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Abstract Polycyclic aromatic hydrocarbon (PAH) residue
concentrations have been measured in honey samples collect-
ed on the Italian market. An ultrasound-vortex-assisted disper-
sive liquid-liquid micro-extraction (UVALLME) procedure
coupled with a gas chromatography flame ionization detector
or ion trapmass spectrometry (GC-IT/MS) is proposed for fast
analysis of fluorene, phenanthrene, anthracene, fluoranthene,
pyrene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, and
benzoperylene. Different analytical parameters such as extrac-
tion solvent and relative volume, best extraction time, pH,
NaCl concentration, and reproducibility at low and high con-
centrations were optimized. Under optimal conditions, the re-
coveries range from 95 to 107% and correlation coefficients
range from 0.893 to 0.995 whereas the limits of detection
(LODs) and limits of quantification (LOQs) are ≥36 and
≥41 ng g−1 in GC-FID and 0.030 and 0.069 ng g−1 in GC-
IT/MS, respectively. The precision, expressed as relative stan-
dard deviations (RSDs), is ≤7.4 and ≤5.2% for low and high
PAH concentration levels, respectively. The whole proposed
methodology, demonstrated to be simple, reproducible, and
sensible, has been applied to the determination of trace
PAHs in five honey samples.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are well-known
compounds containing three or more fused benzene rings.
Such compounds may be formed and released during com-
bustion and/or pyrolysis processes. Because of combustion of
fossil fuels and organic waste, PAHs are ubiquitous in the
environment. Differences in the configuration of rings may
lead to differences in properties. From a toxicological point
of view, the primary human health risk associated to PAH
exposure is the cancer (Bostrom et al. 2002), but the relation-
ship between PAH exposure and cardiovascular disease
(Kenneth and Moorthy 2005) or poor fetal development
(Sram et al. 2005; Suades-González et al. 2015) is also rele-
vant. In any case, the PAH structure influences whether and
how the individual compound is carcinogenic (Rubin 2001;
Baird et al. 2005). Some carcinogenic PAHs are genotoxic and
induce mutations that initiate cancer; others are not genotoxic
and instead affect cancer promotion or progression (Ramesh
et al. 2004; ATSDR, Environmental Medicine; Environmental
Health Education 2011). The exposure can occur through dif-
ferent routes. Basically, the major routes of exposure are from
inhaled air and food (Alexander et al. 2008). It is documented
that, in non-occupational settings, up to 70% of PAH exposure
for a non-smoking person can be associated with diet
(Skupinska et al. 2004). Food can be contaminated by both
environmental PAHs present in air, soil, or water and indus-
trial food processing methods (e.g., heating, drying, and
smoking processes) and home food preparation (e.g., grilling
and roasting processes).
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Among different highly nutritional foods, honey has valu-
able compounds; it is valued for its healing and prophylactic
properties (Batelková et al. 2012) that result from its compo-
sition: the physicochemical and chemical indicators are the
image of such characteristics (Lachman et al. 2010). Recent
studies have indicated honey as environmental marker for
trace element (Conti and Botre 2001), pesticides (Blasco
et al. 2003), antibiotic residues (Hammel et al. 2008;
Giannetti et al. 2010), and PAH (Dobrinas et al. 2008) con-
tamination. Data on the PAH content in honey are very rare;
nevertheless, some authors reported high concentrations of
PAHs in honey (Dobrinas et al. 2008). Further, it should be
added that PAHs are one of the major factors contributing to
the onset of cancer in humans; in this way, it becomes funda-
mental to develop a quick, simple, and accurate protocol for
their determination in such foods (Wenzl et al. 2006). Among
the analytical methods available in literature for determining
PAHs in honey matrix (Dobrinas et al. 2008; Albero et al.
2003; Perugini et al. 2009; Moret et al. 2010; Lambert et al.
2012; Ciemniak et al. 2013) and according to the large expe-
rience of the authors in such field (Russo 2000; Russo and
Neri 2002; Russo et al. 2012a; Russo et al. 2012b; Russo et al.
2014a, 2014b; Notardonato et al. 2016), a modified method
based on the dispersive liquid-liquid micro-extraction (Cinelli
et al. 2014a; Cinelli et al. 2014b; Russo et al. 2014b; Russo
et al. 2016) coupled with gas chromatography-flame ioniza-
tion detector (GC-FID) and ion trap mass spectrometry (GC-
IT/MS) has been developed.

Materials and Methods

Materials

Nine PAHs have been investigated: fluorene (abbreviation F;
CAS number 86-73-7; chemical formula C13H10; molecular
weight 166.222; pKa 22.6; Log Kow, octanol/water partition
coefficient, 4.18; median lethal dose, DL50, N/A), phenan-
threne (P; 85-01-8; C14H10; 178.233; >15; 4.46; 700 mg kg−1

oral), anthracene (Ant; 120-12-7; C14H10; 178.233; >15; 4.50;
3200 mg kg−1 oral), fluoranthene (Fl; 206-44-0; C16H10;
202.255; >15; 4.90; 2000 mg kg−1 oral), pyrene (Pyr; 129-
00-0; C16H10; 202.255; >15; 5.63; >16,000 mg kg−1 oral),
chrysene (Chr; 218-01-9; C18H12; >15; 5.63; 228.1928; -),
benzo(b)fluoranthene (BbFl; 205-99-2; C20H12; 252.315;
>15; 6.04; -), benzo(a)pyrene (BaPyr; 50-32-8; C20H12;
252.3148; >15; 6.06; 50 mg kg−1 subcutanea), and
benzoperylene (BghiPer; 191-24-2; C22H12; 276.337; >15;
6.78; -). The PAHs are furnished by Sigma-Aldrich, Milan,
Italy. Each PAH standard solution (concentration of
5 mg mL−1) was prepared in acetone: further, each solution
was diluted with acetone to prepare final solutions (400 and
20 μg mL−1) for spiking the real samples. Five mix standard

solutions (1, 5, 10, 15, and 20 μg mL−1 with the addition of
5 μL of I.S.) were prepared for studying the analytical param-
eters. Octacosane (C28H58) was used as internal standard
(I.S.): 5 mg was dissolved in acetone/iso-octane (9 + 1 v/v)
and after the solution was diluted ten times by acetone
(0.5 mg mL−1).

The honey samples (no. 5) were purchased in the Italian
market: the production year is 2015whereas the products were
produced in Central Italy (Latium and Molise region).

USVADLLME Procedure

A 0.1 g aliquot of each honey sample was transferred into a
10-mL Pyrex tube with a conical bottom and well dissolved in
10 mL of warm hydroalcoholic solution (5% ethanol). After
addition of 0.1 g of NaCl (concentration 10 g L−1) and 5 μL of
octacosane (0.5 mg mL−1), the extraction procedure is based
on 150 μL chloroform as extraction solvent and vortex for
2 min: this step was repeated three times to obtain a stable
emulsion. In details, different extraction solvents at different
volumes were tested. After 2 min in an ultrasound bath, the
solution was further centrifuged at 4000 rpm for 30 min: the
micro-drop is formed and the supernatant transferred into a
vial. Finally, after sodium sulfate addition for eliminating wa-
ter residual, 1 μL was injected into GC-FID or GC-IT/MS for
PAH determination.

GC-FID and GC-IT/MS Analysis and Quantification

The GC-FID analysis was carried out by means of a gas chro-
matograph DANI (Monza, Italy) equipped with an electronic
flow control system, a programmed temperature vaporizer
(PTV) injector, and a FID detector.

A fused-silica capillary column with chemically bonded
phase (SE-54, 5% phenyl-95% dimethylpolysiloxane) was
prepared in our laboratory (Russo et al. 1985; Cartoni et al.
1986; Russo et al. 1996) with the following characteristics:
30 m × 250-μm i.d., N (theoretical plate number) 125,000 for
n-dodecane at 90 °C, K′ (capacity factor) 6.9, df (film thick-
ness) 0.24 μm, uopt (optimum linear velocity of carrier gas,
hydrogen) 38.0 cm s−1, and utilization of theoretical efficiency
(UTE%) 92%. The fused-silica capillary column used is very
similar to commercial ones showing very good chromato-
graphic efficiency and being more convenient from an eco-
nomic point of view.

Heliumwas used as the carrier gas at a constant flow rate of
1 mL min−1. The oven temperature was programmed from
100 to 150 °C in 30 s (at 20.0 °C min−1) and from 150 to
290 °C in 180 s (at 20.0 °Cmin−1): finally, it was kept 7 min at
290 °C. The PTV injector was performed in splitless mode.
Ten seconds after injection, the vaporizer was heated from 110
to 290 °C at 800 °C min−1 and cooled after 120 s; the splitter
valve was opened for 120 s.
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For the GC-IT/MS analysis, a gas chromatograph Finnigan
Trace GC Ultra equipped with an ion trap mass spectrometry
detector Polaris Q (Thermo Fisher Scientific, Waltham, MA),
a PTV injector, and a PC with a chromatography station
Xcalibur (Thermo Fisher Scientific) was used. The capillary
column was the same used in the GC-FID analysis. The ex-
perimental conditions adopted were as follows: dumping gas
in the ion trap at 0.3 mL min−1; transfer line and ion source
held at 270 and 250 °C, respectively; PTV kept at 50 °C for 3
and after to 290 °C in 4 min at 14.5 °C min−1; and oven
temperature kept for 30 s at 60 °C, after to 150 °C in 120 s
(20 °C min−1) and 290 °C in 11 (20 °C min−1). Scan acquisi-
tion in positive chemical ionization was from m/z 100 up to
400 a.m.u. at 1.68 scan s−1 and 70 eV.

In both cases, the PAH concentrations were obtained by
calibration graphs of the ratio area(PAH)/area(IS,C28) plotted ver-
sus each PAH concentration (pg μL−1). All the samples were
quantified in triplicate.

Results and Discussion

Evaluation of the UVALLME Procedure

The PAHs investigated in this study, i.e., F, P, Ant, Fl, Pyr,
Chr, BbFl, BaPyr, and BghiPer, are listed in the list of Bpriority
pollutants^ by US EPA (US EPA 1998): some of them are
classified as probably carcinogenic to humans (group 2A)
and others as possibly carcinogenic to humans (group 2B)
according to the criteria established by the International
Agency for Research on Cancer (IARC). According to the
European Food Safety Authority (EFSA) CONTAM Panel
conclusions (Alexander et al. 2008), it should be considered
that BaPyr is not the only appropriate sign of the occurrence of
carcinogenic and genotoxic PAHs in foods, but the sum of
eight high molecular weight PAHs is important: so, our PAH
choice is based on the need to analyze some PAHs at very low
levels.

This study is focused to set up an analytical procedure for
determining PAHs to be applied to real samples. Further, in
the frame of the study, the authors evaluated the availability to
use the analytical determination based on GC-FID, which is
an equipment worldwide diffused: in this way, the methodol-
ogy could be proposed as routine method to give accurate and
rapid information about the PAH content in this kind of nutri-
tionally high food.

About the cleanup procedure, the DLLMEmethod (Cinelli
et al. 2014c) is mainly based on the dispersive solvent: it
promotes and helps the action of the extraction solvent finely
dispersed in the sample solution. A key role in this procedure
could be considered. Actually, in the proposed protocol, any
dispersive solvent was not added. In fact, even if the ethanol
presence is very low (hydroalcoholic solution 5%), it is suffi-
cient for avoiding the use of dispersive solvent because the
ethanol plays the co-surfactant effect (Cinelli et al. 2014b).
Further, the dispersion is obtained, and increased as well, by

Table 1 Recoveries (%) obtained using 150 μL of chloroform with
both C28 and DBT as internal standards

CHCl3

C28 DBT

Fluorene 98.2 (4.2) 82.1 (5.4)

Phenanthrene 97.1 (3.7) 93.8 (3.7)

Anthracene 96.8 (2.5) 103.2 (6.1)

Fluoranthene 103.9 (6.1) 100.1 (5.9)

Pyrene 101.9 (3.4) 106.6 (8.4)

Chrysene 102.1 (2.7) 81.7 (7.9)

Benzo(b)fluoranthene 103.5 (4.1) 89.0 (6.3)

Benzo(a)pyrene 100.1 (3.8) 100.8 (5.1)

Benzoperylene 101.6 (2.5) 91.6 (8.3)

Table 2 Reproducibility (%) of
the entire analytical method based
on chloroform as extraction
solvent (150 μL) using both the
internal standards: two different
spiking solutions considered, i.e.,
solutions containing 0.1 and
1 μg mL−1 of each PAH,
respectively

Reproducibility

0.1 μg mL−1 0.1 μg mL−1 1 μg mL−1 1 μg mL−1

C28 DBT C28 DBT

Fluorene 92.6 (1.8) 80.3 (9.8) 97.1 (4.4) 92.6 (3.4)

Phenanthrene 92.5 (3.3) 83.3 (10.9) 102.1 (3.0) 93.8 (6.0)

Anthracene 96.8 (5.9) 81.0 (8.2) 99.4 (3.8) 91.1 (4.0)

Fluoranthene 95.9 (4.5) 87.6 (7.4) 101.6 (4.0) 90.6 (3.1)

Pyrene 103.9 (3.3) 92.9 (5.9) 102.3 (4.2) 92.6 (4.2)

Chrysene 97.1 (6.2) 86.0 (7.5) 98.0 (1.1) 94.3 (4.9)

Benzo(b)fluoranthene 97.5 (5.0) 90.3 (8.6) 96.4 (4.9) 94.1 (6.1)

Benzo(a)pyrene 102.4 (4.5) 90.6 (9.0) 96.2 (4.6) 87.7 (7.5)

Benzoperylene 96.4 (8.1) 87.1 (11.3) 94.7 (3.2) 93.2 (4.8)
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means of endothermic energy furnished by vortex and ultra-
sounds, i.e., the an ultrasound-vortex-assisted dispersive
liquid-liquid micro-extraction (UVALLME). The vortex is al-
so used for dispersing the extraction solvent: the extraction
solvent makes a biphasic system, where the phase with higher
density is an emulsion. Finally, after the extraction solvent
separation by centrifugation, the solution is injected in the
GC instrument. All the experiments for optimizing the
LLME procedure have been performed on real samples spiked
(when it was necessary) with appropriate PAH amount (basi-
cally 20 μg mL−1 for each PAH) and using GC-FID analysis.
For this aim, 0.1 g of honey (or similar samples) is solubilized
in warm distilled water for every test.

For enhancing the extraction recovery, various analytical
parameters, which might influence the experiment, were
investigated.

First, the study was focused on the extraction solvent
choice based on some criteria such as higher density than
water, low solubility in water, high extraction efficiency, and
good gas chromatographic behavior (Rezaee et al. 2006).
Following these characteristics, five solvents were tested: di-
chloromethane (CH2Cl2; d 1.33 g cm

−3), chloroform (CHCl3;
1.47 g cm−3), carbon tetrachloride (CCl4; 1.5867 g cm

−3), 1,1-
dichloroethane (C2H4Cl2; 1.2 g cm−3), and 1,1,2,2-tetrachlo-
roethane (C2H2Cl4; 1.59 g cm−3). Each solvent was tested at
different volumes. Further, experiments using two different
ISs, i.e., octacosane (C28) and dibenzothiophene (DBT), were
carried out for evaluating the relative performance.

Table 1 shows the recoveries obtained using 150 μL of
chloroform with both C28 and DBT as ISs whereas in
Tables 1 and 2 of the Supplementary Material, all the detailed
measurements are reported. The other four solvents do not
show any significant recoveries; at lower and higher volumes
than 150 μL, the recoveries show large variability or, at least,
are very poor. In details, the recoveries determined using C28

as I.S. range between 96.8 and 103.9% whereas they vary
between 81.7 and 106.6% using DBT.

Further, the reproducibility of the entire analytical method
based on chloroform as the extraction solvent (volume
150μL) has been investigated using both the ISs. In particular,
for optimizing the method, two different spiking solutions
were considered, i.e., solutions containing 0.1 and
1 μg mL−1 of each PAH, respectively. As reported in
Table 2, the recoveries (five replicates) obtained on PAH-
spiked real honey samples using C28 as I.S. are still better than
those obtained on solutions using DBTas I.S., particularly that
the relative standard deviations (RSDs) are very good: they
range between 92.5 and 103.9% with a RSD ≤8.1 and be-
tween 94.7 and 102.3% with a RSD ≤ 4.9 for samples spiked
with 0.1 and 1 μg mL−1 of each PAH, respectively.

As just reported in previous studies, a very critical point
regards the salting-out effect: the possible PAH solubility var-
iation in presence of different NaCl concentrations. According T
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to our experience, we tested just three different NaCl concen-
trations (0, 10, 25 g L−1): the optimum recoveries are reached

for addition of NaCl 10 g L−1; above this NaCl concentration,
the PAH solubility slightly begins to decrease (salting out) as

Fig. 1 GC-FID chromatograms of a standard solution (100 ng g−1 of
each PAH), b honey sample with no PAH, and c same honey sample
spiked with 100 ng g−1 of each PAH (for experimental conditions, see

text). Peak list: 1: fluorene; 2: phenanthrene; 3: anthracene; 4:
fluoranthene; 5: pyrene; 6: chrysene; IS: octacosane (C28); 7:
benzo(b)fluoranthene; 8: benzo(a)pyrene; 9: benzoperylene
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well as for no NaCl addition. This occurrence confirms the
findings of previous studies (Cinelli et al. 2014b, c).

Similar considerations regard the pH influence. First, it
should be evidenced that all honeys have an acid reaction,
presenting pH values always less than 7, mostly between 3.5
and 4.5. This acidity is essentially due to the presence of
numerous organic acids partly already contained in the nectar
or honeydew, in part from the bees. The acidity increases with
aging, with the fermentation, or is extracted from highly
propolis honeycombs. Then, it is important to evaluate the
pH value for obtaining best recoveries as possible: two dif-
ferent pH values, i.e., pH 4 (without any addition) and 9
(reached by addition of NaOH 1 M), were studied. Real hon-
ey samples were spiked with 1 μg mL−1 of each PAH and
5 μL of I.S. (500 μg mL−1), and the pH was adjusted accord-
ing to the procedure. The recoveries at pH 9 are significantly
lower than those found at pH 4: the gel obtained after addition
of strong alkaline species adsorbs analytes and reduces
strongly the recoveries. In fact, we would like to remember
that PAHs are very weak acids (see pKa and LogKow reported
in BMaterials^ section): at acid pH, they are in molecular
form and the extraction from aqueous solution to organic
solvents is better.

So, under the optimized conditions (i.e., honey sample,
0.1 g, spiked with 1 μg mL−1 of each PAH; addition NaCl
10 g L−1; I.S. C28; extraction solvent 150 μL chloroform
and 2-min vortex, repeated three times; 2 min of ultrasound
bath at 25 °C; 30 min of stirring at 4000 rpm), the mean
PAH recoveries range between 96 and 102% with a RSD
below 6.3: this shows that the optimized extraction condi-
tions are appropriate for PAH extraction and analysis in
honey samples. Under nitrogen flow, the solution has been
concentrated up to 10 μL achieving high enrichment fac-
tors: 1 μL is further injected for quantification into GC-FID
and GC-IT/MS.

Quantification by Means of GC-FID

Table 3 reports the calibration curves with relative R2: the
results, obtained spiking honey samples with PAH at different
increasing concentrations and adding 50 μL of I.S. in each,
show a good linearity range, R2 always above 0.89, in the
range investigated, 80–1000 ng g−1. Further, the table shows
the limits of detections (LODs) and limits of quantifications
(LOQs) ranging between 36 and 63 and 41–74 ng g−1, re-
spectively. These values were determined according to the
Knoll’s definition (Knoll 1985), i.e., an analyte concentration
that produces a chromatographic peak equal to three times
(LOD) and ten times (LOQ) the standard deviation of the
baseline noise.

Table 3 also shows the reproducibility obtained in spiking
honey samples with different PAH standard solution concen-T
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trations, i.e., 100, 500, and 1000 ng mL−1 and 5 μL of I.S.: it
ranges between 94 and 107% (RSD <12.1), 95–104% (RSD

<9.5), and 96–102% (RSD <6.3), respectively: as expected,
the parameter improves as the concentration increases, but it is

Fig. 2 GC-IT/MS chromatograms in TIC mode of a standard solution
(5 ng g−1 of each PAH), b honey sample with no PAH, and c same honey
sample spiked with 5 ng g−1 of each PAH (for experimental conditions:

see text). Peak list: 1: fluorene; 2: phenanthrene; 3: anthracene; 4:
fluoranthene; 5: pyrene; 6: chrysene; IS: octacosane (C28); 7:
benzo(b)fluoranthene; 8: benzo(a)pyrene; 9: benzoperylene
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also very good at low PAH concentrations. Finally, the inter-
and intra-day precisions at two different concentrations (100

and 1000 ng g−1), evaluated as RSD, are below 8.2 and 6.0%,
respectively.

Fig. 3 GC-IT/MS chromatograms in SIM mode of a standard solution
(5 ng g−1 of each PAH), b honey sample with no PAH, and c same honey
sample spiked with 5 ng g−1 of each PAH (for experimental conditions,

see text). Peak list: 1: fluorene; 2: phenanthrene; 3: anthracene; 4:
fluoranthene; 5: pyrene; 6: chrysene; IS: octacosane (C28); 7:
benzo(b)fluoranthene; 8: benzo(a)pyrene; 9: benzoperylene
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Figure 1 shows the chromatograms of PAH standard solu-
tion 100 ng g−1 (Fig. 1a), honey sample (Fig. 1b), and the
same honey sample spiked with 100 ng g−1 of each PAH
(Fig. 1c).

Quantification by Means of GC-IT/MS

For achieving better performance in the PAH determination,
1 μL of the final volume is also been injected into the GC-IT/
MS instrument. In Table 4, the calibration curves are reported
along with the relative R2 >0.93: in this case, the linearity has
been studied in the range 1–500 ng g−1. Taking into account
the same definition of LOD and LOQ reported previously,
they range between 0.030 and 0.199 ng g−1 (fluoranthene-
benzo(a)pyrene) and 0.069 and 0.4656 ng g−1 (fluoranthene-
benzo(a)pyrene), respectively: it means that they are much
lower than those obtained by GC-FID from 67 to 481 times.

Table 4 also reports the reproducibility obtained in spiking
honey samples with different PAH standard solution concen-
trations, i.e., 5, 50, and 100 ng g−1 and 5 μL of IS. The recov-
eries range between 91 and 105% (RSD <12.0), 93 and 104
(RSD <7.2), and 95 and 104% (RSD <5.6), respectively: even
if they get better with the increase of the concentration, they

are very good in any case. Finally, the inter- and intra-day
precisions (as RSD) at two different concentrations (1 and
20 ng g−1) are below 6.2 and 7.4%, respectively.

Figures 2 and 3 show the chromatograms in total ion chro-
matogram (TIC) and selected ion chromatogram (SIM)
modes, respectively, of PAH standard solution 5 ng g−1

(Figs. 2a and 3a), honey sample (Figs. 2b and 3b), and the
same honey sample spiked with 5 ng g−1 of each PAH
(Figs. 2c and 3c): the peaks are well solved and well separated.
The chromatograms evidence no contamination problems.

Comparison with Similar Studies

Even if the studies regarding the PAH determination in such
matrices are very few, some considerations can be drawn.
Table 5 reports two important parameters such as the recover-
ies and LODs/LOQs for the papers present in literature: three
studies use GC-MS as analytical methods (Giannetti et al.
2010; Wenzl et al. 2006; Moret et al. 2010) and two the
HPLC with fluorescence or spectrofluorometer detection
(Albero et al. 2003; Perugini et al. 2009). It can be noted that
the UVALLMEmethodology (this paper) is able to investigate
PAHs at levels similar to other methods with a good linear

Table 5 Comparison with
similar studies focused on
recoveries (%; in brackets, the
max RSDs are reported) and
LODs and LOQs (expressed as
ng g−1)

Method/analysis Recoveries LOD/LOQ Reference

LLE-GC-MS – −/0.07–0.15 Dobrinas et al. (2008)

MSPD-GC-MS 74–99 (<12) 0.04–2.90/20 Albero et al. (2003)

LLE-GC-MS 50–70% (−) 0.008–0.017/0.026–0.055 Lambert et al. (2012)

LLE-HPLC-Fluorescence 73–96 (<15) 0.02–0.49/0.02–0.62 Perugini et al. (2009)

Microwave-HPLC 77–102% (<12.8) –/<0.3 Moret et al. (2010)

UVALLME-GC-FID 94–107% (<12.1) 36–63/41–74 This study

UVALLME-GC-IT/MS 91–105 (<9.5) 0.030–0.199/0.069–0.465 This study

LLE liquid-liquid extraction,MSPDmatrix solid-phase dispersion, UVALLME ultrasound-vortex-assisted liquid-
liquid micro-extraction

Table 6 Minimum and
maximum levels (ng g−1) of PAHs
determined by means of
USVADLLME-GC-IT/MS in
five different kinds of honey
commercial samples available on
the Italian market

Wildflower Chestnut Organic acacia Orange flowers Ambrosoli

Fluorene <LOQ–17.9 <LOQ–15.0 <LOQ–14.2 <LOQ–11.3 <LOQ–14.0

Phenanthrene <LOQ <LOQ <LOQ <LOQ <LOQ

Anthracene <LOQ <LOQ <LOQ <LOQ <LOQ

Fluoranthene <LOQ–9.10 <LOQ–1.40 <LOQ <LOQ <LOQ–13.0

Pyrene <LOQ–6.50 <LOQ <LOQ <LOQ <LOQ–11.7

Chrysene <LOQ <LOQ <LOQ <LOQ <LOQ

Benzo(b)fluoranthene <LOQ <LOQ <LOQ <LOQ <LOQ

Benzo(a)pyrene <LOQ <LOQ <LOQ <LOQ <LOQ

Benzoperylene <LOQ <LOQ <LOQ <LOQ <LOQ

Total <LOQ–33.5 <LOQ–16.4 <LOQ–14.2 <LOQ–11.3 <LOQ–38.7

LOQ limit of quantification
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range. The main advantage regards the recoveries obtained in
this study: they are very good if compared with the other, the
RSD is good. The entire procedure is very easy, and it does not
require particular technology such as hollow fiber, or disperser
solvent and it takes few minutes.

Application to Different Real Honey Samples

Five different kinds of honey samples have been analyzed
using the UVALLME-GC-IT/MS analytical procedure.
Particularly, they are wildflower honey, chestnut honey, or-
ganic acacia honey, honey orange flowers, and Ambrosoli
honey. For each kind of honey sample, different commercial
brands were collected on the Italian market. Table 6 shows the
levels found in each sample. The concentrations appear to be
very low with BaPyr below the LOQ (0.465 ng g−1): the only
PAHs detected are F, ranging between LOQ (0.18 ng g−1) and
17.9 ng g−1 and present in all the samples, and fluroranthene
and Pyr, present in wildflower, chestnut (only Fl), and
Ambrosoli samples.

Conclusions

The method developed allows to investigate PAHs at very low
levels in rapid, efficient, and accurate way. The UVALLME-
GC-IT/MS analytical procedure is demonstrated to be able to
investigate such compounds in a difficult matrix such as hon-
ey, considered as an important alimentary food, especially for
teenagers and sporty persons. In any case, it is necessary to
regulate PAH levels in dietary supplements: for this, the de-
velopment of highly accurate and precise analytical procedure
is fundamental. In the samples analyzed in this study, mainly
present on the Italian market, even if BaP is not mandatory for
evaluating the carcinogenic characteristics of a food, its level
is below LOQ (0.465 ng g−1) whereas the only PAHs detected
show a high DL50 to be not so relevant for the human health
issue.
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