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Abstract A simple, sensitive, and selective analytical method
was validated for the determination of mercury, cadmium,
lead, arsenic, copper, iron, and zinc in fish muscle using
microwave-induced plasma optical emission spectrometry
(MIP OES) after acid digestion. The procedure for determin-
ing linear range, detection and quantification limits, selectiv-
ity, trueness, repeatability, reproducibility, and uncertainty of
the method is reported. The results of the validation process
demonstrate that the method complies with the provisions of
the European Commission guidelines for metals mercury, ar-
senic, copper, iron, and zinc, but for cadmium and lead, it can
only be used as a screening method. The SRM 1946 (Lake
Superior Fish Tissue) certified reference material was used to
evaluate analytical result quality. The recovery varies between
87 and 99.7%. The HorRat value was equal to or lower than
0.67, and the expanded uncertainty was lower than 37%. The
method described can be considered adequate for the simulta-
neous determination and quantification of the chosen heavy
metals in fish matrices. For Cd and Pb, the method could only
be employed as a screening tool and not for official control of
these contaminants.

Keywords MIPOES .Heavymetals . Fish samples .Method
validation

Introduction

Heavy metals do not disappear from the environment; they
change oxidation state and chemical speciation thereby be-
coming soluble or insoluble in water and consequently re-
maining in water or sediments. Some heavy metal chemical
species and oxidation states are more toxic than others
(Mancera Rodríguez and Álvarez León 2006). The most toxic
metals include mercury (Hg), lead (Pb), cadmium (Cd), and
metalloids like arsenic (As). Meanwhile, copper (Cu), iron
(Fe), and zinc (Zn) are essential micronutrients for some living
organisms but become toxic in higher concentrations.

Due to the increase in socioeconomic activities of the hu-
man population, pollutant presence has increased. This in-
cludes heavy metals in water resources that affect food chains
and cause organism bioaccumulation and biomagnification
(Lozada Zarate et al. 2007; Malik et al. 2010; Jayaprakash
et al. 2015).

Due to the fact that fish is consumed by humans, heavy
metal maximum levels (MLs) have been established. These
are very low, and thus, very sensitive analytical techniques are
required to determine concentrations in fish. One of these
analytical techniques is microwave-induced plasma optical
emission spectrometry (MIP OES) (Herrero Fernández et al.
2014). In this technique, the continuous introduction of the
liquid sample along with a system of nebulization forms a
spray that is carried by nitrogen to the plasma torch. In the
plasma, due to the high temperatures generated, the analytes
are atomized and ionized, creating the atomic emission spectra
of characteristic lines. The spectra are dispersed by diffraction
grating, and the light-sensitive detector is responsible for
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measuring the intensities of the lines. The information is proc-
essed by the computer system through the processing of elec-
tronic signals into electrical signals by a phenomenon known
as photoelectric effect (Skoog et al. 2013; Laboratorio de
Técnicas Instrumentales 2016).

The analyses for this type of matrices are generally per-
formed with flame atomic absorption spectrometry (FAAS),
and inductive coupled plasma optical emission spectroscopy
(ICP OES) FAAS has been one of the best techniques used for
element determination in fish and its derivatives. Comparing
the FAAS with the microwave-induced plasma optical emis-
sion spectrometry (MIP OES), the MIP OES has higher per-
formance and capacity to monitor multiple elements. For
emission spectroscopy systems, several excitation sources
such as flames, electrical arc/spark, and plasma instruments
are used. Another way to generate the plasma is by induced
microwave (MP), in which the plasma is powered by a lower
magnetron and waveguide. The use of nitrogen and air as
plasma gas in several MP systems has been compared to gen-
eration through the ICP source. This has demonstrated that
MP performance approaches that of the ICP sources (Li
et al. 2013).

The use of this equipment that works with nitrogen plasma
is of great interest for many fields of analytical chemistry. This
is because the cost of operation is significantly lower, since the
running cost can be substantially reduced if this technique is
used instead of inductively coupled argon plasma (Li et al.
2013; Karlsson et al. 2015).

Although this equipment has been successfully used to
quantify trace metals in animal feed (Amais et al. 2013;
Donati et al. 2013; Hettipathirana 2013; Li et al. 2013;
Niedzielski et al. 2015; Ozbek and Akman 2015; Zhao et al.
2015; Ozbek et al. 2016; Ozbek and Akman 2016a, b), there is
very little scientific information on the functioning and per-
formance of this technology in other matrices such as fish.

Currently, there are national and international standards
on the maximum levels allowed in fishing products.
Resolution 122 of 2012 issued by the Colombian Ministry
of Health and Social Protection sets forth the physical-
chemical, microbiological, and chemical pollutant require-
ments that fish products must comply with. This includes
fresh, frozen, deep frozen, precooked, pasteurized, cooked,
and canned fish, molluscs, and crustaceans that are for hu-
man consumption and are manufactured, processed, pre-
pared, canned, transported, sold, imported, exported,
stored, distributed, and commercialized in the national ter-
ritory. Maximum allowed limits have been determined for
mercury, cadmium, and lead of 0.5, 0.05, and 0.3 mg kg−1

wet weight, respectively (Ministerio de Salud y Protección
Social de Colombia 2012). Internationally, the European
Community has set forth the same maximum contents at
wet weight for mercury, cadmium, and lead (European
Commission 2011, 2014).

The aim of this work is to implement the MIP OES tech-
nique for the determination of Hg, Cd, Pb, As, Fe, Cu, and Zn
in fish samples, due to the significance of these elements with
respect to human health. The work includes metals necessary
for vital functions and nutrition (Fe, Cu, and Zn) as well as
those that cause toxicity (Hg, Cd, Pb, As). The methodology
was validated using the MP-AES 4100.

Materials and Methods

Reagents and Solution

Metal standard solutions were obtained from Merck (Merck,
Darmstadt, Germany) in 1000 mg L−1 solutions. Acids were
measured using a Dispensette (Brand, 25 mL) dispenser.
Nitric acid, hydrochloric acid, and sulfuric acid were
EMSURE products obtained from Merck (Merck,
Darmstadt, Germany). Water for the solution preparation
was Milli-Q quality (conductivity less than 0.05 μS/cm)
(Millipore, Bedford, MA, US). A reductant solution was pre-
pared mixing 5.00 g of sodium borohydride (NaBH4) with
2.50 g of sodium hydroxide (NaOH) in 500 mL of deionized
water. For the suppressant solution preparation, 3.00 g of po-
tassium chloride (KCl) and 50 mL of nitric acid (HNO3) were
mixed in 1 L of deionized water. The SRM 1946 (Lake
Superior Fish Tissue) Certified Reference Material (CRM)
was acquired from the National Institute of Standards and
Technology (NIST).

Instruments and Equipment

An Agilent 4100 MIP OES Microwave Plasma-Atomic
Emission spectrophotometer (Agilent, Santa Clara, CA) with
aMultimode Sample Introduction System (MSIS) was used to
generate hydrides for Hg and As. For the other metals, a two-
way chamber inert OneNeb nebulizer equipped with an
Agilent 4107 nitrogen generator (Agilent, Santa Clara, CA)
was used. For the weighing process, a Shimadzu AUW120D
balance (Shimadzu, Kyoto, Japan) was used. Sample homog-
enizationwas performed using a Hobart CC-34 industrial food
processor (Hobart Troy, OH). Digestions were performed in a
water bath and heating plate (Centricol, Medellin, Colombia).
The glassware used was certified and washed four times with
a 5% HNO3 solution and rinsed four times with deionized
water.

Sample Preparation

Fish frozen at −20 °C were skinned for the analysis and ho-
mogenized in a Hobart CC-34 food processor (Hobart Troy,
OH). Analytical results are indicated in wet weight.
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For Cd, Pb, As, Cu, Fe, and Zn, 5 g of homogenized sample
was weighed on an analytical balance directly inside the
Erlenmeyer used to conduct the digestion. Ten milliliter of
HCl and 5 mL of HNO3 were added along with 1 mL of
deionized water, to obtain a smoother reaction. The blank
sample was prepared with the same amount of acids added
to the samples. The samples were placed on a heating plate at
140 °C for 2 h. After the digestion, they were poured into a
50-mL gauge volumetric flask whose volume was made up
with deionized water. For the CRM, half of the amounts were
used for the sample, the acids, and the final volume.

Concentrations of the analytes were determined with an
emission wavelength of 228.802 nm for Cd, 405.781 nm for
Pb, 234.984 nm for As, 324.754 nm for Cu, 371.993 nm for Fe,
and 213.857 nm for Zn. The pumping speedwas 15 rpm and the
nebulizer pressure was 240 kPa for Cd, Pb, Cu, Fe, and Zn, and
120 kPa for As. For the reading of Fe, Cu, and Pb, the suppres-
sant solution was used with a two-way chamber OneNeb neb-
ulizer, in order to suppress the ionization energy of the elements
and avoid spectral interferences. The As reading was performed
with a multimode sample introduction system and reduction
solution, to obtain the metallic element by hydride generation.

For Hg, 1 g of the homogenized sample was weighed on an
analytical balance directly inside the Erlenmeyer used to con-
duct the digestion. Four milliliter of HNO3, 2 mL of H2SO4,
and 1 mL of HCl were added. The samples were kept in a
water bath at 80 °C for 2 h. To avoid steam release, they were
rested for 1 h to cool down. After the digestion, they were
poured into a 50-mL gauge volumetric flask whose volume
was made up with deionized water.

Hg was determined with a 253.652 nm Hg emission wave-
length with a 15 rpm pumping speed and a nebulizer pressure
of 240 kPa. The reading was performed with a multimode
sample introduction system and the reduction solution, to ob-
tain the metallic element by the cold vapor technique, forming
a vapor of elemental mercury.

Analyses were conducted following the Eurachem
(Eurachem/CITAC 2012; Eurachem/CITAC 2015) and the
European Commission guidelines (European Commission
2011, 2013).

Parameters analyzed for the validation were linearity, de-
tection and quantification limits, selectivity (matrix effect),
trueness, repeatability, reproducibility, and uncertainty.

Linearity

In order to provide results directly proportional to the analyte
concentration in the sample within a set range, calibration
curves were prepared through 1000 mg L−1 pattern solution
dilution (Pérez Cuadrado and Pujol Forn 2001).

Calibration curves were prepared with six points and three-
point repetitions; 1.00, 2.00, 3.00, 4.00, 5.00, and
6.00 μg Hg L−1 (corresponding to 0.05, 0.10, 0.15, 0.20, 0.25,

and 0.30 mg kg−1 Hg in fish); 0.004, 0.007, 0.01, 0.002, 0.03,
and 0.05 mg Cd L−1 (corresponding to 0.04, 0.07, 0.10, 0. 20,
0.30, and 0.50 mg kg−1 Cd in fish); 0.03, 0.06, 0.10, 0.15, 0.30,
and 0.50 mg Pb L−1 (corresponding to 0.30, 0.60, 1.00, 1.50,
3.00, and 5.00 mg kg−1 Pb in fish); 10, 20, 30, 40, 50, and
60 μg As L−1 (corresponding to 0.10, 0.20, 0.30, 0.40, 0.50,
and 0.60 mg kg−1 As in fish); 0.10, 0.30, 0.50, 1.00, 2.00, and
3.00 mg Fe L−1 (corresponding to 1.00, 3.00, 5.00, 10, 20, and
30 mg kg−1 Fe in fish); 0.02, 0.05, 0.10, 0.20, 0.30, and
0.40 mg Cu L−1 (corresponding to 0.20, 0.50, 1.00, 2.00, 3.00,
and 4.00 mg kg−1 Cu in fish); and 0.10, 0.30, 0.50, 1.00, 1.50,
and 2.00 mg Zn L−1 (corresponding to 1.00, 3.00, 5.00, 10.00,
15.00, and 20.00 mg kg−1 Zn in fish). Blank samples were
prepared for each curve in order to adjust the equipment to zero.

Linearity acceptance criteria were as follows: (R2) > 0.995
determination coefficient, Shapiro-Wilk test pcalculated > 0.05,
residual normality, Durbin-Watson statistic DW > 1.5 and p-
calculated > 0.05, residual independence, and Breusch-Pagan
test pcalculated > 0.05, residual homoscedasticity.

Detection Limit (DL) and Quantification Limit (QL)

Through the quantification limit (QL), the minimum quanti-
ties of analytes present in a sample can be determined quanti-
tatively with accuracy and precision, and through the detec-
tion limit (DL), the minimum detectable amount of analyte in
the sample can be found. Limits were calculated using 10
blank (no detectable amount of analyte) and were determined
according to Eqs. (1), (2), and (3) (Morillas 2016)

DL ¼ 3� s
0
0 ð1Þ

QL ¼ kQ � s
0
0 ð2Þ

s
0
0 ¼

s0ffiffiffi
n

p ð3Þ

where, s0 is the estimated standard deviation of individual
results at or near zero concentration, s′0 is the standard devia-
tion used to calculate DL and QL, n is the number of averaged
observation replicates, and kQ is the factor that by default has a
value of 10 according to IUPAC (Joint Committee for Guides
in Metrology (JCGM) 2008a).

Selectivity (Matrix Effect)

Interference presence was evaluated through samples enriched
with Hg, Cd, Pb, As, Cu, Fe, and Zn in two concentration
levels (low and high) which is as follows: 0.09 and
0.21 mg kg−1 Hg; 0.20 and 0.30 mg kg−1 Cd and As; 0.80
and 2.00 mg kg−1 Pb; 1.00 and 5.00mg kg−1 Cu; and 3.00 and
10.00 mg kg−1 Fe and Zn.

Student’s t and Snedecor’s F tests were conducted to com-
pare mean homogeneity and pattern solution variance with
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respect to the fortified sample in each element. For the identi-
fication of the atypical values in the fortified samples, the
Grubbs test was conducted.

For these tests, the following were the acceptance criteria
taken into account: Student’s t pcalculated > 0.05, homogeneous
means, Snedecor’s F pcalculated > 0.05, homogeneous variance,
and Grubbs pcalculated > 0.05, atypical value inexistence.

Trueness

Three replicates of the SRM 1946 (Lake Superior Fish Tissue)
reference material were analyzed to evaluate the analytical re-
sult quality. Following the Guidelines for Standard Method
Performance Requirements (Eurachem/CITAC 2012;
Eurachem/CITAC 2015), and the AOAC Appendix F
(AOAC International 2012), recovery percentages correspond-
ing to 80–110%were contrasted as well as the relative standard
deviation percentages (% RSD) < 7.3% for Fe and Zn metals
and <11% for the rest of the elements. Individual control charts
were used to monitor the stability of the analysis system. The
external and internal control limits were defined (3SD) as well
as the warning internal and external limits (2SD).

Repeatability

Repeatability was measured in terms of precision, in order to
determine the variability of independent test results obtained
with the same method by the same operator and with the same
equipment in a series of analyses on the same sample (Pérez
Cuadrado and Pujol Forn 2001). Ten control replicates of fish
samples with three concentration levels (low, medium, and
high) were analyzed. These concentration levels were 0.05,
0.20, and 0.30 mg kg−1 for mercury; 0.04, 0.2, and
0.05 mg kg−1 for cadmium; 0.3, 1.5, and 5 mg kg−1 for lead;
0.50, 2.00, and 3.00 mg kg−1 for arsenic; 0.10, 0.40, and
0.60 mg kg−1 for copper; 1.00, 10.00, and 30.00 mg kg−1 for
iron; and 1.00, 5.00, and 20.00 mg kg−1 for zinc.

The AOAC Appendix F (AOAC International 2012) re-
covery percentages were between 80 and 110%, and the rela-
tive standard deviation percentages (% RSD) for Fe and Zn
metals were <7.3% and <11% for the rest of the elements.
Predicted Relative Standard Deviation of Reproducibility
(PRSDR) was calculated for each concentration level using
the Horwitz formula (Eq. (4)) and the HorRatr value (Eq. (5)).

PRSDR ¼ 2Cexp−0:15 ð4Þ
where C is expressed as mass fraction.

HorRatr ¼ RSDr

.
PRSDR ð5Þ

where RSDr is the relative standard deviation due to
repeatability.

For this parameter, it was taken into account that HorRatr
was below the determined limit of <2. The HorRatr was used,
meaning the observed relative standard deviation (% RSDr)
under repeatability conditions was divided by the RSDr value
estimated from the Horwitz equation.

Reproducibility

For this parameter result, the variability of independent tests was
studied for the elements with the same method and with the
same equipment by different operators at different times (Pérez
Cuadrado and Pujol Forn 2001). The procedure was conducted
as for repeatability but using the HorRatR value (Eq. (6)).

HorRatR ¼ RSDR

.
PRSDR ð6Þ

where RSDR is the relative standard deviation due to
reproducibility.

For this parameter, it was taken into account that HorRatR
was below the determined limit of <2.

Uncertainty

This parameter was associated with the result of a measure-
ment that characterizes the dispersion of values that may be
attributed to the measuring process (Joint Committee for
Guides in Metrology (JCGM) 2008b). It is calculated taking
into account all contributions during the validation according
to the following Eq. (7):

U ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2cal þ u2vol þ u2m þ u2treat þ u2tru

q
ð7Þ

where U is the expanded uncertainty; k is the coverage factor
(K = 2); ucal is the relative standard uncertainty regarding the
calibration curve; uvol is the relative standard uncertainty re-
garding the final volume; um is the relative standard uncertain-
ty regarding sample mass; utreat is the relative standard uncer-
tainty regarding the sample treatment factor; and utru is the
trueness estimation for relative standard uncertainty, using
the CRM SRM 1946.

Results and Discussion

Linearity

The results of the acceptance criteria are indicated in Table 1.
These, according to the Determination Coefficient (R2), indicate
that the adjusted model explains for every element between
99.88 and 99.96% variability in Y. The correlation coefficients
(R) of the elements were equal to 0.999, indicating a positive
correlation. The two variables are correlated in the direct sense.
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Residual independence was determined through the
Durbin-Watson statistic that showed significant values
(>0.05), indicating that there was no residual autocorrelation,
with a 95% trust level. The Shapiro-Wilk test was conducted
to determine residual normality, yielding significant p values
for every element. It can be stated that the residuals come from
a normal distribution. To determine if residual variance was
constant, the Breusch-Pagan test was conducted. Considering
that the p value calculated for every element was >0.05, it was
concluded that variances were constant (homoscedasticity) in
every concentration for every element.

Detection and Quantification Limits

Table 2 shows detection and quantification limits for each
element in which the noise signal method was used.

Matrix Effect (Selectivity)

Table 3 shows Student’s t, Snedecor’s F, and Grubbs test re-
sults for each element. The analysis did not show differences
between the values obtained from standard solutions and
enriched samples. This confirms that there is no matrix effect
and the result is satisfactory under the criteria, demonstrating
mean and variance homogeneity according to Student’s t and
Snedecor’s F tests. No atypical values were found for any
element, which was confirmed by the Grubbs test.

Trueness

The CRM SRM 1946 results as measured by an MIP OES are
described in Table 4. These show that recovery percentages

complied with recovery criteria, between 80 and 110%. In
addition, the RSD % complies for each element, according
to the Guidelines for Standard Method Performance
Requirements (Eurachem/CITAC 2012; Eurachem/CITAC
2015). For all analytes, the recovery values are below 100%,
which could be attributed to the open vessel digestion system.
Although the bias exists, the recoveries obtained are
acceptable.

Figure 1 shows the control charts with the CRM values.
The values do not exceed control limits corresponding to three
times the pattern standard deviation (3 SD).

Repeatability and Reproducibility

Table 5 shows that both RSDr and RSDR values were lower
than those calculated by the Horwitz equation, thereby com-
plying with HorRat <2 criteria. This indicates that the method
has acceptable repeatability and reproducibility values.

Uncertainty

Table 5 describes the contribution of the sources of uncertainty
for each metal and uncertainty (expanded) on the final value.
The greatest cause of uncertainty for all metals is the treatment
of the sample because of the open system digestions

Table 1 Statistical linearity
results for analytes Correlation coefficient Test

Shapiro-Wilk Durbin-Watson Breusch-Pagan
R2 p value p value p value

Hg 0.999 0.73 0.35 0.30

Pb 0.999 0.57 0.51 0.21

Cd 0.999 0.27 0.11 0.81

As 0.999 0.27 0.06 0.82

Fe 0.999 0.54 0.38 0.09

Cu 0.999 0.48 0.03 0.42

Zn 0.999 0.74 0.41 0.25

Table 2 Detection and quantification limits

Limits (mg kg−1) Hg Pb Cd As Fe Cu Zn

DL 0.01 0.07 0.01 0.02 0.14 0.12 0.05

QL 0.03 0.25 0.04 0.08 0.45 0.41 0.15

Table 3 Statistical selectivity results for analytes

Element Test

Student’s t Snedecor’s F Grubbs
p value p value p value

Hg 0.59 0.75 0.29

Pb 0.79 0.80 1.0

Cd 0.99 0.77 1.0

As 0.45 0.47 1.0

Fe 0.79 0.72 1.0

Cu 0.66 0.59 1.0

Zn 0.36 0.58 1.0
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conducted followed by calibration. However, each uncertainty
cause complies with the analysis method criteria set forth

under 2009/90/CE Standard, <50% (Commission of the
European Communities 2009).

Table 4 SRM 1946 results ± standard deviation, recovery %, and RSD %

Element SRM 1946 certified valuea (mg kg−1) Found value ± SD (mg kg−1) Recovery (%) RSD (%)

Hg 0.433 ± 0.009 0.430 ± 0.012 99.3 2.9

Pb 0.7b 0.679 ± 0.041 97 6

As 0.277 ± 0.010 0.242 ± 0.018 87.3 7.4

Fe 4.00 ± 0.32 3.988 ± 0.099 99.7 2.5

Cu 0.476 ± 0.060 0.459 ± 0.033 96.5 7.3

Zn 3.10 ± 0.18 3.089 ± 0.135 99.7 4.4

a The certified values are an unweighted mean of the results from two or more analytical methods. The uncertainty listed with each value is an expanded
uncertainty about themean, with coverage factor 2 (approximately 95% confidence), calculated by combining a between-method variance with a pooled,
within-method variance following the ISO/JCGM Guide
b Information value is typically provided with no uncertainty because of the lack of sufficient information to assess adequately the uncertainty associated
with the value

Mean; 3SD Control Limits; 2SD Warning internal and external limits.
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Conclusions

The methodology validation was conducted according to the
Joint Committee for Guides in Metrology and the European
Community standards that developed a method to determine
mercury, cadmium, lead, arsenic, iron, and zinc using
microwave-induced plasma optical emission spectrometry.
This validation took into account linearity with a correlation
coefficient of 0.999. The quantification limits were for Hg
0.034 mg kg−1, Pb 0.247 mg kg−1, Cd 0.038 mg kg−1, As
0.076 mg kg−1, Fe 0.448 mg kg−1, Cu 0.406 mg kg−1, and
Zn 0.152 mg kg−1. Trueness with recovery percentages was
between 87.29 and 99.70, and relative standard deviation was
equal to or lower than 7.4%. Repeatability and reproducibility
with HorRat were <1 and uncertainty <50%. Each parameter
complied with acceptance criteria, indicating that the method
is accurate. The described method application field might be
extended to determine other metals in similar biological ma-
trices. In this case, it was developed for edible skinless, bone-
less fish tissue samples, not including other parts of the fish.
The method could be used for fish sample screening but not
for official control of Cd and Pb. This is because analytically
the MIP OES used for validation is not able to decrease the
limits of quantification for this type of matrices.
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