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Abstract This study was focused on distinguishing of genet-
ically modified organism (Monsanto 89788 variety) and con-
ventional soybeans by employing high-resolution mass spec-
trometry (HRMS) techniques for non-target screening of sam-
ple extracts. Two hyphenated instrumental platforms repre-
sented by (i) ultrahigh-performance liquid chromatography
(U-HPLC) coupled to quadrupole/time of flight and (ii) ambi-
ent mass spectrometry with direct analysis in real time
(DART) ion source-coupled OrbitrapMS were used. The sta-
tistical processing of generated data (metabolomic finger-
prints) was performed by multivariate data analysis; principal
component analysis (PCA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) showed that both
employed techniques enabled correct classification of geneti-
cally modified and conventional soybeans. In addition, some
phosphatidylcholines and sugars were identified as the most
significant markers.
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Introduction

Various genetically modified organism (GMO) food
crops (e.g. corn, potato or rice) have been grown com-
mercially since 1994, when the first GMO plant
(tomato) was introduced on the market (James 2011;
Nap et al. 2003). In general terms, GMO means an
organism, with the exception of human beings, in which
the genetic material has been altered in a way that does
not occur naturally by mating and/or natural recombina-
tion. Specific traits in GMO food crops often include
resistance to various harmful/adverse factors—pests, dis-
eases, cold, drought, etc., or tolerance to treatment by
non-selective herbicides that kill all other undesirable
plants such as weeds (Phipps and Park 2002; Senior
and Dale 2002).

Soybean represents one of the most common genetically
modified food crops; the estimated share of the total world
production of GMO soybean was about 83% in (James
2015). According to United States Department of
Agriculture (USDA, National Agricultural Statistics Service,
June Agricultural Survey for the years 2000-16), GMO soy-
beans represented 94% of total soybean production of the
USA in 2015 and also in 2016. Very common GMO soybean
variety, Monsanto (MON 89788), is resistant against glypho-
sate, an active ingredient of the widely used non-selective
herbicide known under the trade name Roundup. Glyphosate
specifically inhibits enzyme, 5-enolpyruvylshikimate-3-
phosphate (EPSP) synthase, causing important chemical
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intermediates during aromatic amino acid synthesis to be un-
available and, as a result, the plant dies. The resistance in
GMO soybean is commonly achieved by insertion of different
variants of the gene for EPSP synthase from soil bacteria
Agrobacterium tumefaciens that is not inhibited by glyphosate
(Arun et al. 2013; Dinon et al. 2010; Ujhelyi et al. 2008).

Although genetic modification typically results in higher
yields and improved quality of respective crops, this approach
still remains a subject of intensive debates regarding not only
possible health risks for consumers but also due to other as-
pects such as environmental hazards. As documented in many
published studies dealing with these issues (Devos et al. 2014;
Hilbeck et al. 2014; Rajan and Letourneau 2012), GMO crops
are matter of concerns mainly in the European Union (EU).
With regards to all existing controversies, GMO crops are
forbidden in eight EU member states (Austria, Bulgaria,
Germany, Greece, Hungary, Italy, Luxembourg and Poland);
in other EU countries, including Czech Republic, only GMO
maize MON 810 can be grown under strictly specified condi-
tions (Czarnak-Klos and Rodríguez-Cerezo 2010).

With regards to a diversity of attitudes to GMO crops,
their labelling alike products thereof are a globally impor-
tant issue (Tutelyan 2013). In the EU, it is mandatory to
label any food as GMO, supposing that it contains more
than 0.9% GMO ingredients according to Directive
2001/18/EC of the European Parliament and Council
Regulation (EC) No. 1829/2003 and 1830/2003 (EC
2003a, b). In the recent years, several rapid, highly spe-
cific and sensitive methods based on polymerase chain
reaction (PCR) have been standardised and applied as a
useful tool for identifying GMOs. For quantification, real-
time PCR is nowadays available in specialised laborato-
ries; simultaneous detection of DNA fragments and their
quantification is enabled (Del Gaudio et al. 2012;
Mavropoulou et al. 2005; Zhang and Guo 2011).

In the recent years, metabolomic-based strategies have
been introduced as a challenging tool for food authenticity
(Rubert et al. 2015; Cubero-Leon et al. 2014; Simó et al.
2014). For this purpose, a broad set of metabolites contained
in a tested sample (fingerprint) was assessed against those
occurring in a ‘reference’ material. Advanced chemometric
tools are combined to find possible differences and identify
quality/authenticity markers. As regards GM crops, it is as-
sumed that some, at least minor changes in the metabolic
pathways as compared conventional ones may have occurred
due to genetic manipulation.

Various instrumental techniques can be employed to obtain
sample ‘fingerprints’; amongst them, high-resolution mass
spectrometry (HRMS) appears to be a dominating role
(Rubert et al. 2015; Theodoridis et al. 2012). In most cases,
HRMS is hyphenated with some separation technique, mostly
(ultra)high-performance liquid chromatography ((U)HPLC).
However, in recent years, ambient mass spectrometry

(AMS), which is a technique that omits chromatographic sep-
aration and provides mass spectral fingerprint of the entire
sample, was also used. This technique has been shown to be
a very promising tool, high-throughput authentication ap-
proach. Of the ion sources employed in AMS, direct analysis
in real time (DART) is one (together with desorption
electrospray ionisation (DESI)) of the most widely used
(Cody et al. 2005).

The greatest advantage of U-HPLC-MS technology over
DART-MS is that in addition to spectral separation of sample
components, their chromatographic pre-separation is also in-
volved. Moreover, significantly higher number of features
obtained by this technique is because greater amount of
analytes that enters into the MS source (in case of DART-
MS, only those compounds that can be transferred into the
gas phase and ionised) can be detected. U-HPLC-MS method
allows a greater variability in analysis/separation of various
substances by selecting different mobile and stationary
phases; it is not possible in case of DART-MS. Another ad-
vantage of U-HPLC-MS is to achieve better performance
characteristics (e.g. better repeatability) than DART-MS.
The disadvantage of U-HPLC-MS is higher duration of anal-
ysis of one sample, usually from 10 to 20 min compared to
analysis of one sample by DART-MS, only 5–10 s. The main
advantages of DART ionisation compared to conventional
separation and ionisation techniques include direct sample
analysis under ambient conditions, minimal or no sample
preparation and remarkably high sample throughput. One of
the main drawbacks in DART-MS techniques is represented
by matrix affects. Similar to electrospray ionisation (ESI)
and/or atmospheric pressure chemical ionisation (APCI),
mainly matrix-dependent signal suppression is encountered
when examining real-life samples. The impact of matrix ef-
fects might be fairly severe, considering the absence of chro-
matographic (or any other) separation prior to sample
ionisation. The most important method performance parame-
ters such as linearity, precision and accuracy could be influ-
enced by interfering matrix components (Vaclavik et al.
2010). Specificity of detection is another key assumption in
ambient ionisation techniques since isobaric (and isomeric)
interferences, potentially present in examined samples, can
cause problems during both qualitative and quantitative anal-
yses. Whilst tandem mass spectrometry (MS/MS) or mass
spectrometry to the nth power (MSn) measurements may
overcome this problem in target analysis, the use of instru-
ments with a high or ultrahigh resolving power is the un-
avoidable condition for reliable applications, both in target
and profiling (fingerprinting) measurements of complex sam-
ples (Vaclavik et al. 2010).

The DART technique investigated in this study represents
one of the APCI-related ionisation techniques employing a
glow discharge for the ionisation. Metastable helium atoms,
created from the glow discharge, react with ambient water,
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oxygen or other atmospheric components to produce reactive
ionizing species (Cody et al. 2005). The DART ion source was
shown to be efficient for soft ionisation of a wide range of both
polar and non-polar compounds and coupled with mass spec-
trometry represents a powerful analytical tool for metabolomic
studies, especially in combination with chemometric methods
(Stewart et al. 2014; Bylesjö et al. 2006). Until now, direct
analysis in real time coupled with high-resolution mass spec-
trometry (DART-HRMS) has been most notably used in olive
oil authentication (Vaclavik et al. 2009), as a powerful tool for
beer origin recognition (Cajka et al. 2011), and for authentica-
tion of tomatoes and peppers from organic and conventional
farming (Novotna et al. 2012).

Several studies based on metabolomic approaches for
classification/discrimination of GM and conventional crops
have been recently published (Kusano et al. 2015; Simó
et al. 2014). The studies primarily deal with Fourier transform
infrared spectroscopy (FT-IR) and nuclear magnetic resonance
spectroscopy (NMR) analyses (Kim et al. 2009), and only one
publication used mass spectrometry as a tool for metabolic
fingerprinting (Vaclavik et al. 2013).

In this study, different analytical platforms were used in
order to distinguish GMO and non-GMO soybean samples.
For this purpose, polar extracts of reference materials of GMO
and non-GMO soybeans were initially evaluated using LC-
HRMS, providing characteristic soybean fingerprints. This
technique provided more detail about the characterisation of
the soybean samples, thanks to higher sensitivity and chro-
matographic separation. Subsequently, the same polar extracts
were explored by DART-HRMS, which allowed very rapid
analysis and GMO differentiation in real time.

Materials and Methods

Samples

In this study, the samples were provided by the Crop Research
Institute (CRI) of Prague (Czech Republic), as a partner in the
project NAZV-QI101B267, whereby this study was per-
formed. A total of 49 samples of soybean were analysed, of
which 30 were GMO (all samples were MON 89788 variety,
collected from different growing areas) soybean and 19 con-
ventional samples of different varieties were collected from
different growing areas. The samples were in the form of
seeds, which were homogenised into flour. The initial classi-
fication of the samples was performed by CRI using DNA
analysis by PCR. This assay is based on the isolation of
DNA, and the DNA amplification was verified using primers
specific for the lectin gene. PCR was used to detect the pres-
ence of GMO elements for the 35S cauliflower mosaic virus
(CaMV) promoter, nopaline synthase (NOS) terminator and
EPSP synthase (Ovesna et al. 2010). The samples were stored

in darkness and dry conditions at room temperature (20 °C)
until the time of laboratory processing.

To verify the suitability of the metabolomic approaches,
commercially available ‘GMO soybean’ Certified Reference
Materials (CRMs) with relevant modification, i.e. resistance
against total herbicide glyphosate, were purchased from
Sigma-Aldrich (Germany), ERMBF410DK ERM® Certified
Reference Material, 1% Roundup Ready™, ERMBF410GK
ERM® Certified Reference Material, 10% Roundup
Ready™, ERMBF410AK Roundup Ready™ blank and
ERM® Certified Reference Material.

Sample Preparation

The samples were placed into the freezer (−20 °C) and the
next day immediately, after removing from the freezer were
homogenised using the mill GRINDOMIX GM200 (Retsch,
G). The samples immediately after homogenisation were
weighed (2 g) into 15-mL polypropylene cuvettes. The extrac-
tion solvent, 10 mL of mixture, methanol:water (8:2, v/v), was
added to the cuvette and manually shaken for 2 min. The
mixture was then centrifuged (5 min, 20 °C, 10,000 rpm).
The supernatant was collected using a 5-mL plastic syringe
and filtered through a 0.22-μm filter. The filtrate was trans-
ferred to a 2-mL vial and analysed the same day.

Ultrahigh-Performance Liquid Chromatography
Coupled with High-Resolution Mass Spectrometry
Analysis

The chromatographic analysis was performed using an
Acquity UPLC™ system (Waters Corp., Milford, MA, USA)
using a Waters Acquity UPLC® BEH C18 column
(100 × 2.1 mm i.d., 1.7 μm) at 60 °C and a flow rate of 0.4–
0.5 mL/min. The mobile phase consisted of water-methanol
(95:5, v/v) with 5 mM ammonium formate and 0.1% formic
acid (A) and mixture of isopropanol:methanol:water (65:30:5,
v/v/v) with 5 mM ammonium formate and 0.1% formic acid
(B) with a gradient elution 0–1 min 90–50% (A) flow 0.4 mL/
min, 1–5min 50–20% (A) flow 0.4 mL/min, 5–11min 20–0%
(A) flow 0.4 mL/min, 11–12 min 0% (A) flow 0.5 mL/min
and 12–14 min 90% (A) flow 0.5 mL/min for positive mode
and gradient elution 0–4 min 90–50% (A) flow 0.4 mL/min,
4–6 min 50–0% (A) flow 0.4 mL/min, 6–11 min 0% (A) flow
0.5 mL/min and 11–14 min 90% (A) flow 0.5 mL/min for
negative mode. The injection volume was 3 μL.

Mass spectrometric detection was performed on a Synapt
G2 MS system (Waters Corp., Milford, MA, USA) equipped
with an ESI source. Except MS1, two types of data acquisition
modes, MSE and MS/MS, were carried out in order to inves-
tigate precursor ions and product ions. Nitrogen gas was used
for nebulisation. The detection mode of the flight tube was
selected to be a ‘W’ pattern. The usage of the W pattern in the

Food Anal. Methods (2017) 10:3723–3737 3725



flight tube provides an advantage in comparison, for example
with a ‘V’ pattern in the length of the flight tube. In case of the
W pattern, the flight path is longer than for the V pattern and
higher resolving power is achieved, up to 20,000 full width at
half maximum (FWHM). Positive and negative ion spectra
were recorded across the range of m/z 50–1200. The ion
source conditions were as follows: capillary voltage, 1.0 kV
in positive mode and −0.7 kV in negative mode; sampling
cone voltage, ±35 V; extraction cone voltage, ±4.0 V; ESI
source temperature, 120 °C; desolvation temperature,
350 °C; cone gas flow, 30 L/h; desolvation gas flow, 800 L/
h; collision gas flow, 0.5 mL/min; and collision energy for
MSE acquisition mode, 4.0 eV for low-energy scans and 25–
35 eV for high-energy scans. The instrument was tuned using
leucine-enkephalin (2 ng/μL, water:methanol (50:50, v/v)
with 0.1% formic acid) to provide a resolving power higher
than 20,000 FWHM (m/z 556.2771 in ESI+ andm/z 554.2615
in ESI−), and the interval scan time was 0.02 s. The mass
accuracy was maintained within the whole acquisition period
by using a lock spray with the leucine-enkephalin as the ref-
erence compound to correct small mass drifts during the mea-
surement. The mass calibration in both ionisation modes was
performed by sodium formate solution (0.5%). Masslynx 4.1
(Waters Corp., Milford, MA, USA) was used to control the
instrument.

DART-HRMS Analysis

For the analysis using ambient mass spectrometry, the DART
ion source (DART-SVP) was fitted with a 12Dip-It™ tip scan-
ner autosampler (IonSense, Saugus, MA, USA) coupled to an
Exactive™ benchtop (Thermo Fisher Scientific, Bremen,
Germany). A Vapur™ interface (IonSense, Saugus, MA,
USA) was employed to couple the ion source to the mass
spectrometer, and low vacuum in the interface chamber was
maintained by a membrane pump (Vacuubrand, Wertheim,
Germany). The distance between the exit of the DART gun
and the ceramic transfer tube of the Vapur was set to 10 mm;
the gap between the ceramic tube and the inlet to the heated
capillary of the Exactive was 2 mm.

The DARTand MS instruments were operated in both pos-
itive and negative ionisationmodes, and the optimised settings
were as follows: (i) DART positive ionisation helium flow
2.5 Lmin−1, gas temperature 450 °C, discharge needle voltage
5000 V and grid electrode +350 V; (ii) DART negative
ionisation helium flow 2.5 L min−1, gas temperature 400 °C,
discharge needle voltage 5000 V and grid electrode −350 V;
and (iii) mass spectrometric detection capillary voltage ±60 V,
tube lens voltage ±150 V and capillary temperature 250 °C.
The sheath, auxiliary and sweep gases were disabled during
DART-MS analyses.

The mass spectrometer was operated at mass resolving
power 50,000 FWHM calculated for m/z 200. The mass

spectrum acquisition rate was 2 spectra s−1. Liquid samples
were delivered into the DART ionisation region with the use
of 12 Dip-It tip scanner autosampler. Dip-It™ tips (IonSense,
Saugus, MA, USA) were inserted into a holder and immersed
in sample extracts placed in a 96-deep-well micro-plate (Life
Systems Design, Merenschwand, Switzerland). The Dip-It
holder was mounted onto the body of the autosampler, and
the Dip-It tips were automatically moved at a constant speed
of 0.5 mm s−1 through the helium gas between the exit of the
DART gun and the inlet of the Vapur interface.

Standard external mass calibration of MS system in the
range of 150–2000 m/z was performed both in positive and
negative modes prior every measurement according to the
manufacturer’s instructions. Also, adjusted mass calibration
in ESI(+) and ESI(−) in the mass range of m/z 50–750 using
collisional induced dissociation (CID) at 25 eV was subse-
quently performed in order to cover the lower masses.

Quality Control

In order to check absence of carryover effects and to control
the stability of fingerprints recorded, blank and quality control
(QC) matrix samples were analysed within both DART-
HRMS and U-HPLC-MS sequences. It should be noted that
the in-batch sequence of tested samples was random
(established based on random number generation) to avoid
any possible time-dependent changes during DART-HRMS
and U-HPLC-MS analyses, which could result in false clus-
tering. To control the overall performance of instrumental sys-
tem, QC samples were inserted into the sequence, always after
a set of 10 test samples, and analysed under the same condi-
tions. The QC sample was a pool of three (randomly selected)
extracts of conventional soybean samples. In this way, the
repeatability of sample fingerprints could be monitored. The
good instrument performance was documented by a tight clus-
tering of these QC samples (i.e. similarity of their fingerprints)
in the principal component analysis (PCA) plot.

Data Analysis

Chemometric analysis included multivariate data analysis
using unsupervised and supervised models. PCA and orthog-
onal partial least squares discriminant analysis (OPLS-DA)
were employed based on SIMCA software (v. 13.0, 2011,
Umetrics, Umea, Sweden; www.umetrics.com).

In the first stage, data processing and data pre-treatment
must be carried out in order to capture the bulk of variation
between different datasets. In this way, raw data generated by
soybean analysis employing DART-HRMS technique (51 sig-
nals in positive ionisation mode, 57 signals in negative
ionisation mode exceeding 2% abundance of the most inten-
sive ion in average DART spectrum) in the form of absolute
peak intensities were pre-processed using constant row sum;
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that is, each variable was divided by the sum of all variables
for each sample. This procedure transformed all the data to a
uniform range of variability. DART-HRMS data were initially
processed by Xcalibur 2.2 software and copied to MS Excel
2010. The macrofunction was used in a following step for
creation the final tables which were exported to the SIMCA
software. U-HPLC-HRMS technique produced 520 features
in positive ionisation mode and 108 features in negative
ionisation mode. In this case, data processing was performed
by MassLynx 4.1 software subroutine MarkerLynx XS, and
the resulting data file was exported to the SIMCA software.

Subsequently, Pareto scaling was applied a prior PCA and
OPLS-DA (Worley and Powers 2013). Then, PCA analysis
enabled transformation of the original variables (normalised
intensities of ions) to the new uncorrelated variables (principal
components). In this way, the reduced dimensionality of the
data was obtained whilst still preserving information from the
original dataset. Additionally, OPLS-DA was subsequently
applied to identify and reveal the most significant metabolites.
The objective of OPLS-DAwas to divide the systematic var-
iation in the X block into two model parts, one part which
models the co-variation between X and Y and another part
which expresses the X variation that is not related
(orthogonal) to Y. OPLS-DA was performed in order to pro-
vide a better distribution of samples and allow creation of a
statistical model and validation.

The quality of the models was evaluated by the goodness-
of-hit parameter (R2X), the proportion of the variance of the
response variable that is explained by the model (R2Y) and the
predictive ability parameter (Q2), which was calculated by a k-
fold internal cross validation of the data using a default option
of the SIMCA software. In general terms, the value of R2 must
be higher thanQ2 and acceptable value of Q2 is more than 0.5
(Blasco et al. 2015). In addition, the models were also evalu-
ated in terms of recognition and prediction abilities.
Recognition ability represents the percentage of samples in
the training set, which were correctly classified. Prediction
ability is the percentage of samples in the test set correctly
classified by using the model developed during the training
step. For this purpose, sevenfold internal cross validation was
used (Berrueta et al. 2007). For the control of the Q2 values, if
they were stable and relevant (correctly calculated), the per-
mutation test was used (Triba et al. 2015).

Selection of the Marker Ions (Markers) and Identification

The selection of marker ions, which have strong impact on the
sample classification, can be done by several tools. One of
these useful tools is an S-plot enabled by SIMCA software.
The S-plot illustrating the distribution of detected features was
employed for statistical evaluation. Features at the extremes of
the S-plot, the outermost ions, can be considered as marker
ions with the highest importance for sample separation. For

sorting the marker ions according to their importance, the
variable importance in the projection (VIP) plots which ex-
plain X and show a correlation to Y can be used. There are 10
most important variables in a given model, i.e. those with VIP
score >1. For an explanation/confirmation of ions as markers
also, a trend plot was used. In this way, the variability of the
top ions across measurements of a set of different test samples
could be illustrated.

In the case of U-HPLC-HRMS, tentative identification of
compounds behind the marker ions was based on the
estimation/calculation of elemental formula (accurate mass
and mass error for respective m/z values in MS1 was consid-
ered). To confirm suggested identification of marker ions,
their product ions were investigated in MS/MS spectra. The
identification of several other compounds occurring in sample
fingerprints was supported by interpretation of MSE spectra
acquired in respective retention time. Both MS/MS and MSE

spectra were obtained by the using collision energy ramp
ranging from 15 to 45 V. Online databases such as
ChemSpider (www.chemspider.com) or Metlin (www.
metlin.scripps.edu/index.php) were employed for compound
identification. Regarding lipid identification, the information
on their fragmentation as published by Krank et al. (2007) and
Zhao et al. (2011) was used. In case of DART-HRMS, the
tentative identification of marker ions, and other ions, was
done by the similar way as described for U-HPLC-HRMS,
except of using MSE or MS/MS functions. These functions
were not available in case of DART-HRMS.

Results and Discussion

As stated in the BIntroduction^ section, metabolomic studies
generally aim at a comprehensive analysis of the metabolome,
without a particular bias to specific groups of metabolites. In
our study, we employed two fingerprinting strategies, U-
HPLC-HMRS and DART-HRMS, for non-targeted analysis
of both GMO and conventional soybean samples.

Selection of Extraction Solvent

The choice of extraction solvent was a critical decision to be
made when planning this metabolomic-based study. We took
into account that mainly qualitative aspects rather than quan-
titative ones are important for a sample characterisation; there-
fore, the optimisation of sample preparation step was aimed at
isolation of a broadest possible representation of soybean me-
tabolites. In the first step, the mixture of methanol:isopropanol
(50:50, v/v) was examined as possible extraction solvent for
non-polar metabolites (represented mainly by triacylglycer-
ols). Nevertheless, these results did not show a statistically
significant difference between the samples of conventional
and GMO soybean. In the next step, we focused only on polar
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and medium polar metabolome components which, in line
with study by Marrelli et al. (2013), might presumed to be
important for a sample classification/distinguishing of GMO
vs non-GMO soybean samples. Polar solvent mixture,
methanol:water (8:2, v/v), was used in all follow-up
experiments.

DART-HRMS Fingerprints

In the second phase of our experiments, the potential of high-
throughput ambient ionisation technique, DART-HMRS, was
investigated. Again, we started with an optimisation of DART-
HRMS conditions for a detection of as broad as possible spec-
trum of metabolites occurring in soybean extracts. Helium
beam temperature and desorption time were the major
DART source operating parameters affecting the transfer of
sample metabolites into a gas phase, their ionisation and trans-
mission into MS system. When using 14-s desorption, of the
tested temperatures (300, 350 and 400 °C), 350 °C enabled the
highest number of ions and the highest responses both in
DART ionisation modes ([M + H]+ ions are typical in positive
mode, whilst [M − H]− ions are mainly generated by negative
ionisation).

Figure 1 shows the comparison of DART-HRMS finger-
prints (i.e. averaged mass spectra across the entire desorption
peak) of conventional soybean (A) and GMO soybean (B)
extracts as obtained in a positive ionisation mode. Alike in
the case of U-HPLC-HRMS, the fingerprints were similar,
only slightly differing in relative intensities of individual ions.
The only exception was relatively intensive m/z 163.0600,
which occurred in conventional soybeans, whilst in GMO
soybeans, it was either not detectable or occurred at very
low intensity. The elemental composition of this marker ion
was tentatively estimated to be C6H11O5, which could corre-
spond to protonated molecule of deoxyhexose (Δ ppm = 0.2)
that might originate from precursor hexose through the loss of
water in ion source.

The comparison of conventional (C) and GMO soybean
(D) fingerprints obtained using the DART-HRMS technique
in a negative ionisation mode is shown in Fig. 1. In this par-
ticular case, the difference between mass spectra was evident.
Besides of differing relative intensities of some ions occurring
in both mass spectra, also qualitative differences (some ions
present/absent) could be observed. For example, the ion atm/z
293.2126 (C18H30O3, Δ ppm = 1.8) was present only in the
spectral fingerprint from conventional soybean, whilst m/z
295.2282 (C18H32O3) vernolic acid (Δ ppm = 0.5), m/z
311.2232 (C18H32O4, Δ ppm = 1.5), m/z 313.2387
(C18H34O4, Δ ppm = 1.5), m/z 327.2187 (C18H32O5, Δ
ppm = 2.3) and m/z 329.2338 (C18H34O5,Δ ppm = 1.2) were
present in both fingerprints but they were more relatively in-
tensive in conventional soybean compared to GMOs.

Ultrahigh-Performance Liquid Chromatography
Coupled with High-Resolution Mass Spectrometry
Fingerprints

In this phase of experiments concerned with obtaining a
comprehensive characterisation of soybean extracts, opti-
mal measurement conditions were searched. Generic set-
tings (i.e. conditions found as optimal in previous, similar
experiments) for U-HPLC separation and HRMS detection
were employed. The testing of chromatography, including
optimisation of the type of stationary/mobile phases, gradi-
ent optimisation or separation temperature, was done. In
this study, reverse phase was chosen, providing chromato-
graphic separation and peak resolution for a wide range of
metabolites (with different molecular structures and polari-
ties). In parallel, HILIC column was also tested; however,
the number of molecular features was significantly reduced,
reverse phase vs HILIC: 520 vs 135 in positive ionisation
mode and 108 vs 63 in negative ionisation mode. In this
way, contrary to an ambient MS, isobaric and isomeric me-
tabolites could be identified. In addition, due to a lower
matrix suppression, an improvement of detectability, based
on the number of detected metabolites (U-HPLC-HRMS vs
DART-HRMS: 520 vs 51 in positive ionisation mode, 108
vs 57 in negative ionisation mode), was observed.

The comparison of base peak chromatograms (BPCs)
of aqueous methanolic extracts obtained by analysis of
GMO and conventional soybeans in a positive ionisation
mode did not show significant differences. The finger-
prints of sample extracts contained phospholipids (PLs)
as major components (retention time (tR) 7–9 min; see
Fig. 2a) with m/z values in the range 710–790. The dom-
inating PLs were phosphatidylcholines (PCs), partly sep-
arated according to the structure of bound fatty acids. The
two most intensive peaks at tR 7.58 and 7.89 min were
palmitoyl-arachidonoyl phosphatidylcholine (PC; 16:0/
20:4, m/z 782.5686) and palmitoyl-linoleoyl PC (16:0/
18:2), m/z 758.5705), the latter one partially co-eluted
with palmitoyl-eicosatrienoyl PC peak (16:0/20:3, m/z
784.5858). Altogether, 17 PLs were initially identified
(mass errors lower than 5 ppm).

Attention was also paid to the most polar metabolites elut-
ing in the front part of chromatogram at tRs 1–2 min. Many of
the peaks detected here corresponded to phytoestrogens, typ-
ical biologically active (estrogenic) secondary metabolites oc-
curring in soybeans. In Fig. S1 (Supplementary data), both free
and bound forms are shown: daidzein, genistein, glycitein and
their conjugates (glycosides—daidzin, genistin, glycitin, and
acetylated forms—acetyldaidzin, acetylgenistin, acetylglycitin,
malonylderivates: malonyldaidzin, malonylgenistin,
malonylglycitin). The profiles of these compounds were also
assessed for both sample categories; however, again, no signif-
icant differences could be observed. The intensities of these
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compounds were similar in case of GMO and non-GMO soy-
bean samples. Target analysis only for these compounds was
also done, as an additional analysis, according to our in-house
previously developed and validated methodology. The content
of phytoestrogens was very similar; no trend for differentiation
of soybean samples based on the content of individual
phytoestrogens was observed.

Similar to the outcomes above (positive ionisation), the in-
spection of sample fingerprints recorded in a negative ionisation
mode (see Fig. 2b) did not show unambiguous differences. The
major metabolites identified here were lysophospholipids (tR
5.5 to 6.0), free fatty acids (tR 6.0 to 6.5 min) and phospholipids
(tR 6.5–7.0 min).Most of phytoestrogens (eluted at tR 1–3min)
could be identified here as well.

Fig. 1 DART(+)-MS mass spectra (m/z 130–300) obtained by analysis of 80% methanolic extracts of conventional soybean, GMO soybean and
DART(−) MS mass spectrum (m/z 190–420) obtained by analysis of 80% methanolic extracts of conventional soybean, GMO soybean
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Methods Performance Characteristics

Within the validation protocol, repeatability of non-targeted
measurements (n = 6) was calculated for both MS techniques
employed in our study since this parameter plays an important
role in classification of sample sets represented by normalised
fingerprints, repeatability of each normalised feature intensi-
ties. Detected ion repeatabilities (after deconvolution when
chromatographic separation was employed), expressed as rel-
ative standard deviations (RSDs), were in case of U-HPLC-
HRMS in the range of 2.5–5.3% for positive and 2.7–6.2% for
negative ionisation mode; in case of DART-HRMS, they
ranged from 11.5 to 17.6% for positive mode and 12.3 to
18.4% for negative ionisation mode, as shown in Table 1.
The range of RSD represents minimum and maximum values
of RSD calculated for the normalised intensities of each indi-
vidual ion (feature). RSDs obtained for QC samples were
within respective ranges above. As expected, in both
ionisation modes, lower values of RSD were obtained for U-
HPLC-HRMS compared to DART-HRMS; since the latter
case, the repeatability of a thermal desorption of analytes from
the surface of sampling tips might be a limiting factor.

Chemometric Analysis

Generally, data acquisition with high-resolution mass spec-
trometry yields high volumes of raw data that need to be
processed by advanced statistical tools. As far as compounds

most contributing to sample classification should be identi-
fied, then using a variety of bioinformatic tools aiming to
derive information frommeasured data is necessary. The strat-
egies employed in this study are briefly outlined below.

Multivariate Data Analysis

Initially, the data obtained by analysis of 49 soybean samples
(conventional, n = 19; GMO soybean, n = 30) were processed
by PCA both in LC(+/−) and DART(+/−) techniques. This
unsupervised approach showed clustering behaviour related
to the type of soybean (conventional vs GMO soybean; see
Fig. 3). As discussed in detail in following paragraphs, the
expected better class resolution in a discriminant problem
was fulfilled when employing OPLS-DA. Further improved
separation between classes was achieved regardless what type
of technique was used (see Fig. 4).

As regards processing of U-HPLC-HRMS data, PCA
clearly separated GMO and conventional samples obtained
both positive and negative ionisation modes. In Fig. 3c pre-
senting the positive ionisation data, PC1 and PC2 together
described 52.8% of the sample set variability (33 and 19.8%
for the PC1 and PC2, respectively); in case of negative
ionisation data shown in Fig. 3d, this was even 68.3% (47.1
and 21.2% for the PC1 and PC2, respectively). Considering
the fact that the first five PCs explain 87.7% (ESI+) and 87.1%
(ESI−) of the total of variance, PC1/PC2 plot seemed to be a

Fig. 2 U-HPLC-HRMS BPC chromatogram obtained by the analysis of 80% aqueous methanolic extract in positive ionisation and negative ionisation
of conventional soybean sample

3730 Food Anal. Methods (2017) 10:3723–3737



good starting point for sample clustering according to GMO
or non-GMO.

In the next step (following PCA analysis), OPLS-DAwas
used. As it was expected, even more efficient separation of
samples into groupswas achieved, and the mathematical mod-
el obtained in this way reliably enabled correct classification
of an unknown sample was created; recognition and predic-
tion abilities of 100% in both ionisation modes were excellent.

Regarding the data obtained by DART-HRMS, PCA using
positive ionisation mode showed much better sample cluster-
ing compared to negative ionisationmode. As shown in Fig. 3a
presenting the positive ionisation data, PC1 and PC2 together
described 58% of the sample set variability (38.1 and 19.9%
for the PC1 and PC2, respectively); in case of negative
ionisation data shown in Fig. 3b, this was even 63.7% (35.6
and 28.2% for the PC1 and PC2, respectively). Considering the
fact that the first five PCs explain 83.3% (DART+) and 87.7%
(DART−) of the total of variance, PC1/PC2 plot, also in this

case, promising clustering according to GMO or non-GMO
could be obtained. This was reconfirmed by subsequent
OPLS-DA analysis with a creation of mathematical models
for sample classification. The quality of the models was eval-
uated by the goodness-of-fit parameter (R2X), the proportion of
the variance of the response variable that is explained by the
model (R2Y) and the predictive ability parameter (Q2), which
was calculated by a k-fold internal cross validation of the data
using a default option of the SIMCA software. In general
terms, the value of R2 must be higher than Q2 and acceptable
value of Q2 is more than 0.5 (Blasco et al. 2015). In addition,
the models were also evaluated in terms of recognition and
prediction abilities. Recognition ability represents the percent-
age of samples in the training set, which were correctly classi-
fied. Prediction ability is the percentage of samples in the test
set correctly classified by using the model developed during
the training step. For this purpose, sevenfold internal cross
validation was used (Berrueta et al. 2007). For the control of

Fig. 3 PCA analysis of data generated by DART-HRMS analysis in positive mode, negative mode and by U-HPLC-HRMS analysis in positive mode,
negative mode of conventional (grey) and GMO (black) soybean samples

Table 1 Detected ion
repeatabilities (after
deconvolution when
chromatographic separation was
employed), expressed as relative
standard deviations

Repeatibility (RSD)

LC-HRMS DART-HRMS

Positive ionisation Negative ionisation Positive ionisation Negative ionisation

2.5–5.3% 2.7–6.2% 11.5–17.6% 12.3–18.4%

RSD relative standard deviation
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the Q2 values, if they were stable and relevant (correctly cal-
culated), the permutation test was used (Triba et al. 2015).

Whilst for positive ionisation mode, both the recognition
and prediction ability were 100%, for negative ionisation
mode, these parameters were slightly lower, but still accept-
able: recognition ability 94% and prediction ability 90%. The

values of R2 and Q2 summarised in Table 2 show that in all
cases, good statistical models with Q2 value which exceed
acceptable limit 0.5 (Blasco et al. 2015), in all cases, enabling
the classification of the samples correctly, were obtained.
Also, the parameters from the permutation tests (number of
permutations was 200) are included in Table 2 for both

Fig. 4 OPLS-DA analysis of data generated by DART-HRMS analysis in positive mode, negative mode and by U-HPLC-HRMS analysis in positive
mode, negative mode of conventional (grey) and GMO (black) soybean samples

Table 2 The quality parameters for the statistical models

Statistical model Model diagnostics

LC-HRMS DART-HRMS

Positive ionisation Negative ionisation Positive ionisation Negative ionisation

R2X R2Y Q2 R2X R2Y Q2 R2X R2Y Q2 R2X R2Y Q2

PCA 0.717 – 0.573 0.910 – 0.816 0.870 – 0.506 0.962 – 0.719

OPLS-DA 0.666 0.983 0.953 0.739 0.974 0.966 0.889 0.979 0.949 0.810 0.945 0.902

Permutation testa

GMO soybean samples

R2 (0.0, 0.536) (0.0, 0.405) (0.0, 0.072) (0.0, 0.235)

Q2 (0.0, −0.480) (0.0, −0.630) (0.0, −0.379) (0.0, −0.368)
Non-GMO soybean samples

R2 (0.0, 0.538) (0.0, 0.419) (0.0, 0.074) (0.0, 0.223)

Q2 (0.0, −0.441) (0.0, −0.575) (0.0, −0.375) (0.0, −0.383)

R2 fit, Q2 predictive ability
a The number of permutations was 200
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technique, both group of samples and both ionisation. The
permutation plots are listed in Fig. S2 (Supplementary data)
for U-HPLC-HRMS data and Fig. S3 (Supplementary data)
for DART-HRMS data.

As earlier emphasised, for verification of the entire analyt-
ical procedure (strategy) including statistical model, QC

samples were analysed. The QC samples were analysed after
every 10 tested samples (for checking the consistency of
obtaining results), and samples were randomly measured.
The obtained fingerprints of analysed soybean samples and
those of QC sample were continuously monitored throughout
the sequence to avoid the problems with unstable

Fig. 5 Chemometric analysis of data generated by DART-HRMS and U-
HPLC-HRMS for certified reference material analysis: blank = non-ge-
netically modified soybean (green), soybean with 1% of GMO soybean

(blue), soybeanwith 5%of GMO soybean (red) and soybean with 10% of
GMO soybean (yellow), OPLS-DA in positive and negative mode

Table 3 Top 10 ‘markers’ enabling classification of soybean samples

Markers sorted according to the importance

LC-HRMS DART-HRMS

Positive ionisation Negative ionisation Positive ionisation Negative ionisation

m/z tR (min) VIP score m/z tR (min) VIP score m/z VIP score m/z VIP score

520.2995 3.82 3.39 341.1083 1.20 3.30 127.0390 3.79 128.0345 3.47

522.3109 4.29 2.95 564.3299 5.76 2.85 255.0651 2.60 269.0459 3.42

496.3399 4.11 2.09 595.2876 5.61 2.47 285.0756 2.11 181.0710 2.21

760.5295 8.29 2.04 695.4642 6.55 2.44 104.0708 1.90 105.0184 1.99

758.5705 7.89 1.94 295.2271 5.48 2.24 268.1039 1.59 253.0507 1.97

282.2510 4.83 1.92 571.2878 5.71 2.24 180.0866 1.53 329.2338 1.64

518.2797 3.43 1.79 269.0450 2.73 2.20 195.0863 1.51 119.0340 1.55

784.5858 7.98 1.77 387.1137 1.45 2.09 163.0600 1.43 295.2282 1.40

599.4453 7.33 1.72 683.2240 1.39 2.03 212.1128 1.11 327.2181 1.32

786.6012 8.50 1.70 566.3456 5.94 2.03 274.2124 1.12 293.2126 1.28

tR retention time, VIP variable importance in the projection
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measurement condition. Not only visual inspection but also
statistical assessment of generated data provided relevant con-
trol. As illustrated by PCA statistical analysis shown in Fig. S4
(Supplementary data), repeatable fingerprints of QC samples
were obtained by both techniques that are documented by
their excellent clustering in both ionisation modes.

Analysis of CRM

CRMs of blank (non-GMO soybeans) and 10% of GMO soy-
beans were used for preparation of admixtures, which contain
5% of GMO soybeans. The sample preparation was the same as
in BSample Preparation^ section. CRMmaterial was prepared in
six repetitions and analysed first day; after 1 week, new six
repetitions of CRM were prepared and analysed (for better de-
scription of repeatability/reproducibility). The obtained data
were processed in the same way as was described above. The

results of statistical analyses (OPLS-DA) are shown in Fig. 5.
Figure 5 illustrates not only a good separation of blank soybeans
and samples with 10% of GMO soybeans but also acceptable
separation of 5 and 1% GMO soybean samples. OPLS-DA
models enabled reliable classification of both GMO (10, 5,
1%) and non-GMO soybean samples. Moreover, detection of
GMO soybeans admixed to non-GMO soybeans (blank) and
vice versa was feasible at levels as low as 1%.

Selection and Identification of the Markers

As it was already described in BSelection of the Marker Ions
(Markers) and Identification^ section, S-plot, VIP-plot and
trend plot were used. Figure S5 (Supplementary data) shows
an example of an S-plot for features obtained by analysis of
GMO soybean extract by U-HPLC-HRMS in positive
ionisation mode. Ten of the most important ions, the most

Table 4 Summary of significant markers obtained using the LC (+/−)-MS techniques

LC-MS—the most important markers for distinguishing samples—positive ionisation

(m/z) [M + H]+ Retention time (min) Molecular formula Identification (m/z) [M + H]+ Retention time (min) Molecular formula Identification

282.2510 4.83 C18H36NO Unidentified 599.4453 7.33 C39H66O4 Unidentified

496.3399 4.11 C24H50NO7P LPC (C16:0) 758.5705 7.89 C42H80NO8P PC (16:0/18:2)

518.2797 3.43 C26H48NO7P LPC (C18:3) 760.5295 8.29 C42H82NO8P PC (16:0/18:1)

520.2995 3.82 C26H50NO7P LPC (C18:2) 784.5858 7.98 C44H82NO8P PC (16:0/20:3)

522.3109 4.29 C26H52NO7P LPC (C18:1) 786.6012 8.50 C44H84NO8P PC (18:0/18:2)

LC-MS—the most important markers for distinguishing samples—negative ionisation

(m/z) [M − H]− Retention time (min) Molecular formula Identification (m/z) [M − H]− Retention time (min) Molecular formula Identification

269.0450 2.73 C15H10O5 Genistein 566.3456 5.94 C34H49NO6 Unidentified

295.2271 5.48 C18H32O3 Unidentified 571.2878 5.71 C39H40O4 Unidentified

341.1083 1.20 C12H22O11 Disaccharide 595.2876 5.61 C41H40O4 Unidentified

387.1137 1.45 C18H28O9 Unidentified 683.2240 1.39 C49H32O4 Unidentified

564.3299 5.76 C34H47NO6 Unidentified 695.4642 6.55 C46H64O6 Unidentified

LPC lysophosphatidylcholine, PC phosphatidylcholine

Table 5 Summary of significant markers obtained using the DART (+/−)-MS techniques

DART-MS—the most important markers for distinguishing samples—positive ionisation

(m/z) [M + H]+ Molecular formula Tentative identification (m/z) [M + H]+ Molecular formula Tentative identification

104.0708 C4H9O2N Unidentified 212.1128 C7H17O6N Unidentified

127.0390 C6H6O3 Maltol, isomaltol 255.0651 C15H10O4 Daidzein

163.0600 C6H11O5 Deoxyhexose 268.1039 C9H17O8N Unidentified

180.0866 C6H14O5N Deoxyhexose [M + NH4]
+ 274.2124 C15H29O4 Unidentified

195.0863 C7H14O6 Methylglucosid 285.0760 C16H12O5 Glycitein, biochanin A, 5-O-methylgenistein

DART-MS—the most important markers for distinguishing samples—negative ionisation

(m/z) [M − H]− Molecular formula Tentative identification (m/z) [M − H]− Molecular formula Tentative identification

105.0184 C3H6O4 Glyceric acid 269.0459 C15H10O5 Genistein

119.0340 C4H8O4 Tetrose 293.2126 C18H30O3 Unidentified

128.0345 C5H7O3N Pyroglutamic acid 295.2282 C18H32O3 Unidentified

181.0710 C6H14O6 Sugar alcohol 327.2181 C18H32O5 Unidentified

253.0507 C15H10O4 Daidzein 329.2338 C18H34O5 Unidentified
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remotes, were selected and the attention was paid to them.
The importance of these 10 ions was evaluated by VIP-plot
and summarised in Table 3 and Fig. S6 (Supplementary
data). This procedure was done for obtaining the most im-
portant 10 markers for both techniques and both ionisation
modes.

The identification of markers usually represents the last
step within metabolomic studies. This is crucial in order to
understand the metabolite pathway, since they can be the
interesting intermediates, or final secondary metabolites.
The relevance of chosen markers is documented by trend
plot in Fig. S7 (Supplementary data), where the most im-
portant marker for each technique in positive or negative
ionisation can be seen. In these trend plots, the distribution
of GMO and non-GMO soybean samples, in analysed sam-
ple set, according the abundance of relevant markers was
evident.

Tables 4 and 5 summarise suggested top 10 markers. The
identification procedure is based on the accurate mass mea-
surements, a possible empirical formula as is described in
BSelection of the Marker Ions (Markers) and Identification^
section. The proposed list in Tables 4 and 5 should be consid-
ered only as tentative identification.

Conclusions

Based on the critical assessment of the two alternative finger-
printing techniques, U-HPLC-HRMS and DART-HRMS,
employed for distinguishing of genetically modified (MON
89788 variety), we could conclude that both of them demon-
strated sufficient flexibility and discrimination power enabling
to built-up relevant statistical models, and subsequent marker
compound identification. The benefits and limitation of these
instrumental approaches can be characterised as follows:

U-HPLC-HRMSwas superior over DART-HRMS in terms
of higher number of features (520 vs 51 in positive ionisation
mode, 108 vs 57 in negative ionisation mode), thus providing
more date available for statistical processing; moreover, the
repeatabilities (RSDs, %) of detected ion intensities were bet-
ter (i.e. lower) than those obtained by DART-HRMS. On this
account, the recognition/prediction abilities enabled by
OPLS-DA models constructed on U-HPLC-HRMS data were
better compared to those achieved by the ambient technique.
On the other hand, DART-HRMS technique enabled signifi-
cantly higher throughput of sample measurements (approxi-
mately 2 min, in both ionisation modes, per sample vs 14 min
(ESI+) and 9 min (ESI−) in case of U-HPLC-HRMS usage). It
is worth to notice that in particular case, processing of raw
data obtained by DART-HRMS technique was rather compli-
cated since their export data from Xcalibur 2.2 to MS Excel
2010 (required by SIMCA chemometric SW) had to be done
manually.

As far as identification of marker compounds, the usage of
U-HPLC-HRMS technique was clearly the preferred option.
The main reason for that was obtaining high-resolution frag-
mentation mass spectra and interpretation of which can be
supported by respective databases. In case of DART-HRMS,
the availability of tandem mass analyser would enable im-
proved identification of some metabolites (potential markers),
although, because of the absence of chromatographic separa-
tion, isobaric and isomeric compounds would remain unre-
solved anyway.

In conclusion, DART-HRMS technique seemed to be a
promising analytical technology for authentication of conven-
tional vs GMO soybean samples. However, the usage of U-
HPLC-HRMS technique was classified as more appropriate
analytical strategy.
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