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Abstract Lettuce pigments play important physiological
functions, such as photosynthetic processes and light stress
defense. Spectral indices are widely used for predicting vege-
table pigments in a non-destructive way. This work was car-
ried out to propose and validate mathematical models based
on spectral indices, capable of predicting carotenoid and an-
thocyanin contents in different lettuce cultivars, grown under
organic, hydroponic and alternative farming systems.
Standardized Difference Vegetation Index, Simple Ratio
Index, and Difference Spectral Index were modified and com-
bined with linear, exponential, power, and logarithm regres-
sions during the modeling process. The most accurate models
presented d and r values greater than 0.7 and 0.6 for the ex-
ternal validation, respectively. When estimating carotenoid
and anthocyanin contents, the root-mean-square error did not
exceed 0.14 and 0.41 mg kg−1, respectively. The maximum
mean bias error values were −0.07 mg kg−1 for carotenoids
and 0.08 mg kg−1for the anthocyanins. Models based on the
Difference Spectral Index with exponential fitting performed
better, but linear fittings combined to the other spectral indices
also confirmed the feasibility of using the proposedmodels for
estimating lettuce pigment contents.

Keywords Carotenoids . Anthocyanins . Spectrometry .

Lactuca sativaL

Introduction

Lettuce (Lactuca sativa L.) is one of the most grown and con-
sumed salad vegetables in the world, with production of
24,896,115.89 t in 2013 (Faostat 2013) and average daily con-
sumption of 22.5 g/person in Europe (Pérez-López et al. 2015).
Lettuce is a rich font of vitamins (A, B1, B2, C, E), bioactive
composites, and minerals as iron and calcium. Additionally, it
contains high amount of water in its tissues, as well as reduced
lipid and energetic contents (Nicolle et al. 2004).

Carotenoids and anthocyanins are important pigments found
in lettuce cultivars, which perform essential physiological func-
tions in plants such as the photosynthetic processes and light
stress defense (Gross 1991). Carotenoids are pigments that pro-
tect the chlorophyll molecule from photooxidation under ex-
cessive light (Rodriguez-Amaya 2001), also having antioxidant
action and presenting provitamin A activity (Rodriguez-Amaya
et al. 2008). Anthocyanins are pigments produced by the plant
secondary metabolism, playing an important role in the human
healthy due to their antioxidant activity (Chon et al. 2012).

Chemical analysis of food is increasingly sophisticated,
searching for more accurate quantifications, reduced labor
time, and greater safety in the laboratory activities. In this
sense, spectrometry has shown itself an efficient technique
for this purpose (Richardson et al. 2002). The spectral analysis
is a non-destructive way to extract a large amount of informa-
tion about a sample (Cozzolino et al. 2011). Based on the plant
or food spectral signature, it is possible to quantify pigments
(Gitelson et al. 2006; Schlemmer et al. 2013; Dobrota et al.
2015), water content (Féret et al. 2011; Rallo et al. 2014),
nutrient content (Li et al. 2014; Nigon et al. 2015), quality
parameters (Stagakis et al. 2012; Jha et al. 2014), and presence
of diseases and injuries (Cao et al. 2013; Mahlein et al. 2013),
among other important agricultural product properties.
Specifically for lettuces, the visible and near infrared (VIS/
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NIR) spectroscopy has been proven effective for estimating
storage period (Jacobs et al. 2016), classifying different culti-
vars (Moura et al. 2016), estimating nitrogen content (Mao
et al. 2015), and determining changes occurred as function
of nutrient deficiencies (Pacumbaba and Beyl 2011). Steidle
Neto et al. (2016) developed partial least squares models to
predict the lettuce chlorophyll, carotenoid, and anthocyanin
contents based on the full leaf spectrum.

The spectral indices are a less complex alternative to esti-
mate plant pigments and are widely used for extracting infor-
mation about biological products by combining two or more
wavelengths which are representative of the studied food or
plant property (Féret et al. 2011). Among several spectral in-
dices, the Standardized Difference Vegetation Index (SDVI),
Simple Ratio Index (SRI), and Difference Spectral Index
(DSI) are the most used for predictions of pigment content
(Sims and Gamon 2002; Garriga et al. 2014; Dobrota et al.
2015), nutrient concentration (Nigon et al. 2015; Schlemmer
et al. 2013), and water content (Rallo et al. 2014).

Despite the several studies about plant pigment predictions
at leaf and canopy levels based on spectral indices, estimation
of leaf carotenoid and anthocyanin contents from reflectance
is pointed as a challenge (Fassnacht et al. 2015; Jacobs et al.
2016). According to Sims and Gamon (2002), this probably
occurs because chlorophyll has absorption peaks (around
550 nm) overlapping with the ones of carotenoid and
anthocyanin. Further, the higher concentration of chlorophyll
than carotenoid in most leaves can affect the predictions.
Merzlyak et al. (2003) also affirmed that leaf carotenoid and
anthocyanin analysis by spectrometry is complicated due the
occurrence of several xanthophylls whose pools undergo dis-
proportionate changes during leaf ontogeny and upon adapta-
tion of leaves to variable light conditions. But, depending on
the studied food or plant property, further improvement in the
spectral indices based models is possible by combining differ-
ent wavelengths or by varying the equation fittings.

Specifically for the lettuces of distinct cultivars and grown
under different farming systems, this may contribute for improv-
ing the pigment content predictions, increasing the accuracies of
the models and allowing in-field non-destructive measurements.
This work was carried out to propose and validate mathematical
models, based on spectral indices, capable of predicting caroten-
oid and anthocyanin contents in different lettuce cultivars, grown
under organic, hydroponic, and alternative farming systems.

Methodology

Lettuce Growing

The lettuce cultivars Crystal (green crinkled leaves), Regina
2000 (plain green leaves), and Mimosa (slightly red crinkled
leaves) were cultivated under hydroponic, organic, and

alternative conditions in Capim Branco city, Minas Gerais
State, Brazil (19° 32′ S, 44° 07′W; 757 m). Growing different
lettuce cultivars in different farming systems was important to
obtain representative datasets for calibrating and validating
the proposed models, accurately estimating the pigment con-
tents and allowing the use of this approach to a wide range of
situations.

A Nutrient Film Technique (NFT) hydroponic system was
installed in a greenhouse covered with a new low-density
polyethylene (150 μm). An aluminized mesh (50% light in-
terference) was also stretched under the cover and partially
blocked the solar radiation input. Seeds were planted in phe-
nolic foam boards and seedlings were transplanted to growing
channels after 15 days. The electrical conductivity of the nu-
trient solution was 1.5 dS m−1. It was composed by water,
monoammonium phosphate, potassium nitrate, calcium ni-
trate, monopotassium phosphate, iron, and the micronutrients
manganese, zinc, and boron. Plants were watered every
15 min to prevent their drying.

The organic system was mounted under a low-density
polyethylene (150 μm) cover with 2 years use time. Seeds
were planted in polypropylene trays containing vegetable hu-
mus and cattle manure as substrate. Seedlings were
transplanted to field after 45 days. Soil was mixed with organ-
ic compound from cattle manure and vegetable biomass.
Fertilizing based on syrup containing lime sulfur (1%) was
applied 10 and 20 days after transplanting. Irrigation schedule
and other growing practices followed the crop requirements.

The alternative system was installed without cover.
Chemical pesticides were not applied to the plants, but syn-
thetic fertilizers were used. Seeds were directly planted in the
field, which was fertilized with organic compound from cattle
manure and vegetable biomass, and with mineral granulated
fertilizer NPK 4-14-8. The irrigation schedule and crop prac-
tices followed the crop requirements.

The experimental parcels were disposed in casualized
blocks with three repetitions. Each block corresponded to a
farming system and was composed by six cultivation lines
containing each one five plants. Thus, there were 30 plants
in each block (10 of each cultivar). The number of plants
cultivated was greater than the required for the laboratory
measurements, since it was considered the selection of the
healthy, vigorous and well-formed lettuces. For each farming
system, nine plants of each cultivar were harvested and
transported in thermal boxes to the Agricultural Engineering
Laboratory, located at the Federal University of São João del-
Rei, Campus Sete Lagoas (19° 48′ S, 44° 17′ W; 732 m),
where were cleaned.

Spectral Reflectance Measurements

At the laboratory, spectrometric data acquisition was per-
formed on three leaves of each lettuce, which were randomly
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selected. Three separate measurements on adaxial surface
were made in each leaf, avoiding its central vein and bound-
aries, resulting in a total of 81 spectra.

A portable spectrometer (JAZ-EL350, Ocean Optics,
Dunedin, Florida, USA) was used for obtaining the spectral
signatures of each lettuce leaf. This equipment was coupled to
a computer by USB cable and to an integrating sphere with a
built-in tungsten-halogen light source (ISP-REF, Ocean
Optics, Dunedin, Florida, USA) by a 300-μm optical fiber.
Since lettuce leaves are thick, an opaque black surface was
used aiming at avoiding reflection contributions of light after
its transmission through the leaf. The leaf was located between
the black surface and the integrating sphere during the reflec-
tance measurements. The spectrometer was preconfigured to
acquire and store reflectance data in Vis/NIR wavelength
range (500–1023 nm), with a spectral resolution of 0.36 nm.
Data were collected by the SpectraSuite software (Ocean
Optics, Dunedin, Florida, USA). The lettuce spectral reflec-
tance was expressed as a relative percentage of standard
minimum and maximum reflectances, as described by
Steidle Neto et al. (2016) and Xing and Baerdemaeker (2005):

Rcal
λ ¼ Rleaf

λ −Rdark
λ

Rref
λ −Rdark

λ

� �
100 ð1Þ

where Rcal
λ is the calibrated spectral reflectance from the leaf

(%), Rleaf
λ is the direct spectral reflectance from the leaf (di-

mensionless), Rdark
λ is the minimal spectral reflectance (dimen-

sionless), and Rref
λ is the maximum spectral reflectance

(dimensionless).
The minimal spectral reflectance was obtained in the ab-

sence of light, when sample port aperture of the integrating
sphere was obstructed and the light source was turned off. The
maximum spectral reflectance referred to the value measured
in a diffuse reflectance standard (WS-1-SL, Ocean Optics,
Dunedin, Florida, USA) with Spectralon™, after the warmed
up of the light source (≈10 min) was waited.

Determination of Pigment Contents by Laboratory
Techniques

Total carotenoid content was measured by macerating 5 g of
each fresh leaf in a mortar with acetone. This homogenate was
filtered under vacuum through a Büchner funnel, progressive-
ly adding acetone until no more color can be extracted. The
filtered extract was separated by adding 100% pure petroleum
ether and distilled water. The extract absorbance was taken at
450 nm in a spectrophotometer (700S, FEMTO, São Paulo,
SP, Brazil) calibrated with acetone. The total carotenoid con-
tent was calculated by equation proposed by Rodriguez-
Amaya (2001) and presented by Carvalho et al. (2012):

Car ¼ 100 � A450 � V = E �Wð Þ ð2Þ

where Car is the total carotenoid content (mg kg−1), A450 is the
sample absorbance at 450 nm, E is the absorption coefficient
of β-carotene in petroleum ether (2592), V is the total volume
of extract (mL), and W is the sample fresh weight (g).

Anthocyanins were estimated by pH-differential method,
as proposed by Giusti and Wrolstad (2001) and Deylami
et al. (2016). These pigments were expressed as cyanidin-3-
glucoside equivalents in weight. Extracts were obtained by
adding acidified methanol (0.1% HCL) to 1 mL of each sam-
ple. Before centrifugation, extracts were separately diluted in
potassium chloride buffer (pH 1.0) and sodium acetate buffer
(pH 4.5). Absorbances were measured simultaneously at 510
and 700 nm in the same spectrophotometer used for quantify-
ing the carotenoid contents, 30 min after dilution of extracts.
The anthocyanin content was calculated as:

Ant ¼ 10 �M � F
K

A510−A700ð Þph1:0− A510−A700ð Þph4:5
h i

ð3Þ

where Ant is the anthocyanin content (mg kg−1), A510 and
A700 are the sample absorbances at 510 and 700 nm, M is
the cyanidin molecular weight (449.2 g mol−1), K is the
cyanidin molar extinction coefficient (26,900 L cm−1 mol−1),
and F is the dilution factor (26.67).

Spectral Indices and Mathematical Models

Regression models correlating different spectral indices with
pigment measured in laboratory were evaluated with the pur-
pose of estimating lettuce carotenoid and anthocyanin. For
this, reflectance data of the 81 lettuce samples were divided
into calibration and external validation sets, both of them con-
taining representative data from lettuce samples. The calibra-
tion set was composed by 70% of the data (54 spectra and
pigment values) and was used for developing the models.
From the 54 spectra, there were 18 of each farming system
and for each farming system there were six spectra of each
cultivar. The external validation set corresponded to 30% of
the data (27 spectra and pigment values) and was performed
for assessing the model predictive performances from inde-
pendent samples. From the 27 spectra, there were nine of each
farming system and for each farming system, there were three
spectra of each cultivar. This sampling plan followed the sug-
gested by Kramer (1998), who affirmed that the number of
samples in the calibration set should bemore than 10 times the
variable components in the experiment. In this study, the farm-
ing system and the cultivars were considered as variable com-
ponents in the experiment, representing independent sources
of significant variation in the data.

During the calibration, Standardized Difference Vegetation
Index (SDVI—Eq. (4)), Simple Ratio Index (SRI—Eq. (5))
and Difference Spectral Index (DSI—Eq. (6)) were modified
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considering different combinations of two different wave-
lengths, and combined with linear, exponential, power and
logarithm regressions for each response variable. During this
process, the spectral index was the independent variable and
the pigment content was the dependent one.

SDVI ¼ Rλ1−Rλ2ð Þ
Rλ1 þ Rλ2ð Þ ð4Þ

SRI ¼ Rλ1

Rλ2
ð5Þ

DSI ¼ Rλ1−Rλ2 ð6Þ

where R is the spectral reflectance (%), λ1 and λ2 are different
wavelengths (nm).

Regressions were performed in the SPECTRA software,
which was written in C++ programming language, specifical-
ly for this study. During the software execution, the spectral
reflectance data were grouped two by two with an interval of
10 nm, totalizing 42,480 models (3540 wavelength combina-
tions × 4 regression types × 3 spectral indices) for each pig-
ment. The SPECTRA output showed all equations with their
respective coefficients of determination.

Three models with greater coefficients of determination for
each spectral index and regression type were selected for
performing the external validation process, totalizing 36
models for each pigment. The external validation was done
on an electronic spreadsheet, where eachmodel was applied to
the independent dataset and statistical indicators were calcu-
lated to evaluate the calibration and validation results. These
statistical indicators were the mean bias error (BIAS—
Eq. (7)), root-mean-square error (RMSE—Eq. (8)), and
Willmott’s index of agreement (d—Eq. (9)). The standard er-
ror of laboratory (SEL—Eq. (10)) and the standard error of
prediction (SEP—Eq. (11)) were also calculated for evaluat-
ing the predictive capacities of the proposed models.

BIAS ¼
∑ yp−yr
� �

n
ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yp−yr

� �2

n

vuut
ð8Þ

d ¼ 1−
∑ yp−yr
� �2

∑ yp−yr
��� ���þ yr−yr

��� ���� �2

2
64

3
75 ð9Þ

SEL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1−y2ð Þ2
2n

s
ð10Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yr−yp−BIAS

� �2

n−1

vuut
ð11Þ

where yr. is the pigment content measured in laboratory
(mg kg−1), yp is the pigment predicted by themodel (mg kg−1),
n is the number of samples (dimensionless), yr is the average
pigment content measured in laboratory (mg kg−1), y1 and y2
are duplicate pigment contents measured in laboratory
(mg kg−1).

For each spectral index, the models indicated for predicting
the lettuce carotenoid and anthocyanin contents were those
with the higher coefficients of determination in the calibration
process, higher index of agreement in the external validation,
as well as lower BIAS and RMSE in the external validation.
The BIAS represents the difference between the mean of ob-
servations and the mean of estimates, with values close to zero
indicating low systematic error between the measured and
predicted values. The lower the RMSE is, the more precise
the model is and less scattered the dataset is. Both BIAS and
RMSE are related with the unit in which the evaluated prop-
erty is expressed, as well as with the dataset range of values.
On the other hand, the Willmott’s index of agreement is di-
mensionless and bounded by 0 and 1, with greater values
indicatingmore accurate predictions. SEL is related to the data
reproducibility and is an indirect indicator of the calibration
model suitability. SEP is generally used to assess the calibra-
tion accuracy, indicating how well the calibrated equation will
perform in other analysis. Ideally, SEP and SEL should be
similar for calibration, indicating that variability of the predic-
tion is close to that of the conventional method.

Results and Discussion

Figure 1 presents the average spectral signatures of the studied
lettuce cultivars under the different farming systems. It was
found that lettuce reflectances exhibited similar patterns,
agreeing with those obtained by Xue and Yang (2009), Li
et al. (2006), and Jacobs et al. (2016), when evaluating the

Fig. 1 Average reflectance spectra of the evaluated lettuce cultivars for
hydroponic, organic, and alternative farming systems
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storage period and nutritional composition of lettuces by
spectrometry.

A slight variation was observed in the visible wavelengths
when comparing the average spectra of lettuces grown under
hydroponic, organic, and alternative farming systems. In gen-
eral, average lettuce reflectances were smaller than 20% from
500 to 690 nm, with a peak at about 550 nn (green region).
The average lettuce reflectances increase to about 40% in the
near-infrared range (700–1000 nm), probably due to their in-
ternal cellular structure. According to Knipling (1970), little of
the radiation in the near-infrared wavelengths is absorbed in-
ternally by leaves, but about 40 to 60% of it is scattered up-
ward through the surface of incidence and is designated
reflected radiation.

Table 1 shows the most efficient models for predicting
lettuce pigments based on spectral indices and their respective
coefficients of determination for calibration. Among the tested
regressions, the exponential and linear fittings presented the
greater regression coefficients, which varied from 0.40 to 0.60
and can be considered as moderate. This means that there are
other factors, which were not discussed in this study, but in-
fluence the pigment contents in lettuces. Despite this, the pro-
posed models represented well the relationship between the
spectral indices and the pigment contents for the calibration
dataset, as shown by SEL, SEP, and RMSE. These statistical
indicators were low and very similar for the three selected
models for each evaluated pigment, confirming their predic-
tive abilities. The SEL, SEP, and RMSE values revealed a
greater variability in the anthocyanin measurements and pre-
dictions during the calibration process. However, this did not
affect the performance of the models.

The more sensitive wavelengths for lettuce carotenoid pre-
dictions were 500, 567, 577, and 698 nm, which are close to
results reported previously for other food and plants (Gitelson
et al. 2006; Merzlyak et al. 2003; Zarco-Tejada et al. 2013).
Reflectances at 510, 529, 539, and 548 nm were the most
useful for lettuce anthocyanin predictions, also agreeing with
previous studies (Merzlyak et al. 2008; Gitelson et al. 2006).

The wavelengths verified as appropriate for predicting the
lettuce carotenoid and anthocyanin contents are also presented

in Fig. 2 with the spectral signatures used during the calibra-
tion and validation of the models. As reported by Moura et al.
(2016), from 500 to 650 nm reflectances of the red lettuces
cultivated under the alternative system were always smaller
than the green ones, as well as than the green and red lettuces
cultivated under hydroponic and organic systems. These
differences probably occurred due to the different farming
system cover types, which resulted in different radiation
intensities during the cultivations and affected the lettuce
pigment synthesis. Marin et al. (2015) verified that radiation
can be correlated to the content of phenolic acids and flavo-
noids, influencing in the color of red lettuce cultivars.

More wavelengths near 550 nm were associated with the
anthocyanin contents, probably because the absorption maxi-
mum in vivo of this pigment is near 550 nm, inhibiting the
carotenoid contribution (Merzlyak et al. 2003). Further, the
red lettuces presented higher anthocyanin contents, which
can be associated to the decrease of the reflectance peak
around 550 nm and with its flattening.

Table 2 presents the most efficient models for predicting
lettuce pigments based on spectral indices and their respective

Table 1 Most efficient models
for predicting lettuce pigments
based on spectral indices and their
respective coefficients of
determination for calibration

Spectral index Model equation r2 SEL SEP RMSE

Carotenoid

R500 − R698 31.40234 exp(0.07096x) 0.40 0.16 0.11 0.17

(R567 − R577) / (R567 + R577) 56.87064x + 12.10313 0.40 0.16 0.09 0.18

R567 / R577 26.88293x − 14.79107 0.40 0.16 0.18 0.20

Anthocyanin

R529 − R548 45.22330 exp(1.22577x) 0.60 0.60 0.44 0.38

(R529 − R539) / (R529 + R539) 219.60315x + 37.84481 0.60 0.60 0.30 0.30

R548 / R510 74.22666 – 35.81632x 0.60 0.60 0.51 0.29

SEL, SEP, and RMSE (mg kg−1 ), r2 (dimensionless)

Fig. 2 More sensitive wavelengths for lettuce carotenoid and
anthocyanin predictions
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validation statistical indicators. All selected models presented
good and very similar accuracies.

The spectral index R500 − R698 exhibited thebest vali-
dation results when estimating lettuce carotenoids.
Gitelson et al. (2006) indicated spectral indices based on
wavelengths around 510 as most sensitive to the caroten-
oids in higher plant leaves. In addition, these authors pre-
sented the near infrared range as useful for adjusting the
variability in leaf structure and thickness, as well as re-
moving the contribution of chlorophyll absorption from
reflectance around 550 nm. Merzlyak et al. (2003) also
reported that the spectral indices based on 520 and
700 nm can be used as an accurate measure of carotenoid
content in food.

When estimating lettuce anthocyanins, the spectral index
R529 − R548 presented best validation results. Gitelson et al.
(2001) also related close linear correlations between spectral
index based on 550 nm and anthocyanin contents for different
tree leaves. The 500–550 nm waveband is also reported by
Landi et al. (2015) as sensitive for leaf anthocyanins.

External validation presented larger r2 values for both stud-
ied pigments, but similar RMSE values. The coefficients of
determination from 0.42 to 0.56 for carotenoids and from 0.86
to 0.98 for anthocyanins indicate that 42–56% of changes in
the lettuce carotenoid contents were explained by the pro-
posed spectral indices during the external validation, while
86–96% of changes in the lettuce anthocyanins contents were
explained by the proposed spectral indices. The RMSE ex-
presses the mathematical model precision, supplying informa-
tion about the data scatter. The values of this statistical indi-
cator varied from 0.73 to 0.74 mg kg−1 in a dataset with chlo-
rophyll contents between 5 and 8.5 mg kg−1. Thus, a scatter-
ing of around 21% of the observed chlorophyll range was
stated for the pigment prediction. These results agree with
the reported by Xiaobo et al. (2011), who verified RMSE
values corresponding to 17, 18, and 20% of the observed
range of cucumber leaf chlorophyll when applying the SRI,
SDVI, and DSI spectral indices, respectively. The RMSE
values for carotenoid contents were 0.13 and 0.14 mg kg−1,

and the observed values of this pigment ranged from 0.9 to
1.8 mg kg−1. Therefore, a scattering of around 15% was ver-
ified when predicting the lettuce carotenoid contents, which is
very similar to that found by Yi et al. (2014) who observed a
scattering of 14% of the observed carotenoid range for cotton
canopy when using the SDVI spectral index.When evaluating
the lettuce anthocyanin predictions, RMSE values were be-
tween 0.34 and 0.41 mg kg−1, corresponding to scatterings
from 11 to 14% of this pigment range (1–40 mg kg−1).
Steele et al. (2009) predicted the anthocyanin contents of
grapevine leaves by using spectral indices and found RMSE
values corresponding to 19% of the observed pigment range.

The BIAS represents the systematic error among the pre-
dicted and measured values, with results close to zero indicat-
ing more accurate models, negative values representing
underfitting, and positive values corresponding to overfitting.
For all selected models, BIAS were close to zero, indicating
low systematic errors during the validation process. For both
lettuce chlorophyll and carotenoid predictions, the BIAS indi-
cated a slight underfitting, while for anthocyanins, the models
slightly overestimated the real values. The greater BIAS of
chlorophyll models are justified by the greater values ob-
served for this pigment when compared with the carotenoid
and anthocyanin ones.

The Willmott’s index of agreement (d) also represents the
model accuracy, varying from 0 to 100% with the maximum
percentage reflecting a perfect agreement between observed
and predicted data. This is an important statistical indicator
since it is a measure of the degree to which the predictions
are error free. Further, it is a standardized measure in which
cross-comparisons for a variety of models, regardless of units,
can be made.

Based on the presented results, the proposed models
were considered suitable for non-destructive and in-field
lettuce carotenoid and anthocyanin measurements. The
proposed spectral indices and equation fittings were capa-
ble of well represent the main spectral features of these
pigments in green and red lettuces grown under different
farming systems.

Table 2 Most efficient models
for predicting lettuce pigments
based on spectral indices and their
respective statistical indicators for
the validation process

Spectral index Regression r2 RMSE BIAS d

Carotenoid

R500 − R698 Exponential 0.56 0.13 −0.07 0.82

(R567 − R577) / (R567 + R577) Linear 0.42 0.14 −0.03 0.80

R567 / R577 Linear 0.46 0.14 −0.03 0.80

Anthocyanin

R529 − R548 Exponential 0.96 0.34 0.03 0.98

(R529 − R539) / (R529 + R539) Linear 0.88 0.38 0.08 0.98

R548 / R510 Linear 0.86 0.41 0.08 0.97

RMSE (mg kg−1 ), BIAS (mg kg−1 ), d, and r2 (dimensionless)
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Conclusions

Results obtained in this study suggest the applicability of
using spectral indices for non-destructive analysis of caroten-
oid and anthocyanins in different lettuce cultivars grown un-
der organic, hydroponic, and alternative farming systems.
Since a reduced number of samples were used during the
analyses, this can be considered a feasibility study. Models
based on the modified DSI with exponential fitting performed
better, but linear fittings combined to the other spectral indices
also confirmed the possibility of using the proposed models
for estimating lettuce pigment contents.
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