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Abstract Tomato (Solanum lycopersicum L.) consumption
has been correlated with a lower incidence of cardiovascular
diseases and cancer. This protective effect has been ascribed to
different bioactive compounds present in this fruit. Therefore,
to gain insights on the potential of S. lycopersicum L. as bio-
active food, a fast and sensitive methodology, based on liq-
uid–liquid extraction (LLE), dispersive solid phase extraction
(dSPE) followed by ultrahigh pressure liquid chromatography
(UHPLC-FLR) analysis, was developed and validated to
quantify δ-, γ- and α-tocopherol in tomatoes. Upon the opti-
mization of different parameters, a fast extraction and separa-
tion, and simultaneously, increased resolution and sensitivity
was attained. The methodology was validated, retrieving bet-
ter analytical performance than most methods reported so far.
This included good linearity, (r2 > 0.99) and precision
(<6.4%), high recoveries (>79.5%) and improved limits of
detection and quantification (LODs of 2.15, 5.52 and
1.67 ng/mL and LOQs of 7.18, 18.40 and 5.58 ng/mL, for
δ- γ- and α-tocopherol, respectively). These limits are about
1000 times lower than those reported in literature.
Furthermore, as far we are aware, this is the first time δ-
tocopherol presence in tomato is fully characterized and quan-
tified. The methodology was applied to different tomato vari-
eties, ripening stages and fruit sections, revealing high levels
of δ-tocopherol that increase along fruit ripening, while the α-
tocopherol follows the inverse trend. Moreover, δ-tocopherol

is almost fully concentrated in the seeds and skin of ripe to-
mato. Finally, ORAC and DPPH assays revealed that the se-
lected tocopherols contribute to approximately half of tomato
total antioxidant capacity.

Keywords LLE-dSPE . UHPLC-FLR . δ-γ- and
α–tocopherols .Method validation . Solanum lycopersicumL

Introduction

Originally from the Andean region, tomatoes (Solanum
lycopersicum L.) came to Europe in the fifteenth cen-
tury, being nowadays one of the most popular and extensively
consumed vegetable crops worldwide (Capanoglu et al., 2008;
Frusciante, et al. 2007). This fruit presents a high water con-
tent and up to 10% of dry matter and organic acids (mainly
citric acid and malic acid) (Shi and Le Maguer 2000; Figueira
et al., 2014). Nevertheless, the most interesting constituents of
tomato are the bioactive compounds, as tocopherols, caro-
tenes, lycopenes, ascorbic acid, chlorogenic and gallic acids
(phenolic acids), and the flavonoids quercetin, kaempferol,
rutin, myricetin and naringenin (Hallmann 2012; Georgé,
et al. 2011). All these compounds have beenwidely associated
with additional protection against different diseases, namely
cancer and cardiovascular diseases (Sharoni, et al. 2012; Rao
and Rao 2007; Giovannetti, et al. 2012). Tomato is therefore
regarded as a functional food, being an important constituent
of different diets across the planet, notably the Mediterranean
diet. Tocopherols (α, β, γ and δ isoforms, differing in the
number and position of alkyl groups) and tocotrienols (also
α, β, γ and δ isoforms, differing from tocopherols in the
unsaturated side chains) (Fig. 1) are important naturally oc-
curring plant antioxidants (Chong-Han 2010). These com-
pounds constitute the forms of vitamin E characterized in
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1922 by Evans and Bishop (Zingg 2007; Azzi 2007) and are
considered the most important lipid-soluble antioxidants in
our organism (Sircelj and Batic 2007).

The α-tocopherol is the most bioactive of the tocopherol
isoforms, being widely distributed in plant tissues, while δ-
tocopherol is much less abundant and simultaneously the less
bioactive isoform (Schneider 2005; Stocker and Keaney
2004). Nonetheless, γ- and δ-tocopherol have been suggested
to have stronger anti-inflammatory activity than α-tocopherol
(Wada 2012; Yang, et al. 2013) and have shown greater ability
to reduce inflammation, cell proliferation and tumour burden
(Wada 2012; Smolarek and Suh 2011). Considering specifi-
cally the fruit, vitamin E activity is usually assessed by the
levels of α-tocopherol, which is reported to be mainly found
in the seeds (Marsiv et al., 2010) and is comparable to β-
carotene, another important dietary antioxidant (up to
1.8 mg/100 g FW) (Chun et al., 2006; Frusciante, et al.
2007; Gomez-Romero et al., 2007). The vitamin E activity
of tocopherols, however, is not limited to their antioxidant
capacity which lies in their ability to donate phenolic hydro-
gen (Kamal-Eldin and Appelqvist 1996; Yang, et al. 2013;
Schneider 2005). Instead, they also include the regulation of
the activity of important enzymes, as the inhibition of
cyclooxygenase-2 and 5-lipoxygenase (involved in the syn-
thesis of inflammatory mediators such as prostaglandin E2
and leukotriene B4) and SR-A and CD36 (inhibits the uptake
of oxidized LDL into monocyte-derived macrophages)
(Schneider 2005). Moreover, tocopherols have been associat-
ed to the inhibition of monocyte-endothelial cell adhesion and
platelet adhesion and aggregation, as well as to the modulation
of gene expression and cellular signalling (Borel et al., 2013;
Brigelius-Flohé and Traber 1999; Schneider 2005; Salinthone
et al., 2013). The evaluation of the total antioxidant capacity
(TAC) of a certain bioactive compound can be obtained

through different assays, being the oxygen radical absorbance
capacity (ORAC) (Cao et al., 1993) and the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assays (Xie and Schaich 2014; Tabart
et al., 2009; Kedare and Singh 2011) often used.

In this work, we report a noteworthy improved, fast and
reliable methodology based on LLE-dSPE technique followed by
UHPLC-FLR analysis for quantification of δ- γ- and α-
tocopherol in tomato fruits from S. lycopersicum L. species.
An univariate experimental design, involving as independent vari-
ables, extraction solvent and clean-up sorbents, was per-
formed and used to investigate the effects of different experimental
parameters on the extraction performance. The analytical per-
formance of the proposed LLS-dSPE/UHPLC-FLR was eval-
uated in terms of selectivity, linear dynamic range, LOD,
LOQ, precision, accuracy and uncertainty. The antioxidant
profiles of four S. lycopersicum L. varieties were evaluated
by using DPPH and TBARS assays.

Materials and Methods

Reagents, Standards and Materials

The tocopherols (α- and γ-tocopherol, HPLC grade 96% and
δ- tocopherol, 90%) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Ethanol (absolute PA, 99.5%) was ac-
quired from Panreac (Valencia, Spain) and acetonitrile
(ACN) and methanol (MeOH) (both HPLC grade, 99.99%)
from Thermo Fisher Scientific (Leicestershire, UK). The
clean-up salt multiwalled carbon nanotubes (MWCNTs), pri-
mary secondary amine (PSA), graphene oxide and PSA/C18/
MgSO4 (25/25/150 mg, DisQuE) were purchased from
Waters (Milford, MA, USA).

Fig. 1 Tocopherols and
tocotrienols structures
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Tomato Samples

Gordal tomato varieties (regional variety, 1500 g) at different
ripening stages (full mature green -FMG, breaker and ripe)
were collected from different plants of the same crop at dif-
ferent time points (during 90 days), while campari, cherry and
roma samples (200 g) were imported from mainland and ac-
quired in the local market. The samples were lyophilized
(Christ Alpha 1–2 LD plus freeze dryer, Osterode am Harz,
Germany), grounded to powder (IKA A11 basic analytical
mill, Staufen, Germany) and immediately stored under nitro-
gen at −80 °C, in several aliquots, which were used only once
to prevent sample degradation.

Optimization of Experimental Factors Affecting
LLE-dSPE Performance

Different parameters affecting the efficiency of the extraction
procedure were tested and optimized. This included the (i)
extraction solvent (MeOH, ethanol (EtOH), ACN, ACN/
MeOH 4:1 and MeOH/EtOH 4:1); and (ii) clean-up salts
(PSA, graphene oxide, MWCNT and PSA/C18/MgSO4).
The selection of the best conditions was based in the highest
total peak areas for the target analytes and resolution

LLE-dSPE Procedure

Upon the tomato sample processing described above, sample
aliquots of 0.50 g were diluted (1:10) with 5 mL of ACN/
MeOH (4:1, v/v) and vortexed for 1 min to homogenize.
Then, 1 mL of the extract was collected to Eppendorf
(n = 3), mixed with 20 mg of PSA/C18/MgSO4 (1:1:6; w, w,
w) and submitted to centrifugation (5000×g, Espresso
Personal microcentrifuge, Thermo Fisher Scientific
(Leicestershire, UK) for 5 min. The supernatant was collected
and evaporated (Heidolph Collegiate, Schwabach, Germany)
to dryness and the residue reconstituted in 500 μL of initial
mobile phase. After filtration over a PTFE syringe filter
(0.20 μm; 13 mm, Millipore Corporation, Bedford, USA),
the extract was collected in a 200-μL insert and placed into
an LC amber glass vials for further UHPLC-FLR analysis.

UHPLC-FLR Analysis and Operating Conditions

Analysis of tocopherols was carried out on a Waters Ultra
Pressure Liquid Chromatographic Acquity system (UPLC,
Acquity H-Class) combined with aWaters Acquity quaternary
solvent manager (QSM), an Acquity sample manager (SM), a
column heater and a FLR detector. The whole configuration
was driven by Empower software v2.0 fromWaters (Milford,
MA, USA). Optimum separation was achieved with a binary
mobile phase composed by (a) ACN and (b) MeOH, with a
constant flow rate of 500 μLmin−1 and the following gradient

conditions: 75% A until 1 min, increasing to 78% A (3 min),
continuing up to 4min, returning to 75%A (5min), remaining
until the end of the run. A re-equilibration time of 2 min re-
generates the column to the initial conditions after each anal-
ysis was used. Overall, during the 8-min run, a maximum back
pressure of 3.800 psi was reached, which is within the capa-
bilities of the UHPLC. The samples were kept at 20 °C in the
SM and 2 μL was injected in the thermostated (30 °C)
Acquity UPLC BEH C18 analytical column (1.7 μm particle
size, 2.1 mm × 50 mm, Waters, Milford, MA, USA). For
quantification purposes, the FLR detection was conducted
by using a channel with λExc = 296 nm and λEm = 330 nm.
The identification of tocopherols in real sample chromato-
grams was based on the comparison of retention time and
spectral characteristics with standards and confirmed using
the standard addition method. Quantification was also based
on the standard addition method.

Method Validation

After the sample extraction optimization, the performance of
the proposed LLE-dSPE/UHPLC-FLR approach was assessed by
studying the selectivity, linearity, limits of detection (LODs)
and quantification (LOQ), linear dynamic range (LDR), pre-
cision, accuracy and matrix effect. The selectivity of the meth-
od for tocopherols was assessed by the absence of interfering
peaks in fluorescence spectra with λExc = 296 nm and
λEm = 330 nm. Linearity was evaluated using the external
standard addition method, through analyte standard linear re-
gression (n = 3). This involved eight different concentrations
and the least-squares method to obtain the respective correla-
tion coefficient (r2). Sensitivity of the method was assessed
through determination of the LOD (the lowest analyte concen-
tration that produces a response detectable above the noise
level of the system) and LOQ (the lowest level of analyte that
can be accurately and precisely measured), obtained from the
linear regression, with LOD defined as a + 3Sa/b and LOQ as
a + 10Sa/b, where Ba^ represents origin ordinate, BSa^ the
origin ordinate variance and Bb^ the slope. Precision is a func-
tion of concentration, and it was calculated by dividing the
standard deviation (SD) by the means of concentration to
obtain the coefficient of variation, which when expressed on a
percentage basis gives the relative standard deviations
(RSDs). For method precision assessment, three concentra-
tions, low level (LL), medium level (ML) and high level
(HL) were evaluated four times (n = 4). Four trials were exe-
cuted in the same day, resulting in intraday precision which
retrieved the repeatability. The other four trials were executed
in non-consecutive days, resulting in interday precision,
retrieving the reproducibility. Accuracy was evaluated through a
recovery study and expressed as recovery percentage (R%)
according to the following formula: % R = 100 × [(SF − S)/
Std], where BSF^ represents concentration of target analytes in
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the fortified sample, BS^ represents the concentration of target
analytes in the sample and BStd^ represents the concentration
of target analytes added to the sample. Three different stan-
dard concentration levels corresponding to the LL, ML and
HL were evaluated (n = 3) in SF and Std. Matrix effect (ME) is
the effect on an analytical method caused by all other compo-
nents of the sample and was determined according to the for-
mula: % ME = 100 × (mSol/mFS), where BmSol̂ represents the
slope of standard linear regression and BmFS^ the slope of
fortified sample linear regression.

Total Antioxidant Capacity

Tomato TAC determination was performed using the ORAC
and DPPH assays. The ORAC assay measures the oxidative
degradation of a florescent probe, fluorescein, by a peroxyl
radical (ROO•) generator, as the azo-initiator 2,2′-Azobis(2-
methylpropionamidine) dihydrochloride (AAPH). This degra-
dation is obviously affected by the quenching ability of the
sample extract being measured, allowing its TAC determina-
tion. The methodology here used was adapted from Bernaert
et al. (2012). Briefly, 25 μL of the sample (diluted 1000 times)
was added to 150 μL of fluorescein solution (40.0 nM), incu-
bated at 37 °C for 30 min and added with 25 μL AAPH
(153.0 mM). The values of fluorescence (λExc. 485 nm and
λEm. 520 nm) were subsequently determined every 90 s, for
about 1 h through Victor3 Multilabel Plate Counter 1420 fluo-
rescence reader (Perkin Elmer, Waltham, USA). Instead of the
25-μL sample, 25μL of 10mMphosphate buffer at pH 7.4was
used for the reaction control or different trolox solutions (rang-
ing from 1 to 60 μM) to obtain the standard linear regression.
The blank was prepared using only 200μL of phosphate buffer.
The results were expressed in mM Trolox/100 g FW.

The DPPH methodology relies in the scavenging ability of
the antioxidants present in the matrix being assayed against

the free-radical DPPH. This compound has deep violet colour
(maximum absorption around 515 nm in alcoholic solution)
that is lost upon its reduction (Xie and Schaich 2014; Tabart
et al., 2009; Okoh et al., 2014; Kedare and Singh 2011). The
DPPH assays here used were adapted from Xie and Schaich
(2014) with minor differences. Briefly, 10 mg of DPPH was
dissolved in 250 mL of MeOH and allowed to rest overnight
(DPPH stock solution). Then, 500 μL of sample extracts (di-
luted ten times) was mixed in 1000 μL of DPPH stock solu-
tion and allowed to rest for 10 min in the dark. Finally, the
absorbance was taken at 515 nm using a UV–Vis spectropho-
tometer (UV–Vis LAMBDA 25, Perkin Elmer, Waltham,
USA). The blank assays were prepared using MeOH instead
of the sample extract. The DPPH % inhibition was obtained
using the formula ((ACtr − AS)/ACtr) × 100, where ACtr is the
absorbance of the control reaction and AS is the absorbance of
the sample extracts or standards used, as described by Okoh
et al. (2014).

Fig. 3 Representative UHPLC-FLR chromatograms obtained at
λExc = 296 nm and λEm = 330 nm for gordal tomato sample (Tom)
spiked with δ-, γ- and α-tocopherol standards (δ-, γ- and α-Toc,
respectively)

Fig. 2 Experimental optimization of the LLUSAE procedure: a solvent
optimization using methanol (MeOH), acetonitrile (ACN) and three
ACN/MeOH gradients (1:4, 4:1, and 1:1); b clean-up sorbent selection
among multiwalled carbon nanotubes (MWCNT), PSA, graphene oxide

and a PSA/C18/MgSO4 mixture. Selection of the best conditions was
based in the relative peak area and chromatographic conditions
involved (as detailed in the text)
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Results and Discussion

To implement a fast and sensitive method for the quantifica-
tion of tocopherols, the LLE approach was developed, opti-
mized and combined with a fast UHPLC-FLR analysis.

Optimization of the LLE Procedure

LLE optimization involved the selection of the best extraction
solvent time and sample extract clean-up.

Extraction Solvent

To select the best extraction solvent, ACN, MeOH and different
ratios between these two solvents (4:1; 1:1 and 1:4, v/v) were
tested and compared. As shown in Fig. 2a, although the best
results are obtainedwithMeOH, there is no significant difference
for the other conditions assayed and so, ACN/MeOH (4:1; v/v)
was selected to match the conditions used in the following chro-
matographic separation. In addition, MeOH extraction is very
broad, extracting many interferents (Delgado-Zamarreño et al.,
2016), while the selected ACN/MeOHmixture promotes protein

precipitation (Polson et al., 2003), allowing obtaining of cleaner
extracts (data not shown).

Sample Clean-Up

To simplify even more the extract composition before the
chromatographic separation, discarding part of the interferents
that could affect tocopherol analysis and quantification, differ-
ent sorbents, namely, MWCNT, PSA, graphene oxide and
PSA/C18/MgSO4, were used. As shown in Fig. 2b, this pro-
cedure did not affect tocopherol extraction, with exception of
MWCNT, which shows a very significant retention of the
target analytes. Therefore, the selection of the best clean-up
sorbent wasmade between PSA, graphene oxide and the PSA/
C18/MgSO4 mixture. It was selected the last option due to the
cleaner extracts it produces (observed by the lower noise sig-
nals in the chromatographic separations, data not shown).

Method Validation

The optimized LLE-dSPE/UHPLC-FLRwas validated for the
determination of δ-, γ- and α-tocopherol using ripe tomato

Table 1 Validation parameters of LLE-dSPE/UHPLC-FLR for δ-, γ- and α-tocopherol determination

Tocopherols
λexc = 296 nm
λem = 330 nm

RT (min) Linearity Sensitivity Spiking
levels

Precision (%) Recovery
(%)

Matrix
effect (%)

LDR r2 LOD LOQ Intra-
day
(n = 4)

Inter-
day
(n = 9)

δ-Tocopherol 1.25 0.01–4.0 0.9987 2.15 7.18 0.1 (LL) 3.0 6.4 105.3 96.8
1.0 (ML) 2.1 5.8 105.3

4.0 (HL) 2.1 4.9 96.9

Average 2.4 5.7 102.5

γ-Tocopherol 1.45 0.01–4.0 0.9974 5.52 18.40 0.1 (LL) 4.0 6.3 81.6 98.8
1.0 (ML) 3.6 3.4 96.1

4.0 (HL) 1.9 2.6 94.1

Average 3.2 5.7 90.6

α-Tocopherol 1.60 0.01–4.0 0.9998 1.67 5.58 0.1 (LL) 3.0 6.3 80.1 84.9
1.0 (ML) 2.2 6.1 79.5

4.0 (HL) 1.9 5.8 85.2

Average 2.4 6.1 81.6

RT retention time, LDR linear dynamic range (μg/mL), LOD limit of detection (ng/mL), LOQ limit of quantification (ng/mL), Spiking Levels (μg/mL):
LL low level, ML medium level; HL high level

O

OH

O

OH

O

OH

Food Anal. Methods (2017) 10:2507–2517 2511



T
ab

le
2

C
om

pa
ri
so
n
of

th
e
pr
op
os
ed

ex
tr
ac
tio

n
pr
oc
ed
ur
e
w
ith

ot
he
r
pu
bl
is
he
d
m
et
ho
ds

fo
r
th
e
ex
tr
ac
tio

n
of

to
co
ph
er
ol
s
in

di
ff
er
en
ts
am

pl
es

E
xt
ra
ct
io
n

A
na
ly
tic
al
co
nd
iti
on
s

D
et
ec
tio

n
TA

L
O
D
s

R
ec
ov
er
y

Sa
m
pl
e

(m
et
ho
d/
so
lv
en
ts
)

(e
qu
ip
m
en
t/m

ob
ile

ph
as
e)

F
L
D
(λ
E
xc
/λ
E
m
)

D
A
D
(λ
)a

(m
in
)

(δ
-T
/γ
-T
/α
-T
)b

(n
g/
m
L
)

(δ
-T
/γ
-T
/α
-T
)

(%
)

R
ef
.

To
m
at
oe
s

L
L
E
-d
SP

E
U
H
PL

C
:A

cq
ui
ty

B
E
H
C
18

co
lu
m
n/
A
C
N
/M

eO
H
(7
5:
25
,v
/v
)

29
6/
33
0

2
2.
2/
5.
5/
1.
7

96
.8
/9
8.
8/
84
.9

M
et
ho
d
pr
op
os
ed

M
us
hr
oo
m
s

L
L
E
/M

eO
H
an
d
H
ex

H
PL

C
:P

ol
ya
m
id
e
II

co
lu
m
n/
H
ex
/e
th
yl

ac
et
at
e
(7
0:
30
,v
/v
)

29
0/
33
0

27
−/
20
/8

99
/1
10
/1
14

B
ar
ro
s
et
al
.,
(2
00
8)

C
or
n,
w
al
nu
t,
gr
ap
e
se
ed
,

ri
ce
,v
ir
gi
n
ol
iv
e,
se
sa
m
e,

pe
an
ut
,s
un
fl
ow

er
oi
ls

L
L
E
/M

eO
H
/H
ex
:

te
tr
ah
yd
ro
fu
ra
n

(8
0:
10
:1
0,
v/
v/
v)

H
PL

C
:A

llt
im

a
R
P
C
-1
8

co
lu
m
n/
A
C
N
:M

eO
H
(5
0:

50
,v
/v
)

29
0/
32
5

10
8/
8/
9

10
1/
99
/9
8

B
el
e
et
al
.,
(2
01
3)

B
ut
te
r

L
L
E
w
ith

H
2
O
an
d

2-
pr
op
an
ol

H
PL

C
:P

he
no
m
en
ex

L
un
a

PF
P
co
lu
m
n/
M
eO

H
:H

2
O
,

(9
3:
7
v/
v)

29
5/
33
0

13
0.
4/
0.
2/
0.
5

–
G
ór
na
ś,
et
al
.(
20
14
)

Se
ve
ra
lv

eg
et
ab
le
s

L
L
E
/a
ce
to
ne

(0
.0
25
%

B
H
T
)

U
H
PL

C
:K

in
et
ex

PF
P

co
lu
m
n/
M
eO

H
/H

2
O

(8
5:
15
,v
/v
)
an
d

M
T
B
E
/M

eO
H
/H

2
O
(8
0:
18
:2
,v
/v
/v
)

29
5/
33
0

24
10
0/
10
0/
50
0

88
–1
00
/8
5–

98
/9
9–
10
8

K
ne
ch
te
t
al
.,
(2
01
5)

G
ra
ss

L
L
-U

SA
E
/B
H
T
/E
tO
H

(1
0:
1,
w
/v
)
an
d
ca
lc
iu
m

ca
rb
on
at
e/
ac
et
on
e
(1
:2
,w

/v
)

H
PL

C
:Z

or
ba
x
R
X
-S
IL

co
lu
m
n/
H
ex
:2
-p
ro
pa
no
l(
99
.3
/0
.7
,v
/v
)

29
0/
33
0

20
38
/5
0/
72

10
4–
13
5

V
al
di
vi
el
so
,e
t
al
.(
20
15
)

L
ip
id

em
ul
si
on
s

L
L
E
/M

eO
H
,a
nd

H
ex

(0
.0
5%

B
H
T
)

H
PL

C
:P

in
na
cl
e
D
B
si
lic
a

co
lu
m
n/
1,
4-
di
ox
an
e/
H
ex

(2
:9
8,
v/
v)

29
2/
33
0

11
6/
12
/9
8

98
/1
07
/1
01

X
u
et
al
.,
(2
01
5)

Po
w
de
re
d
m
ilk

L
L
E
/H
ex

an
d
E
tO
H

H
PL

C
:T

ra
ce
r
Sp

he
ri
so
rb

O
D
S2

C
18

co
lu
m
n/
M
eO

H
29
2

7
21
/3
3/
33

10
1/
98
/9
8

M
en
do
za

et
al
.,
(2
00
3)

O
ils

of
da
te
fr
ui
ts

So
xh
le
t

ex
tr
ac
to
r/
pe
tr
ol
eu
m

et
he
r
as

a
so
lv
en
t

U
H
PL

C
:A

cq
ui
ty

B
E
H
C
18

co
lu
m
n/
A
C
N
:F
.A
.(
99
.9
/0
.1
,v
/v
)

29
1

10
−/
−/
83

−/
−/
97

H
ab
ib

et
al
.,
(2
01
3)

Ta
bl
e
O
liv

es
n-
he
xa
ne
/e
th
yl

ac
et
at
e
SP

E
H
PL

C
-D

A
D
:M

er
ck

C
hr
om

ol
ith

R
P-
18
e

co
lu
m
n/
ac
et
on
itr
ile
/

m
et
ha
no
l(
7/
3)

an
d
i-
pr
op
an
ol

25
2

6
c 0
.3
/−
/−

95
.3
–9
9.
6/
−/
−

Sa
gr
at
in
i,
et
al
.(
20
12
)

Se
ve
ra
lt
ro
pi
ca
lf
ru
its

L
L
E
/H

2O
an
d

H
ex
/a
ce
to
ne

(1
:1

v/
v)

H
PL

C
:C

18
Po

ro
sh
el
l1

20
co
lu
m
n/
A
C
N
,M

eO
H
an
d

et
hy
la
ce
ta
te

28
5

5
67
/7
/2
5

−/
−/
96

St
in
co

et
al
.,
(2
01
4)

Se
ve
ra
lt
ro
pi
ca
lf
ru
its

Sa
po
ni
fi
ca
tio

n/
et
he
r

ex
tr
ac
tio

n
U
PC

2
:A

C
Q
U
IT
Y
U
PC

2

B
E
H
co
lu
m
n/
C
O
2

(9
9.
99
9%

)
an
d
m
et
ha
no
l

29
3

2
60
/−
/−

95
.4
–1
01
.4
/−
/−

G
on
g
et
al
.,
(2
01
4)

Se
ve
ra
ln

ut
s

Q
uE

C
hE

R
S/
M
eO

H
(P
SA

w
as

se
le
ct
ed

as
th
e
cl
ea
n-
up
)

H
PL

C
:Z

or
ba
x
E
cl
ip
se

X
D
B
-C
18
/M

eO
H
/H

2O
(9
8:
2,
v/
v)

20
5

9
21
0/
40
/8
0

−/
80
/7
8

D
el
ga
do
-Z
am

ar
re
ño

et
al
.,
(2
01
6)

M
or
in
ga

ol
ei
fe
ra

L
am

.
Sa
po
ni
fi
ca
tio

n
fo
llo

w
ed

by
L
L
E
/e
th
er

U
PC

2
:B

E
H
2-
E
P

co
lu
m
n/
C
O
2
an
d

M
eO

H
/is
op
ro
pa
no
l(
1:
1,
v/
v)

29
4

3
47
/2
3/
49

94
/9
1/
98

Q
i,
et
al
.(
20
16
)

Se
af
oo
d

n-
he
xa
ne

ex
tr
ac
tio
n

H
PL

C
-D

A
D
/F
L
R

(2
90
/3
30
)
21
0

8
50
/–
/–

–
C
ru
z,
et
al
.(
20
12
)

H
um

an
pl
as
m
a

L
L
E
/H

2O
,E

tO
H

an
d
H
ex

U
H
PL

C
:A

cq
ui
ty

B
E
H
C
18

co
lu
m
n/
A
C
N
an
d
M
eO

H
29
5/
33
0

5
−/
10
/5
0

−/
97
/9
9

B
el
le
t
al
.,
(2
01
4)

H
um

an
pl
as
m
a

L
L
E
/H

2O
,E

tO
H

an
d
H
ex

H
PL

C
:D

is
co
ve
ry

H
S
C
18

co
lu
m
n/
M
eO

H
an
d
E
tO
H

29
2

5
−/
−/
13

−/
−/
96

K
an
ď
ár

et
al
.,
(2
01
3)

H
um

an
se
ru
m

L
L
E
/E
tO
H
an
d

D
C
M
/H
ex

(1
:5
,v
/v
)

H
PL

C
:S

ph
er
i-
5-
O
D
S

co
lu
m
n/
A
C
N
/M

eO
H

(8
5:
15
)
an
d

A
C
N
/D
C
M
/M

eO
H
(7
0:
20
:1
0)

29
4

10
−/
−/
21
54

−/
−/
95

G
ra
na
do
-L
or
en
ci
o

et
al
.,
(2
01
0)

3

2512 Food Anal. Methods (2017) 10:2507–2517



from the gordal variety. First, the method was applied to a
mixture of tocopherol standards, yielding three distinct peaks
with retention time of 1.25 min (δ-tocopherol), 1.45 min (γ-
tocopherol) and 1.60 min (α-tocopherol). The selectivity of
the method was therefore confirmed by the absence of any
interferent in the chromatographic separation of the selected
tocopherols using their specific excitation and emission wave-
lengths (Fig. 3).

Linearity was evaluated through external standard addition
method, by applying the least-squares method elsewhere. A
good correlation coefficient (r2 > 0.997) was obtained in the
LDR 0.01–4.0 μg/mL (Table 1). Regarding LODs and LOQs,
determined from ordinary least squares regression data, the
limits obtained (LODs of 2.15/5.52/1.67 ng/mL and LOQs
of 7.18/18.40/5.58 ng/mL for δ-/γ-/α-tocopherol, respective-
ly; Table 1) are substantially lower than those reported in
literature for tomato extracts (1000 times lower) (Chun et al.,
2006; Frusciante, et al. 2007) and serum (10 times lower)
(Traber 2007; Charão, et al. 2012; Chauveau-Duriot et al.,
2010), making LLE-dSPE/UHPLC-FLR a powerful strategy
for tocopherol quantification. A further comparison of the
analytical performance of selected methodologies to quantify
tocopherols can be appreciated in Table 2.

For precision assessment, three concentrations were
evaluated (LL, ML and HL, n = 4) and the RSD cal-
culated. Intraday precision (repeatability) and interday
precision (reproducibility) were also calculated using
the same concentration levels (LL, ML and HL,
n = 9). The results obtained (Table 1) range between
2.4 to 6.1%. As expected, repeatability is lower than
reproducibility and both are far below the reference lim-
it of 20% (Naidis and Turpeinen 2009; Shah, et al.
2000). In addition to the evaluation of the method ac-
curacy, a recovery study was carried out by spiking a
tomato sample at three concentration levels, with a
known amount of each tocopherol (see Table 1). The
average recoveries obtained, ranging from 81.6 to
02.5% with RSDs lower than 6.1% (Table 1) are within
the tolerance range (80 to 120%) (Shah, et al. 2000)
and in agreement with the matrix effect results. These
ranged between 84.9 and 98.8, being therefore also
within the tolerance range (80 to 120%) (Rodrigues
et al. 2012; Shah, et al. 2000).

Determination of δ-, γ- and α-Tocopherol in Tomato
by LLE-dSPE/UHPLC-FLR

Tocopherol composition in plant and fruits is affected by sev-
eral abiotic and biotic factors, as temperature of the cultivation
area, intercepted solar radiation to the plants, ripening stage
and genotypic variety (reviewed in Monge-Rojas and Campos
2011). In sea buckthorn berries, for instance, the abundance of
δ-tocopherol is greatly affected by the ripening stage of theT
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fruit, as well as the cultivars and season harvesting (Andersson
et al., 2008; Bal et al., 2011). Therefore, we use the method-
ology developed, LLE-dSPE/UHPLC-FLR, to assess δ-, γ-
and α-tocopherol content in tomato samples from different
ripening stages, varieties and fruit sections. The results obtain-
ed reveal that α-tocopherol is the most abundant of the select-
ed tocopherols, followed by γ-tocopherol and finally δ-
tocopherol with much lower levels than of the other tocoph-
erols analysed. Furthermore, while α- and γ-tocopherol levels
are affected by the ripening stage of the fruit, δ-tocopherols
remains almost constant during this stage (Fig. 4a).
Accordingly, the levels of α-tocopherol decrease by almost
one third to 23.95 μg/g FW as the fruit ripening progresses
from the full mature green (FMG) to breaker and finally ripe
stage; the γ- isoform displays the opposite trend, raising its
initial concentration from 7.1 up to 13.0 μg/g FW, and δ-
tocopherols reveal a very narrow variation from 0.9 to
1.3 μg/g FW during tomato maturation (Fig. 4a, left dashed
box). Following this, tocopherol levels were assessed in dif-
ferent tomato varieties, namely the regional gordal variety and

the campari, cherry and grape varieties imported from main-
land, in the ripe stage. As the results show, tocopherols levels
present some variations among the four varieties analysed, but
the three isoforms are significantly more abundant in the
gordal variety (Fig. 4a, right box). This result agrees with
previous reports showing evidences of the great influence of
the tomato genetic diversity in its antioxidant potential and
consequently in the relative composition of the antioxidant
compounds (Aldrich, et al. 2010; Hanson, et al. 2004).
Regardless of the ripening stage considered, the δ-
tocopherol levels we found are particularly interesting because
δ-tocopherol is rarely quantified in tomato and the amounts
reported range from not detected (Vági, et al. 2007;
Botinestean et al., 2013), to trace levels (Marsiv et al., 2010)
and some mg/kg of industrial tomato dry weight
(Kalogeropoulos et al., 2012). Even for most vegetables and
other fruits, δ-tocopherol has been scarcely reported (Caretto
et al., 2010; Piironen et al., 1986) and we were able to find this
tocopherol described only in some legumes (Kalogeropoulos,
et al. 2010), banana (Piironen et al., 1986; Caretto et al., 2010)

Fig. 4 Selected tocopherols
concentration in different a
tomato ripening stage (full mature
green—FMG, breaker and ripe)
and variety (gordal, campari,
cherry and grape) and b fruit
sections (inner and outer pericarps
walls, locular cavity, skin and
seeds)
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and a few other tropical fruits with a very limited production
and consumption (Andersson et al., 2008; Konczak and
Roulle 2011; Costa et al., 2010; Monge-Rojas and Campos
2011; Chun et al., 2006). Previously, it has been reported that
the relative abundance of tocopherols can vary significantly in
different tomato sections, with α-tocopherol mainly found in
the outside (59%) and inside layers (39%) (Seybold et al.,
2004). Here, we have performed a more detailed analysis of
δ-, γ- and α-tocopherol isoform distribution in tomato, con-
sidering five different fruit sections, inner and outer pericarp
walls, locular cavity, skin and seeds of the ripe gordal variety.

The results shown in Fig. 5b confirm the heterogeneous
distribution of δ-, γ- and α-tocopherol in the fruit, with the
α-tocopherol more abundant in the skin, followed by locular
cavity and minor amounts in the pericarp walls and seeds. In
turn, δ-tocopherol is almost exclusively found in the skin and
seeds, in minor amounts in the outer pericarp wall and vesti-
gial in the inner pericarp walls and not detected in the locular
cavity. Finally, γ-tocopherol is almost totally concentrated in
the seeds, in minor levels in the skin and vestigial in the re-
maining sections analysed.

Contribution of δ-, γ- and α-Tocopherols for the Total
Antioxidant Capacity

The evaluation of tomato TAC and the respective contribution
of α- and δ-tocopherols for this activity were performed
through the ORAC and DPPH assays, using ripe gordal sam-
ples and the pure standards. As shown in Fig. 5, δ-, γ- and α-
tocopherol antioxidant potential is quite significant,
representing half of tomato TAC. This contribution could be

even more relevant if synergetic effects with other tomato
antioxidants, namely between α-tocopherol and β-carotene
(Kotíková et al., 2011; Zanfini et al., 2010), could be assayed.
Furthermore, if we take into account that these tocopherols are
much more abundant in the tomato skin and seeds, as
discussed in the previous section (Fig. 4b), then our results
about the contribution of δ-, γ- and α-tocopherol for the to-
mato TAC agrees and support the observation that peeling and
seeding tomatoes for cooking considerably affects their nutri-
tional value (Vinha, et al. 2014).

Conclusions

This paper reports the successful development, validation and
application of a fast, simple and reliable LLE-dSPE/UHPLC-
FLR methodology for the characterization of δ-, γ- and α-
tocopherol. Moreover, the methodology developed is precise,
accurate and sensitive, retrieving LODs and LOQs about 1000
times lower than previously reported in literature and 10 times
lower than the tocopherol levels found in serum. This antici-
pates the use of the developed LLE/UHPLC-FLR methodol-
ogy as a powerful strategy for tocopherol quantification in
other matrices beyond tomato extracts. It was also shown that
δ-, γ- and α-tocopherols localize preferentially in tomato skin
and seeds and have a very important contribution for tomato
TAC. Therefore, at the one hand, this raises important nutri-
tional concerns regarding the tomato peeling and seeding
habits, particularly before its processing and cooking. On the
other hand, tomato by-products contain high levels of tocoph-
erols (Kalogeropoulos et al., 2012), having therefore great
potential as ingredients in the food chain as shown very re-
cently for the tomato seed oil (Shao, et al. 2015).
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