique.

Keywords Retrogradation degree . Starch . Raman
spectroscopy .MIR spectroscopy . Partial least-squares

Introduction

Starch presenting in an enormous variety of food products
acts as the main material to supply nutrition and energy, or
as an additive to improve the quality of food. Starch retro-
gradation behavior is an important physicochemical property
of starch during storage. Retrogradation could lead to dete-
rioration of starch-based food during storage (Eliasson
2010), while retrogradation also could provides starch food
with functional properties. Starch is beginning to retrograde
after starch completely gelatinized. During retrogradation,
molecular chains in starch begin to reassemble to develop
an ordered structure (Ferrero et al. 1994). Generally, starch
paste retrogradation is accompanied by gradual increases in
rigidity and phase separation between polymer and solvent
(Karim et al. 2000). Starch-based foods after retrogradation
are indigestible by body enzymes and may make the con-
sumer suffer from indigestion (Hayakawa et al. 1997).
Therefore, a number of steps were attempted to study and
prevent retrogradation (Liu et al. 2007). As we all know, one
kind of resistant starch called RS3 is the retrograded starch
formed during cooling of gelatinized starch. As a new re-
source of dietary fiber, retrogradation starch can provide
functional properties and find applications in a variety of
foods (Karim et al. 2000; Sajilata et al. 2006). Consumers
prefer appropriate retrogradation to no retrogradation in
starch-based products. Retrogradation is used to harden
products and reduce product stickiness during the
manufacturing process of breakfast cereals and parboiled
rice (Karim et al. 2000). The retrogradation starch is often
said that retrogradation deteriorates the quality of starch
food. It is equally true that the suitable retrogradation starch
is a benefit to gastrointestinal digestion. Therefore, the ret-
rogradation degree (RD) in starch is a very important index
for monitoring the quality of starch foods.
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Various methods have been applied for studying retrogra-
dation starch, such as rheological methods texture profile anal-
ysis (TPA) and rapid visco analyzer (RVA) (Mariotti et al.
2009; Olayinka et al. 2011), thermal analysis (differential
scanning calorimetry (DSC), differential thermal analysis
(DTA) and nuclear magnetic resonance (NMR))(Chang and
Liu 1991). The most popular method is enzymatic methods
based on acid or amylolytic enzymes (e.g., a-amylase and β-
amylase) for determining RD in starch. Normally, the RD is
measured by determining residual non-digestible starch which
is not digested to glucose after incubation with amylolytic
enzymes (Karim et al. 2000). These methods are complicated,
laborious, and time-consuming. Rheological methods are used
to evaluate the characteristics of retrogradation starch based
on viscosity property, hardness, and elasticity (Karim et al.
2000). These properties can provide the qualitative description
of starch retrogradation while the RD values were not deter-
mined specifically (Smits et al. 1998). The enthalpy in the
melting endotherm resulting from thermal analysis was used
as the index for evaluation of starch retrogradation (Paker and
Matak 2016). Samples detected by thermal analysis, enzymat-
ic methods, and rheological methods are not reusable by con-
sumers (Chang and Liu 1991). Most NMR instruments are
expensive and not available in many labs or industries
(Monakhova and Diehl 2016).

Spectroscopic methods have been used in study of retro-
gradation as nondestructive methods, such as near-infrared
(NIR) spectroscopy, mid-infrared (MIR) spectroscopy,
Raman spectroscopy, and so on (de Peinder et al. 2008;
Rocha et al. 2016; Thygesen et al. 2003). Each retrogradation
starch has a unique and characteristic spectrum due to their
particular molecular component and structure. NIR shows
overtones and combination vibrations of the molecule when
NIR beam irradiates into samples. The molecular bands ob-
served in NIR spectra are very broad resulting in that it is
difficult to ascribe specific bands to specific chemical compo-
nents (Romano et al. 2016). Both MIR and Raman spectros-
copy can generate bands linked to fundamental vibration and
supply fingerprints of components that can be used for quan-
titative and qualitative characterization (Vankeirsbilck et al.
2002). They have been applied to characterize the molecular
structural changes of retrogradation starch and are conducive
to comprehending the changes of amylose and amylopectin
(Flores-Morales et al. 2012). However, there is no study about
quantitative analysis of RD in starch by MIR, Raman, and the
combination of them. Different types of starch (from pure corn
and cassava starch samples, as well with mixtures from both
starch types) can be characterized by using Raman spectros-
copy (Almeida et al. 2010). Besides Raman spectroscopy,
MIR spectroscopy can also be used for quantitative analysis
of RD in starch (Wu et al. 2016). Acting as complementary
spectroscopic techniques, both types of measurements,
Raman and MIR, can provide different molecular vibrations

(Thygesen et al. 2003). Previous studies have demonstrated
that data fusion technique based on MIR and Raman can in-
crease the prediction ability of chemical components in food
(Wu et al. 2016).

Therefore, the objectives of this paper were (1) to use MIR,
Raman spectroscopy, and the combination of two techniques
for investigating the retrogradation behavior in starch and (2)
to establish a nondestructive and rapid method for measuring
the quality, acceptability, and shelf life of starch-containing
foods.

Materials and Methods

Retrogradation Starch Preparation

Corn starch was purchased from Runzhou Starch Company in
Zhenjiang. A solution of corn starch (1 g) suspended in 19 ml
of water was heated at 100 °C with constant stirring for 1 h in
order to make starch completely gelatinized. The gelatinized
starch paste was stored for different times (0, 1, 2, 3, 4, 5, 10,
15, 20 days) at 4 °C. After storage, retrogradation starch with
different storage timewas dried and kept in a desiccator. Three
sets of samples were prepared from three independent exper-
iments which were prepared with the same procedure. The
first set of samples (96 samples) would be used for building
models. Forty-eight samples prepared in the second and third
experiments would act as prediction set for model predictive
assessment. The samples from independent experiments
would be used to test predictive performance of model for
unknown samples.

MIR and Raman Spectroscopy

The MIR spectra of retrogradation starch were collected by
Nicolet 380 FT-IR spectrometer (Thermo Electron
Corporation, USA) in the spectral range of 650 to
4000 cm−1 at a resolution of 2 cm−1 (Flores-Morales et al.
2012). Raman spectra were recorded with DXR Laser
micro-Raman spectrometer (Thermo Electron Corporation,
USA) with 532-nm laser source. During collection of
Raman spectra, time of integration is 5 s. For each spectrum,
an average of 32 scans were performed at a resolution of
1 cm−1 over the 100–3200 cm−1 range (Xu et al. 2014). To
obtain the most useful spectral information, multiple scans
were performed in different points of the sample by moving
the substrate on an X-Y stage. And the spectra from same
sample were averaged into one spectra. Before collection,
the Raman system was calibrated with a silicon semiconduc-
tor. The laser power irradiation over the samples was 4 mW.
Finally, 144 and 144 spectra for MIR and Raman were obtain-
ed, respectively.
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Reference Analysis of RD in Starch

The reference RD in starch was measured by the modified
method of Tsuge et al. (Di Paola et al. 2003). A solution of
25 mg retrogradation starch in 8 ml distilled water was placed
into a test tube. Five milliliter 0.1 mol l−1 phosphate buffer
(pH 6.0, 0.3% NaC1) and 2 ml 3.5 u ml−1 α-amylase solution
were then placed into the test tube. After incubation for 1 h at
37 °C, the enzymatic reaction was stopped by adding 5 ml of
4 mol L−1 NaOH. The pH of the solution was adjusted to
neutrality with 4 mol L−1 HC1 and the volume was made up
to100ml with distilled water. Five milliliters of iodine solution
(0.2% I2–2%KI) were added to l0 ml of the digested solution,
and made up to l00 ml with distilled water. The absorbance of
solution at 625 nm was measured after standing for 20 min.
The RD (%) is calculated from equation described by Tsuge
et al. The values of RD obtained would be used for the con-
struction and validation of model (Kim et al. 1997).

Data Analysis

Different preprocessing techniques (standard normal variate
(SNV), mean centering (MC), and multiplicative scatter cor-
rection (MSC), Savitzky–Golay smoothing (SG)) were ap-
plied for eliminating baseline shift and scatter effects, etc.
By comparing results obtained from four preprocessing
methods, SG is much better than SNV, MC, and MSC (Chen
et al. 2011).

PCA was performed to show the clustering trend of retro-
gradation starch samples (Yeung and Ruzzo 2001). PCA is a
well-known method for feature extraction in spectral analysis.
It transforms the original independent variables into new var-
iables (principal components (PCs)). The PCs are orthogonal
and can be used as input variables for pattern recognition
analysis (Haiyan et al. 2008).

Partial least squares (PLS) is used extensively for it is able
to cope with high-dimensional data by extracting latent vari-
ables. So far, PLS has been widely used to build multivariate
calibration models using the whole spectrum (WS) range (Lin
et al. 2016). Therefore, WS-PLS models based on MIR spec-
tra or Raman spectra were established. In application of PLS
algorithm, the optimum number of latent variables (LVs) is a
critical parameter in calibration model.

Interval variable selection algorithms (interval PLS (iPLS),
synergy interval PLS (siPLS), and backward interval PLS
(biPLS) proposed based on the PLS method were used to
eliminate uncorrelated variables to improve PLS model per-
formance (Chen et al. 2008). Literatures have discussion about
the important variables selection or unimportant variables
elimination (Zou et al. 2007; Ma et al. 2017). The principles
of interval variable selection algorithms were described in
various papers (Ma et al. 2017). In iPLS algorithm, the root
mean square error of cross-validation (RMSECV) was

calculated for every subinterval when the full spectrum was
split into 40 intervals. The spectral region with the lowest
RMSECV was chosen as the best interval for prediction of
RD. In siPLS and biPLS algorithm, the combination of inter-
vals with the lowest RMSECV is chosen (Chen et al. 2008).
This enables us to select the best combination of intervals,
generally providing better correlation coefficient (R) values
and smaller prediction errors than iPLS (Nørgaard et al. 2000).

PLS models based on fusion data extracted from MIR and
Raman spectra were investigated. Fusion data were carried out
basically at three levels: low-, mid-, and high-level fusion
(Borràs et al. 2015). High-level fusion has often provided
worse results than the other two levels (Nunes et al. 2016).
Thus, low and medium levels were investigated in this paper
(Wu et al. 2016). Low-level fusion data consists of original
variables of MIR and Raman after the preprocessing steps.
Medium-level fusion extracts relevant features from MIR
and Raman data separately and then merges them into a single
matrix, which will be analyzed by chemometrics (Borràs et al.
2015). In this paper, the characteristic intervals of MIR and
Raman were combined as fusion data which acted as input
data for establishing models.

One hundred forty-four MIR spectra were divided into two
subsets which were called calibration set and prediction set.
The calibration set contained 90 spectra which were used for
establishing model, and the remaining 54 spectra as prediction
set were used to test the performance of predictive models.
The 144 Raman spectra were processed like MIR spectra. In
this study, WS-PLS, iPLS, siPLS, and biPLS models based on
MIR or Raman spectra were obtained. The low- and medium-
level fusion approaches were applied to combine of MIR and
Raman. In all models, the optimum number of latent variables
(LVs) was determined by root mean square error of cross-
validation (RMSECV). The performance of the final models
were evaluated in accordancewith the correlated coefficient of
determination (R), and root mean square error of prediction
(RMSEP) values (Varliklioz Er et al. 2016). The data were
processed in MATLAB software version 7.10 (Math Works,
Natick, MA, USA).

Results and Discussion

RD in Starch Stored for Different Time

Corn starch was completely gelatinized as described in the
experimental section and then the starch pastes stored at
4 °C for 0, 1, 2, 3, 4, 5, 10, 15, and 20 days were dried.
Finally, nine kinds of retrogradation starch were obtained
and named 0, 1, 2, 3, 4, 5, 10, 15, and 20d. RD of retrograda-
tion starch was determined by the enzymatic method based on
α-amylase. Average values of RD for nine kinds of retrogra-
dation starch were 15.87, 45.64, 67.21, 77.39, 85.30, 91.05,
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94.91, 97.07, and 98.73% shown in Fig. 1. The stand devia-
tions of each kind retrogradation starch were 1.234, 1.322,
0.9814, 1.097, 1.501, 0.5618, 0.5222, 0.5189, and 0.3777. It
is indicated that RD in starch increased with the storage time
prolonged. RD at the first 5 days varied significantly from
15.81 to 85.30%. The speed of retrogradation declined
gradually after 5 days. Particularly, the RD of 15d and 20d
were similar. It can be concluded that the structure and
component of retrogradation starch at 0, 1, 2, 3, 4, and 5d alter
dramatically while that at 10, 15, and 20d alter slightly.

Spectral Analysis

MIR and Raman spectroscopy can be used to detect properties
of retrogradation starch, such as crystallinity and
amorphization. Fig. 2a shows the average MIR spectra of
retrogradation starch stored for 0, 1, 2, 3, 4, 5, 10, 15, and
20 days. Fig. 2b shows average Raman spectra for the retro-
gradation starch samples with different storage time.

MIR spectral patterns of retrogradation starch showed al-
most identical characteristic bands (Fig. 2a). The characteristic
bands mainly contain 756, 820, 850, 880, 928, 949, 994,
1022, 1067, 1077, 1133, 1150, 1181, 1241, 1340, 1506,
1560, 1648, 1654, 1701, 2177, 2926, and 3275 cm−1. These
bands mainly resulted from the vibrational modes of molecule
in retrogradation starch. The bands around 1600 cm−1 are
attributed to amorphous region of starch (Smits et al. 1998).
The band at 1506 cm−1 is influenced by the skeletal mode
vibration of a-1, 4 glycosidic linkage (C–O–C). The bands at
1022 and 850 cm−1 are sensitive to changes in crystallinity.

The nine Raman spectra for retrogradation starch also
showed almost identical characteristic bands (Fig. 2b). The
main vibrational bands of each spectrum are similar because
different samples contain the same main components (poly-
saccharide). The vibrational bands mainly included 373, 408,
437, 480, 577, 860, 940, 952, 1051, 1082, 1126, 1260, 1338,
1382, 1462, 1518, 2116, 2870, and 2908 cm−1. The band at
2908 cm−1 is related to the symmetrical and antisymmetric

CH stretching. The unobvious and sharped characteristic band
at 2870 cm−1 can be attributed to the amylose and amylopectin
presented in starch (Kizil et al. 2002). The region between
1200 and 1600 cm−1 contain a large supply of structural in-
formation. A majority of the bands in this region are due to
coupled vibration involving hydrogen atoms. For instance, the
band at 1462 is related to CH, CH2, and COH deformation.
The feature at 1382 cm−1 corresponds to coupling of the CCH
and COH deformation modes. The bands at 1260 and
1338 cm−1 can be mainly attributed to several vibrational
modes, such as CO stretching, CC stretching, CCH deforma-
tion, COH deformation, and CCH deformation. The region
between 1200 and 800 cm−1 is highly characteristic bands
owing to CO stretching, CC stretching, and COC deformation
modes, referring to the glycosidic bond (Mahdad-Benzerdjeb
et al. 2007). This region is considered as the fingerprint or
anomeric region and is discussed with high frequency in the
previous papers (Baranska et al. 2005; Nikonenko et al. 2005;
Yang and Zhang 2009).The vibrations originating from gly-
cosidic linkages can be observed in the 920–960 cm−1 region.
Particularly, the band observed at 940 cm−1 is assigned to the
amylose α-1, 4 glycosidic linkage. Raman spectra of retrogra-
dation starch exhibited complex vibrational modes at low
wavenumbers (below 800 cm−1) due to the skeletal mode
vibrations of the glucose pyranose ring. Among the Raman
bands at 437, 480, and 577, a strong band at 480 cm−1

portraying the rate of polymerization in polysaccharides is
one of the prominent and important indication of the presence
of pyranose ring due to skeletal vibration mode (Kizil et al.
2002). Characteristic vibrational bands found in retrograda-
tion starch are shown in Table 1 for both MIR and Raman.

Each spectrum of retrogradation starch is unique owing to
its particular component and structure. MIR peaks at 1047 and
1022 cm−1 have been used for investigating changes in starch
structure (organized starch and amorphous starch) during
starch retrogradation (Flores-Morales et al. 2012). Previous
studies have shown the most useful Raman bands which re-
flect the characteristics of retrogradation starch. For instance,
according to Winter et al. (Winter and Kwak 1987), intensity
of the Raman band at 480 cm−1 and the half-bandwidths of
Raman bands at 2800–3000 cm−1 were used as excellent in-
dexes for evaluating retrogradation starch. Besides the bands
discussed in the previous work (Kizil et al. 2002), the inten-
sities and shapes of other characteristic bands are also relevant
to the starch component and structure. However, these bands
were ignored for determination of retrogradation of starch.
Therefore, the more spectral feature will be applied for deter-
mining retrogradation starch in further analysis.

General Discrimination of Samples

PCAwas applied to MIR and Raman spectra to evaluate their
ability to differentiate the retrogradation starch with different

Fig. 1 Retrogradation degree of corn starch paste stored for 1, 2, 3, 4, 5,
10, 15, and 20 days
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storage time. The scores plots of PCA for retrogradation starch
stored 0, 1, 2, 3, 4, 5, 10, 15, 20 days were shown in Fig. 3a, b.

Figure 3a shows the scores plot of PCA based on MIR spectra.
The retrogradation starch samples were divided into two

Table 1 MIR and Raman wavenumbers and their respective tentative assignments based on literature data (Almeida et al. 2010; Synytsya et al. 2003)

MIR (cm−1) Assignments Raman (cm−1) Assignments

3275 S ν (OH)

2926 M ν (CH) 2908 S ν (CH)

1506 W COC 1462 M, 1518 W δ (CH) + δ (COH) + δ (CH2)

1241 M δ (CH) + δ (OH) 1338 S, 1260 M, 1382 M δ (CH)

1150 S ν (CO) + ν (CC) 1126 S δ (COH) + ν (CO) + ν (CC)

1077 S, 1022 S ν (CO) + ν (OH) + ν(CC) 1051 M, 1082 M δ (COH) + ν (CO) + ν (CC)

994, 928 W γ (COOH) + δ (COO) 940 S, 952 S δ (COC) + δ (COH) + ν (CO)

850 W δ (CCH) + δ (COH) + γ (COH) 860 W ν (COC) + ν (CCH)

577 W δ (CCO) + δ (CO)

437 W, 480 S δ (CCO) + δ (CCC)

S strong, M medium, W weak

Fig. 2 Mid-infrared and Raman
spectra of different retrogradation
starch
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categories with some overlapping. The first category located at
the left of the scores plot contained retrogradation starch sam-
ples stored 0, 1, 2, 3, and 4 days. The starch samples stored 5,
10, 15, and 20 days belonged to the second category located at
the right of the scores plot. According to the RD determined by
enzymatic method, the RD reached 85% when the starch was
stored 4 days. The average growth rate of 1 day was 21.25%.
The RD during the first 4 days increased rapidly. When the
starch was stored for 20 days, the RD of starch achieved
99%. From the 5th to 20th day, the RD increased from 85 to
99% with growth rate of 14%. The average growth rate of
every day was 0.875%. The RD increased slowly. The starch
retrogradation may be divided into two stages, i.e., fast and
slow stages. Figure 3b shows score plot of PCA based on
Raman spectra. All retrogradation starch samples were divided
into three categories. The three categories were not completely
separated. One of the categories located at the middle of the
scores plot contained retrogradation starch samples stored for 0,
1, 2, and 3d. The retrogradation starch samples stored 4 and
5 days belonged to the second category and the other

retrogradation starch samples (stored 10, 15, and 20 days) con-
stituted the third category. In the first category, the retrograda-
tion starch stored for 0, 1, and 3dwere separated well from each
other except for 2d overlapping with 1d. According to the
results by enzymatic method, their RD increased rapidly. The
structure or component of retrogradation starch was very fast at
the first 3 days. For the retrogradation starch samples stored for
4 and 5 days, their RD increased more slowly than the retro-
gradation starch sample stored 0, 1, 2, and 3d. The change of
retrogradation starch was slow. The RD of retrogradation starch
stored for 10, 15, and 20 days showed subtle difference by
enzymatic method indicating that starch changed very slowly.
Structure and component of retrogradation starch were begin-
ning to stabilize. The aggregation of starch samples may be led
by their similar component and structure. The starch retrogra-
dation may be divided into three stage, i.e., fast, slow, and
stable stages. The stage retrogradation starch categories could
be discriminated by PCA. Whereas, the specific RD in starch
sample was not determined. Therefore, the RD in starch would
be determined in following research

Fig. 3 Score plot of the first
principal component (PC1)
versus the second principal
component (PC2) of different
retrogradation starch samples: a
MIR and b Raman
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Models for Determining RD

Results of Models Based on MIR or Raman Spectra

PLS, iPLS, siPLS, and biPLS algorithm were used in this
paper for establishing models to determine RD in starch.
The results of models based on MIR and Raman spectra were
listed in Table 2. From Table 2, good performance was obtain-
ed from the PLSmodels based onMIR or Raman spectra. The
prediction values of RD were between 10 and 100%. The
lowest RMSECV value (8.4) was achieved by biPLS model
based on Raman spectra. The corresponding correlation coef-
ficient (Rp) of prediction set was 0.9252 which achieved the
best performance. The worst model was iPLS model with
highest RMSECV based on the single interval in Raman spec-
tra. The optimal Raman spectral interval was the sixth interval
in the spectral range of 407 and 485 cm−1 when the whole
spectrumwas split into 40 intervals. The characteristic interval
variables were attributed to skeletal mode in starch. The MIR
biPLS model based on intervals numbered 2, 40, 28, 34, 17,
33, 37, 35, and 38 achieved the best performance in all models
of MIR. The selected intervals were located in the spectral
ranges of 734–817, 3917–4000, 2911–2994, 3413–3497,
1989–2072, 3330–3413, 3665–3749, 3497–3581, 3749–
3832 cm−1 (Fig. 4a). Figure 4b shows a correlation between
RDmeasured by reference analysis and RD predicted byMIR
biPLS in prediction set. For models of Raman, biPLS models
also showed the best performance. The selected Raman inter-
vals were numbered 1, 2, 5, 6, 9, 10, 15, 33, 37, and 38,
corresponding to the wavenumbers in the range of 100–254,
410–564, 718–872, 1181–1258, 2570–2647, 2878–
3033 cm−1 shown in Fig. 5a. Figure 5b shows a correlation
between RDmeasured by reference analysis and RD predicted
by Raman biPLS in prediction set.

Comparing the models based on MIR and Raman spectra,
models based on Raman spectra were better than models

based on MIR spectra except iPLS model. IPLS algorithm
caused a decline of the model performance when applied to
Raman spectra in comparison with full spectrum PLS model.
The superiority of Raman spectroscopy may be attributed to
specificity and sensitivity (Yuan et al. 2017). The twomethods
do not offer the identical information about the molecular
vibrations and structure. MIR spectroscopy probe the molec-
ular vibrations when the electrical dipole moment changes,
while Raman spectroscopy detect molecular vibrations ac-
cording to the changes of electrical polarizability (Thygesen
et al. 2003). The difference between them indicates that mol-
ecules tend to be more sensitive to Raman spectroscopy than
to MIR spectroscopy. For instance, the C–C or C=C bond is
more sensitive to Raman spectroscopy than to MIR spectros-
copy. According to the characteristic vibrational bands for
MIR and Raman found in food system, the skeletal mode of
starch lead to specific vibrations in the Raman spectral regions
located at 900–800 and 500–400 cm−1 (Thygesen et al. 2003).
MIR is strongly dependent on proper sample preparation and
moisture content can seriously affect MIR spectra.
Conversely, Raman is highly sensitive and do not require spe-
cial sample treatment.

Results of Models Based on Fusion Data

The validity of data fusion method has been demonstrated in
the literature. Even though the performance of models based
on MIR or Raman spectra is satisfied, the models based on
information extracted fromMIR and Raman spectra were still
established for verifying that Raman with aid of MIR would
be better than Raman spectroscopy.

As listed in Table 2, the prediction performance of PLS
model based on low-level data is not improved in comparison
with that of models based onMIR or Raman. Our findings are
in agreement with results obtained by other researchers
(Nunes et al. 2016). This might be due to the fact that the

Table 2 The results of different
predictive models Spectra Models LV Calibration set Prediction set

RMSECV Rc RMSEP Rp

MIR spectra WS-PLS 10 12.8 0.8956 16.2 0.8162

iPLS 7 14.3 0.8538 16.5 0.8101

siPLS 8 11.5 0.9016 15.1 0.8401

biPLS 8 10.0 0.9258 14.2 0.8542

Raman spectra WS-PLS 10 12.9 0.8924 15.9 0.8204

iPLS 5 14.9 0.8433 17.1 0.808

siPLS 7 10.0 0.9275 13.5 0.8806

biPLS 8 8.4 0.9587 10.1 0.9252

Fusion spectra low-PLS 12 7.2 0.9873 8.7 0.9573

medium-PLS 7 7.0 0.9887 7.7 0.9658

3700 Food Anal. Methods (2017) 10:3694–3705



fusion data fromMIR and Raman spectra contained too much
redundant information which significantly result in decline of
PLS model performance.

To overcome too much redundant information, character-
istic intervals of MIR and Raman which selected by biPLS in
BResults of Models Based on MIR or Raman Spectra^ were
merged as medium-level fusion data. The process of medium-
level data fusion was shown in Fig. 6. As a result, PLS model
based on characteristic intervals ofMIR and Raman (medium-
level fusion data) achieved a better performance with the
highest Rp of 0.9658 than PLS model based on full raw vari-
ables (low-level fusion data). Low-level fusion is simple, it
just uses merge raw spectra. But high data volume may con-
tain a large number of noise or irrelevant information. The
performance of predictive models would be influenced by
the negative information. Some limitation of low-level fusion
can be partially overcome by medium-level fusion.

Characteristic intervals can decrease the data volume and
eliminate noise or irrelevant information.

Retrogradation degree are determined only by Raman spec-
troscopy, and satisfied results are obtained (Table 2). But by
combining MIR and Raman spectroscopy, more accurate and
reliable models were obtained. The combination of MIR and
Raman spectroscopy proved better in determination of retro-
gradation degree compared to single Raman spectroscopy.
Though Raman spectroscopy and chemometric tools have been
successfully used for exploratory analysis of pure corn, cassava
starch samples, and mixtures of both starches, as well as for the
quantification of amylose content in corn and cassava starch
samples (Almeida et al. 2010). Both MIR and Raman can gen-
erate bands linked to fundamental vibration and supply finger-
prints of components that can be used for quantitative and
qualitative characterization. Even though both methods probe
molecular vibrations and structure, they do not provide exactly

Fig. 4 a The efficient intervals of
MIR variables selected by biPLS
for predicting RD and b reference
measured values versus MIR
predictive values of RD predicted
by biPLS in prediction set
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the same information (Thygesen et al. 2003). Raman spectros-
copy detect molecular vibrations according to the changes of
electrical polarizability. While MIR spectroscopy probe the
molecular vibrations when the electrical dipole moment chang-
es. They are complementary techniques for the study of molec-
ular vibrations and structure. For example, the C–C group has a
strong Raman scattering band in Raman spectra but weak ab-
sorption bands in the mid-infrared. O–H vibration is very
strong in MIR, but very weak in Raman (Yang and Irudayaraj
2002). The intensities of characteristic bands in Raman and
MIR spectra collected from the same food are different and
the information they contain are not identical (Flores-Morales
et al. 2012). Due to their distinct advantages, data fusion, as an
emerging technology, is an efficient way for the optimum uti-
lization of data from different sources, and has been success-
fully used for the rapid measurement of retrogradation starch in

this paper. Therefore, a useful methods based on MIR and
Raman spectroscopy were developed for determining retrogra-
dation starch.

Conclusion

The RD in starch stored for different storage times have been
predicated by MIR and Raman spectroscopy combined with
chemometrics. The PLS model based on medium-level fusion
data of MIR and Raman spectra had the best prediction perfor-
mance with correlation coefficient (R) of 0.9658.
Retrogradation starch was obtained by chilling gelatinized corn
starch for different times (0, 1, 2, 3, 4, 5, 10, 15, 20 days). The
low- and medium-level fusion data extracted from MIR and
Raman were also analyzed by PLS. In addition, The MIR and

Fig. 5 a The efficient intervals of
Raman variables selected by
biPLS for predicting RD and b
Reference measured values
versus Raman predictive values
of RD predicted by biPLS in
prediction set
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Raman spectra of retrogradation starch were analyzed by SG,
PCA, PLS, iPLS, siPLS, and biPLS for determination of RD in
starch. The results demonstrated that the prediction perfor-
mance of models for Raman are better than those based on
the MIR except iPLS model. Variables selection improved the
performance of PLS models. PLS model based on medium-
level fusion data achieved the best performance in comparison
with the models. Prediction of the RD in starch based on com-
bination of MIR and Raman spectroscopy are more accurate
than that based on single technique. This indicates that the
developed methodology may be able to forecast the quality,
acceptability, and shelf life of starch products or starch-
containing products easily damaged by starch retrogradation.
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