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Abstract Peanut (Arachis hypogaea L.) is rich in some im-
portant oils such as the high content of polyunsaturated fatty
acids. The potential of hyperspectral imaging technique in the
spectral range I (400–1000 nm) and II (1000–2500 nm)
coupled with chemometrics analysis for predicting oil content
in different peanut cultivars was investigated in this study.
Hyperspectral images were obtained and the corresponding
spectral data was extracted. Quantitative calibration models
were established between pre-processing spectral data and
the reference measured oil content by partial least squares
regression (PLSR) analysis. By comparing the model perfor-
mances based on different spectral pre-processing methods,
the raw-PLSR models using full wavelengths presented better
results with the determination coefficient (R2

p) of 0.696 and
0.923, and root mean square errors by prediction (RMSEP) of
0.416 % and 0.208 %, respectively. In addition, six optimal
wavelengths in the spectral range II were selected based on the
regression coefficients of the established raw-PLSR model.
The simplified PLSR model established only using identified
optimal wavelengths also showed good performance with R2

p

of 0.934, and RMSEP of 0.197 %. The results demonstrated
that hyperspectral imaging technique is a promising tool for

rapid and non-destructive determination of oil content in
peanut.
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Introduction

Peanut (Arachis hypogaea L.) is one of the main commercial
crops, which is universally cultivated especially in Asian
countries. It has a high nutritional value, containing plentiful
fat, protein, vitamins, sugar, and essential unsaturated fatty
acid as well as the functional ingredients such as resveratrol
and plant sterols. Because the nutritional contents of different
peanut varieties are not exactly the same, it is used for oil
production, peanut butter, candies, roasted peanuts and snack
foods, extenders in meat product formulations, soups and des-
serts, and also for direct human consumption based on its
dominant components (Rustom et al. 1996).

Peanut is rich in oil content (38–60%) and relatively low in
ash and carbohydrate compared with other oilseed crops
(Shewfelt and Young 1977). Fatty acids, particularly oleic
and linoleic, are the main unsaturated fatty acid in peanut oil
(approximately 80 % of the total oil content), which have a
large influence on the stability and nutritional quality of pea-
nut oil (Holley and Hammons 1968; Sanders 1980; Brown
et al. 1975). In addition, peanut is an important economical
crop in the world trade of agricultural products, and about two
thirds of peanut crops are crushed for oil. The value of oil
content is an important criterion of monetary assessment in
the trade of peanut, and the raw material price also depends on
its oil content. Thus, selection of good quality varieties of
peanut with high oil content is critical.
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In order to evaluate the germplasm and screen the peanut
varieties with different levels of oil content, the commonly used
analytical methods for determining the oil content including the
classical Soxhlet extraction, the American Oil Chemists’ Soci-
ety (AOCS) method (Firestone 1993), binary polar organic
solvent extraction based on the Soxhlet extraction method
(Folch et al. 1957; Bligh andDyer 1959), and supercritical fluid
extraction (SFE) method (King and O’Farrel 1997) have been
developed. These above-mentioned methods provide an effec-
tive and accurate measurement of oil content for peanut quality
evaluation and inspection. Even some of them have been used
as excellent standards in oil crops. However, these methods are
laborious, time consuming, highly empirical, generally work
intensive, and require the use of large amounts of chemical
solvents and analytical reagents that might be hazardous and
harmful to analysts and the lab environment.

Looking for a rapid and non-destructive method for estimat-
ing and determining the oil content in different peanut varieties is
very necessary. Near-infrared (NIR) spectroscopy, middle infra-
red (MIR) spectroscopy, and Raman spectroscopy as the rapid,
non-destructive, and chemical-free techniques have been widely
developed for measurement and evaluation of chemical informa-
tion in the food industry. All of these three kinds of spectroscopic
techniques have their unique advantages for the determination of
the chemical components such as protein, oil, carbohydrates,
amino acids, fiber components, and many other parameters in
foods and food products (Kandala and Sundaram 2014;
Sundaram et al. 2010; Tillman et al. 2006; Phan-Thien et al.
2011; Wang et al. 2013). However, they also have their own
disadvantages. Concerning the NIR spectroscopy, for quantita-
tive analyses, NIR spectroscopy is not independent of the disad-
vantages arising from the reference method applied for calibra-
tion, which requires a set of samples at least 20–50 with known
concentrations (Cheng et al. 2013). As to Raman spectroscopy,
the inherently weak effect of Raman scattering, the strong inter-
fering of biological fluorescence background signals, the tradi-
tionally high instrumental costs, and the heat generated by the
laser may affect or alter themeasurement effectiveness (Cheng et
al. 2013). More importantly, these spectroscopic techniques can-
not provide the spatial information of the tested object.

Hyperspectral imaging (HSI) is an emerging and innova-
tive technique, which has advantages, that it is rapid, nonin-
vasive, reliable for quality inspection, but compared to NIR
spectroscopy, it also integrates traditional spectroscopy and
digital imaging into one system, making it possible for pro-
viding both spectral and spatial information of a certain object
simultaneously (Zheng et al. 2006). The outstanding advan-
tages of HSI make it possible to accomplish the evaluation of
external features such as size, appearance, color, defects, and
so on, and estimation of internal properties that moisture, pro-
tein, fat, carbohydrates, etc., concurrently.

Up to now, HSI has been successfully used for classifica-
tion of maize kernel hardness (Williams et al. 2009),

discrimination of maize, oat and groat kernels (Zhang et al.
2012; Serranti et al. 2013), fusarium infection in wheat
(Bauriegel et al. 2011; Shahin and Symons 2012), and predic-
tion of the composition of maize kernels (Weinstock et al.
2006; Hurburgh et al. 2004). However, using hyperspectral
imaging technique for determination of oil content in peanut
has not been reported to date.

Therefore, this study was aimed to investigate the feasibility
of using HSI for predicting oil content in peanut. The specific
objectives of this article were to (1) acquire hyperspectral im-
ages of peanut in the spectral range I (400–1000 nm) and spec-
tral range II (1000–2500 nm); (2) extract the corresponding
spectral information from identified regions of interests
(ROIs) within the acquired hyperspectral images; (3) pre-
process the original spectral information using several different
spectral pretreatment methods and then establish the calibration
model between the processed spectral information and the ref-
erence measured oil content; (4) verify the prediction ability of
the calibration model; (5) choose the optimal wavelengths that
carried the most relevant and useful information related to oil
content prediction; and (6) build the new calibration model
based on the selected optimal wavelengths and verify it.

Material and Methods

Sample Preparation and Oil Content Measurement

Five varieties (Huayu, Luohanguo, Zhonghua, Dabaisha,
Xiaobaisha, which are expressed as HY, LHG, ZH, DBS, and
XBS peanuts were purchased from a local seedmarket in Zheng-
zhou, China. After the shells were removed, 30 kernels with
uniform size of each variety were selected for testing. Each pea-
nut kernel was scanned by HSI, and the reference oil content of
all samples were determined by using nuclear magnetic reso-
nance (NMR), according to the protocol of the Official Methods
and Recommended Practices of the American Oil Chemists’
Society (1993). All experiments were conducted in triplicate.
All data were expressed as mean±standard deviation. The least
significant difference procedure was carried out to test for differ-
ence between means (significance was defined at P<0.05).
Table 1 shows the relevant statistics of oil content for the sam-
ples. The whole dataset (150 samples) was divided into two
groups, one group for building the calibration model consisting
of 100 samples (calibration set) and another group used for val-
idation consisting of 50 samples (prediction set).

Hyperspectral Imaging System

Two HSIs (HSI-1, the spectral range of 400–1000 nm; HSI-2,
the spectral range of 1000–2500 nm) were assembled to acquire
hyperspectral images of peanuts in reflectance mode. HSI-1 sys-
tem consists of an imaging spectrograph (Imspector V10E,
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Spectral Imaging Ltd., Oulu, Finland) covering the spectral
range of 308–1105 nm with 1.58 nm increments, a high-
performance camera (DL-604 M, Andor Technology PLC,
Belfast, Northern Ireland) with the effective resolution of
1004×1002 pixels, a camera lens (OLE23, Schneider Electric
SA, RueilMalmaison, France), an illumination unit composed of
two 150W halogen lamps (2900-ER, Illumination Technologies
Inc., New York, USA), a stepping motor (IRCP0076-1COMB,
Isuzu Optics Corp., Taiwan, China), and amobile platform and a
computer system executing imaging data acquisition software
(Spectral Image, Isuzu Optics Corp., Taiwan, China), which
was used to control the exposure time, motor speed, combining
mode, wavelength range, and image acquisition. HSI-2 system
comprises a line-scan spectrograph (Specim V25E, Spectral Im-
aging Ltd., Oulu, Finland) spanning the spectral range of 1000–
2500 nmwith 6.3 nm increments, a high-performance 320×256
CCD camera (XC403, Xenics Infrared Solutions, Leuven, Bel-
gium), a camera lens (OLES30, Xenics Infrared Solutions, Leu-
ven, Belgium), an illumination unit including two halogen lamps
(3900-ER, Illumination Technologies Inc., NY, USA), a convey-
or belt controlled by a steppermotor (IRCP0076-1COMB, Isuzu
Optics Corp., Taiwan, China), data acquisition software (Spectral
Image software, Isuzu Optics Corp., Taiwan, China), and a
computer.

Image Acquisition and Correction

Each peanut kernel was placed on the mobile platform and
scanned line by line with the adjusted speed and exposure time
to obtain the hyperspectral images, which has three dimen-
sions (x, y, λ), where x and y are the spatial dimensions and
λ is the number of wavebands. Thus, the original images were
created and stored. In order to eliminate the effects of illumi-
nation and geometry and detector sensitivity, the raw acquired
hyperspectral images (I0) should be corrected using two refer-
ence standards: a white one (W) to set-up the maximum re-
flectance (∼99 %) condition, which was obtained for a white
calibration tile under the same condition of the raw image, and
a black one (B) to define the no reflectance (∼0 %) condition,
which was acquired by turning off the light source and

completely covering the lens with its black cap. The calibrated
image (I) was then calculated by the following equation:

I ¼ I0−B
W−B

ð1Þ

All the corrected images were used to extract the spectral
data in the subsequent image analysis.

Spectral Extraction

In order to extract spectral data from each peanut kernel in the
corrected image, the Environment for Visualizing Images

Table 1 Reference oil content
(%) of peanut kernels measured
by traditional method

Source Calibration set Prediction set

Samples Min Max Mean± SD Samples Min Max Mean± SD

HY 20 48.31 49.76 48.86 ± 0.37b 10 48.36 49.42 48.77 ± 0.30b

LHG 20 47.83 48.29 48.07 ± 0.15a 10 47.83 48.25 48.05 ± 0.13a

ZH 20 47.72 48.36 48.05 ± 0.23a 10 47.75 48.26 48.03 ± 0.23a

DBS 20 48.46 49.69 48.98 ± 0.30b 10 48.53 49.18 48.96 ± 0.22a

XBS 20 49.38 50.61 49.99 ± 0.34b 10 49.62 50.34 49.99 ± 0.24a

Total 100 47.72 50.61 48.79 ± 0.77c 50 47.75 50.34 48.76 ± 0.76c

a, b, c indicate the statistical significance (p< 0.05)

Peanut samples

Hyperspectral imaging system    

Image acquisition   

Reflectance correction

ROIs identification

Spectral data 

Measurement of oil content

PLSR models (full wavelengths)

Optimal wavelengths selection

PLSR models (optimal wavelengths)    

Tested samples

Spectral pre-processing

Fig. 1 The key steps of the experiment by using hyperspectral imaging
technique
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software (ENVI v4.8, ITT Visual Information Solutions,
Boulder, CO, USA)was used to identify the ROIswith a circle
shape (324 pixels), and then the spectral data within ROIs for
samples were extracted and averaged at each wavelength to
obtain one mean spectrum representing the ROI. All of the

extracted spectral data from peanut kernels were then arranged
in a matrix where the rows of this matrix represent the number
of samples and the columns represent the number of variables
(381 and 236 wavelengths).

Chemometrics Analysis

Before developing a calibration model, spectral pre-
processing was executed in order to correct spectral data. By
pre-processing procedure, some random noises resulting from
instrumental effects or variable physical sample properties can
be removed (Rinnan et al. 2009). In this study, five pretreat-
ment methods of smoothing, normalize, multiplicative scatter
correction (MSC), baseline, and standard normal variate
(SNV) were used to pre-process the raw spectral data. The
calibration models were established using a multivariate data
analysis method. Among them, SNV, MSC and normalization
are usually used to eliminate the effects of the spectral vari-
ability resulting from the light scattering (Tavallaie et al.
2011). Spectra smoothing and baseline are applied to smooth
spectra by elimination of baseline shifts and resolution of o-
verlapped peaks (Amigo et al. 2015). Partial least squares
regression (PLSR) is a reliable and effective multivariate
chemometrics method, it has prominent advantages that solve
multicollinearity problems and allowing variables more than
the samples, has been widely used for developing a mathe-
matical model (Abdi 2010; Wu et al. 2012; He et al. 2013). In
this study, quantitative calibration models were established
between pre-processed spectral data of calibration set and
the reference oil content by PLSR analysis, and the perfor-
mance of these models were evaluated and compared. In this
part, all the spectral pre-process and multivariate data analysis
were carried out by means of The Unscrambler 9.7 (CAMO
Software AS, Norway).

Optimal Wavelengths Selection

The hyperspectral images suffered from the problem of high
dimensionality and multi-collinearity among contiguous
wavelength bands lead to slowing down the computation
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Fig. 2 Spectral data of the examined peanut samples in two different
wavelength ranges. a 400–1000 nm. b 1000–2500 nm

Table 2 Results of
PLSR models based on
different spectral
pretreatment in spectral
range I

PLSR model No. of
varieties

PCs Calibration Cross-Validation Prediction

R2 RMSEC (%) R2
CV RMSECV (%) R2

P RMSECP (%)

Raw-PLSR 381 8 0.729 0.400 0.605 0.485 0.696 0.416

Smoothing-PLSR 381 8 0.701 0.419 0.605 0.486 0.646 0.448

Normalize-PLSR 381 7 0.710 0.412 0.600 0.489 0.649 0.446

MSC-PLSR 381 3 0.616 0.475 0.592 0.494 0.538 0.512

Baseline-PLSR 381 7 0.706 0.415 0.599 0.490 0.641 0.451

SNV-PLSR 381 3 0.626 0.469 0.602 0.488 0.536 0.513
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speed of the calibration process and influencing the modeling
accuracy. Therefore, several optimal wavelengths that carry
the most sensitive and useful information corresponding to
the oil content of peanut should be found. However, there is
no common method available to select the optimal wave-
lengths, although a number of approaches have been pro-
posed, including successive projection algorithm (SPA) (Wu
et al. 2010), principal component analysis (PCA) (Lorente et
al. 2012), regression coefficients based on the PLSR model
(ElMasry et al. 2013; Iqbal et al. 2013; He et al. 2013), and
genetic algorithm (Lin et al. 2012). In this study, regression
coefficients based on the PLSR analysis was used to select the
informative and feature wavelengths from the full spectral
range. The weighted regression coefficients analysis, also
called β-coefficients method, use the regression coefficients
resulting from the calibration model (PLSR) to choose the
effective wavelengths. The wavelengths with the highest ab-
solute values of β-coefficients are selected as the feature
wavelengths, whereas the oneswith the lowest absolute values
of β-coefficients are completely removed due to their little
contribution in prediction (ElMasry et al. 2013). Based on
the selected optimal wavelengths, the original PLSR models
using the full wavelengths both in the spectral range of 400–
1000 nm and 1000–2500 nm were simplified for further
analysis.

Modeling Establishment and Evaluation

The PLSRmodels were built with the calibration set under full
cross validation by using leave-one-out cross-validation meth-
od. In this method, one test sample was excluded from the
original sample set, and used as validation data, then the PLSR
model was calculated using the remaining calibration samples.
The established model was then used to predict the result of
the excluded sample. This procedure was repeated until each
sample was used as the validation data. Besides validating the
PLSR models by leave-one-out cross-validation, the predic-
tive capacity of the established PLSR models was rather ver-
ified in the prediction set by comparing the actual measured
oil content values with predictive oil content values of the
prediction set. Parameters that evaluate the robustness and

predictive accuracy of a PLSRmodel consist of determination
coefficients of calibration (R2

C), cross-validation (R2
CV), and

prediction (R2
P) and root mean square error of calibration

(RMSEC), cross-validation (RMSECV), and prediction
(RMSEP). Generally, a good model should have high R2

C,
R2

CV, and R2
P, and low RMSEC, RMSECV, and RMSEP, as

well as a slight difference between them. The key steps of the
experimental procedure are showed in Fig. 1

Results and Discussion

Spectral Features Analysis

The full wavelength scanned from HSI-1 and HSI-2 ranges
from 328 to 1115 nm and 916 to 2533 nm, respectively;
however, in order to avoid high signal-to-noise ratio, only
a spectral range of 400–1000 nm (spectral range I) and a
spectral range of 1000–2500 nm (spectral range II) were
used for further analysis. As we have known, the most dom-
inant absorption bands in the visible and near-infrared region
are ascribable to the strong overtone and combination ab-
sorptions of hydrogen containing bonds O-H (found in wa-
ter), C-H (usually from fats and oil), and N-H (found in

Table 3 Results of
PLSR models based on
different spectral
pretreatment in spectral
range II

PLSR model No. of
varieties

PCs Calibration Cross-Validation Prediction

R2 RMSEC (%) R2
CV RMSECV (%) R2

P RMSECP (%)

Raw-PLSR 236 4 0.904 0.237 0.893 0.254 0.923 0.208

Smoothing-PLSR 236 4 0.904 0.237 0.893 0.254 0.923 0.208

Normalize-PLSR 236 3 0.800 0.343 0.783 0.361 0.851 0.289

MSC-PLSR 236 7 0.752 0.382 0.609 0.484 0.697 0.414

Baseline-PLSR 236 9 0.769 0.368 0.625 0.474 0.636 0. 453

SNV-PLSR 236 3 0.626 0.469 0.602 0.488 0.536 0.513

Fig. 3 Selection of optimal wavelengths corresponding to the large
values of regression coefficients of the raw-PLSR model in the spectral
range II
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protein). The spectral reflectance curves of rested peanut
samples exhibited a similar trend in spectral range I and II
(Fig. 2), but there were nuances between them. The distinc-
tions were possibly ascribed to the quality attributes, uneven
surface structure, and the unfixed scatter on the surface of
samples (Wu et al. 2012). To be specific, the absorption
peak at 925 nm in Fig. 2a was probably related to the third
overtone of C-H stretches (Wold et al. 2001). In Fig. 2b,
however, the main absorption peaks were observed at
around 1216, 1738, and 2330 nm; these absorption peaks
were presumably attributed to the contribute of first and
second overtone of C-H stretches of methyl or methylene
group in fat components (Holman and Edmondson 1956;
Kays et al. 1998; Petisco et al. 2010).

Calibration of Oil Content Using Full Spectral Range

Based on all the spectral data of samples and their correspond-
ing measured oil content values, the PLSR calibration models
using the whole spectral wavelengths were established in the
spectral range I and II. And before this, the spectral data were
preprocessed using different spectral treatment methods. The
performances of PLSR models are presented in Tables 2 and
3. In spectral range I, the statistical parameters of PLSR
models in Table 2 suggested that PLSR models based on dif-
ferent spectral pretreatment methods exhibited poor model
performances. It can be concluded that the used spectral pre-
treatment methods were not helpful to improve the PLSR
calibration capability. It was also indicated that using the
raw spectral data for modeling was considered as to be good,
which means that the applications of these pretreatment
methods possibly removed some important information about
oil content in peanut. As Table 3 shown, in spectral range II,
raw-PLSR, and Smoothing-PLSR showed the same high per-
formance, which were obviously superior to other models.
Therefore, the better choice was to establish the PLSR

prediction model for oil content using raw spectra or spectra
based on smoothing process. In this study, raw spectra were
used for further analysis. Raw-PLSR model presented almost
similar good performance in both calibration and cross-
validation with R2

C, R
2
CV values of 0.904, 0.893 and

RMSEC, RMSECV of 0.237 %, 0.254 %, respectively. R2
P

value and RMSEP were 0.923 and 0.208 %, which implied
that raw-PLSRwith whole wavelengths for predicting oil con-
tent of peanut showed excellent predictive accuracy. In brief,
the established PLSRmodels with low prediction errors in this
work confirmed the suitability of hyperspectral imaging tech-
nique for oil content prediction in peanut, and the better results
would be achieved using spectral range II for analysis.

Modeling of Oil Content by PLSRUsing Selected Optimal
Wavelengths

In order to avoid the large dimensionality of the acquired
hyperspectral images, minimize inessential information
among contiguous bands, and reduce the time of computation,
it is of necessity to select optimal wavelengths with effective
and useful information for predicting oil content of peanut.
The weighted regression coefficients resulting from the best
PLSRmodels were considered as an indication of the possible
optimal wavelengths that could explain most of the variation.
In this study, the optimal wavelengths were selected based on
the regression coefficients of the established raw-PLSRmodel
in spectral range II; the wavelengths with large regression
coefficients values (regardless of the sign) could be chosen.
By means of this approach, eight individual wavelengths
(1127, 1216, 1477, 1738, 1953, 2073, 2143, and 2319 nm)
for oil content prediction in the spectral range II were selected
preliminarily (shown in Fig. 3), then the selected wavelengths
were compared by using different combinations among them
to establish a PLSR model, as shown in Table 4. Finally, six
wavelengths (1127, 1216, 1738, 1953, 2073, and 2319 nm) in

Table 4 PLSR models
established using
different important
wavelengths
combinations in spectral
range II

Important wavelengths (nm) No. PCs Calibration Cross-Validation

R2
C RMSEC (%) R2

CV RMSECV (%)

1127, 1216, 1477, 1738, 1953, 2073, 2143, 2319 8 3 0.898 0.245 0.889 0.258

1127, 1216, 1477, 1738, 1953, 2073, 2319 7 4 0.911 0.228 0.903 0.240

1216, 1477, 1738, 1953, 2073, 2319 6 3 0.909 0.232 0.902 0.242

1127, 1216, 1738, 1953, 2073, 2319 6 4 0.912 0.227 0.904 0.239

Table 5 The
performance of the
optimized model during
calibration, cross-
validation, and prediction

Model No. of
varieties

PCs Calibration Cross-Validation Prediction

R2 RMSEC (%) R2
CV RMSECV (%) R2

P RMSECP (%)

Optimized -PLSR 6 4 0.912 0.227 0.904 0.239 0.934 0.197
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spectral range II were identified as the optimal wavelengths.
Accordingly, the optimized model was redesigned only using
the selected six optimal wavelengths, and the predictive ca-
pacity of the model was verified in the prediction set by com-
paring the actual measured oil content values with predictive
oil content values of prediction set, whose robustness and
reliability were also assessed by the determination coefficients
and root mean square errors. As illustrated in Table 5, the
optimized model exhibited the R2

C, R
2
CV, and R2

P values of
0.912, 0.904, and 0.934 with RMSEC, RMSECV, and
RMSEP of 0.227 %, 0.239 %, and 0.197 %, respectively.
Comparedwith the original PLSRmodel, the optimized PLSR
model displayed better performance, the robustness and reli-
ability of the model was proved to be good simultaneously. It
can be concluded that using six optimal wavelengths to re-
place the full wavelengths in spectral range II for predicting
the oil content of peanut is possible and better.

In addition, Fig. 4 illustrates some examples of distribution
maps of different oil contents in peanuts. It is very obvious to
observe the changes of oil content (from small to big) in pea-
nut kernels. The obtained distribution maps were generated by
image processing method using pseudo color. In the distribu-
tion maps, the pixels holding similar spectral characteristics
usually show the same predicted values, which are then visu-
alized in a similar color in the image. Different colors in the
final distribution maps represent different chemical indicator
values in the image in proportion to the spectral differences of
the corresponding pixels. Therefore, according to the distribu-
tion maps of oil content, it is useful to rapidly and non-
destructively estimate and evaluate the oil content in different
peanut kernels.

Conclusions

The feasibility of hyperspectral imaging technique in the spec-
tral range of 400–1000 nm and 1000–2500 nm for predicting
oil content in peanut was investigated. Through spectral pre-
treatment, quantitative calibration models using full spectral
wavelengths were established. By comparing the performance
of models undergoing different spectral pre-processing, it was
concluded that raw-PLSR models presented better results.
Raw-PLSR model in the spectral range II exhibited good

performance with the high values (R2
P=0.923). The HSI-2

was more reliable in prediction of oil content of peanut. Be-
sides, six optimal wavelengths were selected using the regres-
sion coefficients of the established raw-PLSR model in the
spectral range II and the optimized calibration model was
established. The optimized calibration model showed satisfac-
tory capability with R2

C, R
2
P of 0.912 and 0.934, which pre-

sented the equivalent performance with the original raw-
PLSR model. On the whole, the above results indicated that
the established optimized PLSR model had accurate predic-
tive capability and good model robustness, and the
hyperspectral imaging technique in tandem with
chemometrics analysis has the potential to predict oil content
of peanut in a rapid and non-destructive manner. To the best of
our knowledge, it is the first time to use the hyperspectral
imaging technique for predicting oil content in peanut, the
varieties of peanut adopted are limited, and extending this
technique for more diversified peanut samples would be more
meaningful.
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