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Abstract The objectives of this research were to compare the
effect of different fruit orientations on the quality of acquired
spectra and to provide a suitable calibration model for further
online determination of soluble solids content (SSC) of BFuji^
apples using visible and near-infrared (Vis/NIR) diffuse trans-
mittance. The diffuse transmittance spectra between 650 and
910 nm were collected with the designed spectrum measure-
ment system in two fruit orientations: stem-calyx axis hori-
zontal (T1) and stem-calyx axis vertical (T2). Area change
rate (ACR) was used to evaluate the stability of spectra col-
lected in two fruit orientations. Results showed that the fruit
orientation T1 was better for our designed spectrum measure-
ment system. Then, the performance of partial least squares
(PLS) models based on spectral data after the pretreatment of
several preprocessing methods was analyzed and compared.
Finally, the modified competitive adaptive reweighted sam-
pling (MCARS), successive projection algorithm (SPA), and
their combination were investigated to select the effective var-
iables for the determination of SSC. It concluded that the
MCARS-SPA-PLS model based on the spectra after prepro-
cessing of Savitzky-Golay (SG) smoothing achieved better
results for SSC prediction. The correlation coefficients

between measured and predicted SSC were 0.962 and 0.946,
and the root mean square errors were 0.510 and 0.527°Brix for
calibration and prediction set, respectively. Moreover, the
physicochemical properties of 27 variables selected by
MCARS-SPAwere discussed to obtain a better interpretation
of the calibration model. The overall results indicated that the
designed diffuse transmittance spectrum measurement system
together with the PLS calibration model with 27 effective
variables selected by MCARS-SPA method had a potential
application for online SSC detection of apple.
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Introduction

High-quality requirements for commercial fresh fruit on the
global produce market have ever been increasing: Fruit should
not only be nutritious but also have appropriate texture and taste
to meet consumer demands (Do Trong et al. 2014). Apple is an
important and a widespread agricultural commodity (Mendoza
et al. 2014). In particular, apple is a good source of antioxidant
components, such as ascorbic acid and polyphenolic, which
exert protective effects against various degenerative diseases
(Giovanelli et al. 2014). Soluble solids content (SSC) is one
of the most important properties that influence the consumer
purchasing decision on fresh apple fruit (Lu 2004) and deter-
mine the fruit maturity and harvest time (Peng and Lu 2007).
Consequently, nondestructive and rapid detection of SSC of
apple is of great value in ensuring high quality, consistent ap-
ples for the consumer. In the last decades, visible and near-
infrared (Vis/NIR) spectroscopy has been proposed as a fast,
easy to use, and nondestructive analytical technique (Nicolaï
et al. 2007). The technique, coupled with an appropriate
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calibration method, has been successfully used to measure the
SSC of apple (Peirs et al. 2001; Liu and Ying 2005; Mendoza
et al. 2014). Recently, much attention has been paid on online
detection of SSC using Vis/NIR spectroscopy. Several studies
about online SSC determination using diffuse transmittance
mode were reported for fruits such as pear (Sun et al. 2009;
Xu et al. 2012) and watermelon with thick skin (Jie et al. 2014),
which indicated that diffused transmittance mode was suitable
for internal quality determination and was a viable option for
high-speed fruit measurement. Therefore, a prototype of dif-
fused transmittance system was realized in our laboratory to
provide some reference for the online detection of apple SSC.

The fruit orientation is an important factor that affects the
quality of acquired spectra. Fu et al. (2007) compared two fruit
orientations (stem-calyx axis vertical, stem-calyx axis horizon-
tal) in diffuse transmission mode for detecting brown heart in
pears, and better results were obtained based on the stem-calyx
axis horizontal orientation. Fan et al. (2009) investigated the
effect of fruit orientation on the prediction results for detecting
the SSC and firmness of apples. However, they found that the
best fruit orientation was the stem-calyx axis vertical. Recently,
a new surface scanning technology invented by Schmutzler and
Huck (2014) was shown to result in improved calibration
models by the measurement of hundreds of spectra over the
apple surface. But, it was time-consuming and complicated to
use this technology for online detection. Therefore, the present
work was using area change rate (ACR) to select the best fruit
orientations from two commonly used fruit orientations (stem-
calyx axis vertical, stem-calyx axis horizontal) in the SSC de-
termination by comparing the stability of the collected spectrum
instead of just depending on the prediction or classifying results.

For online detection of SSC, a calibration model is needed to
be mainly considered. Partial least squares (PLS) regression has
been widely used to develop calibration models for determining
SSC of apple and other fruits. When used for online purpose, the
complex calibration models developed with the whole spectrum
will not be applicable because of useless or irrelevant information
(Andersen and Bro 2010). Furthermore, the modern spectrosco-
py instrumentations usually possess high resolution, with hun-
dreds or thousands of spectral variables including collinearity,
redundancies, and noise (Wang and Xie 2014). Therefore, many
variable selection methods such as genetic algorithms (GAs)
(Durand et al. 2007), Monte Carlo uninformative variable elim-
ination (MC-UVE) (Cai et al. 2008), competitive adaptive
reweighted sampling (CARS) (Li et al. 2009) and successive
projection algorithm (SPA) (Araújo et al. 2001) have been pro-
posed to solve this problem. Some published papers had reported
the application of Vis/NIR spectroscopy combined with variable
selection methods for online prediction of internal quality of
fruits. Xu et al. (2012) compared four variable selection methods
(stepwise multi-linear regression (SMLR), GA, interval PLS
(iPLS), and GA-SPA) for the analysis of SSC of pear in the
spectra range 533–929 nm. It was found that theMLRcalibration

model built using GA-SPA on 18 selected wavelengths exhibited
coefficient of determination r2pre=0.880 and root mean square
error of prediction (RMSEP)=0.459°Brix for the prediction set.
Jie et al. (2014) investigated Vis/NIR diffuse transmission spec-
trum of 687–920 nm region for online determination of SSC of
watermelon. They found that the MC-UVE-SMLR calibration
model with baseline offset correction pretreatment was the best
with rpre of 0.70 and RMSEP of 0.33°Brix for the prediction set.
In these studies, the elimination of uninformative variables en-
hanced the model prediction, reduced measurement costs, and
facilitated model interpretation. However, in most of the scientif-
ic works about apple SSC detection, calibration with the full-
range variables is time-consuming and the irrelevant information
within spectra would affect the accuracy and robustness of the
model. In order to meet the needs of online detection, variable
selection is conducted to simplify the model and improve detec-
tion efficiency. In our study, the modified CARS (MCARS),
SPA, and their combination were conducted to select effective
variables for SSC determination. In addition, the physicochemi-
cal properties of the selected variables were also discussed to
obtain a better interpretation of the calibration model.

The overall goal of this study was to provide references for
online determination of SSC of BFuji^ apple in terms of fruit
orientation and model foundation by using Vis/NIR diffuse
transmittance. Specific objectives of the research were to (1)
investigate the performance of the designed device that col-
lects the diffuse transmittance spectrum of apple; (2) evaluate
the stability of spectra acquired in two fruit orientations using
ACR; and (3) pick out the most effective variables and discuss
the physicochemical properties of the selected variables for
further online determination of SSC of apple using Vis/NIR
diffused transmittance spectroscopy.

Materials and Methods

Samples

A total of 130 Fuji apples free of visual defects (such as scars,
cuts, shrivel, etc.) were purchased from a local fruit market in
Beijing, China. The equatorial diameter range of apples was
70–80 mm, and all samples were individually washed and
numbered and then stored in laboratory (temperature 20 °C,
relative humidity 60 %) for 24 h before the experiment to
allow the samples to reach room temperature to reduce the
effect on the prediction accuracy by the temperature of sam-
ples (Fan et al. 2015).

Spectra Collection and ACR Analysis

The diffuse transmittance spectra of samples were obtained by
a spectrum measurement system designed by ourselves
(Fig. 1). The measurement consisted of a fruit tray for holding
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the fruits and blocking the light leaking through the surface
between sample and tray, light source mounted on both sides
of the holder, collimating lenses embedded optical fiber de-
signed to accumulate transmitted light penetrating from differ-
ent parts of a sample through the center hole of fruit tray, and
an optical fiber used to connect the collimating lens and a
commercial portable fiber spectrometer (Model USB2000+,
Ocean Optics Inc., USA) with wavelength range from 487 to
1148 nm. The light source was composed of two halogen
lamps (100 W, 12 V), two sets of plano-convex lens
(Edmund Optics Inc., Barrington, USA) for focusing the lamp
light on the fruit embedded with the lamp hoods, and two fans
mounted in the lamp hoods to radiate the heat from the lamps.
All components were fixed inside a dark chamber to avoid any
stray light that might affect the spectrum of sample.

The reference spectrum (Rwhite) was collected from a stan-
dard Teflon plate, and the dark spectrum (Rdark) was collected
when all lamps were turned off. They were measured and
stored before collecting spectra of samples. Two fruit orienta-
tions (T1 and T2) were investigated in this paper, and the
sketches of the two modes are shown in Fig. 2.

T1: Fruit stem-calyx axis horizontal; irradiated from cheek
by the light source and detected from the equator posi-
tion by the optic fiber

T2: Fruit stem-calyx axis vertical; irradiated from cheek by the
light source and detected from the calyx by the optic fiber

The spectral data were measured in two fruit orientations
using software SpectraSuite (Ocean Optics Inc., USA) with
the integration time of 100 ms. The spectral data were first
acquired in fruit orientation T1. Each sample was placed cen-
trally and steadily on the fruit tray by hand, with the stem-

calyx axis horizontal and the equator position facing the de-
tector. Only spectral data between 650 and 910 nm which
composed of 785 wavelength variables were retained for fur-
ther analysis, and other wavelength ranges were eliminated
because of some sharp noises and irrelative information.
Then, the raw spectra (Rraw) were converted to absorbance
values (log(1/T)) according to the following equation:

log 1=Tð Þ ¼ log
Rwhite−Rdark

Rraw−Rdark

� �
ð1Þ

In order to decrease the error of operator and instrument
and improve signal-to-noise ratio (SNR), the process was re-
peated three times for each sample with the same position
facing the detector to acquire a mean spectrum by averaging
the three absorbance spectra. All the spectral data were stored
in a computer for further analysis. The measurement progress
for fruit orientation T2 was the same as that for T1. Finally,
three absorbance spectra and a mean spectrum of each apple
were obtained in fruit orientation T2.

The spectral area means the area under a certain curve
between two wavelength bands, which is measured by adding
the counts of many different data points together (Smith
2003). The spectra collected under the same condition should
be exactly the same if there is no interference and noise.
Therefore, the smaller the change of the area, the more stable
the spectra is (Zhang et al. 2014). So, the ACR is selected as
one of the important indicators for spectra stability eval-
uation. In this paper, the ACR was approximated as the
root mean square deviation (RMSD) of the area of the
three absorbance spectrum between 650 and 910 nm in
any fruit orientation (T1 and T2). Before calculating
ACR, the Y coordinate of the spectrum was normalized

Fig. 1 Schematic of the diffuse
transmittance spectrum
measurement system
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using vector normalization. RMSD is depicted as fol-
lows:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Y i−Ymeanð Þ2
vuut ð2Þ

where Yi is each spectral area between two selected wavelength
bands, Ymean is the average of total spectral area, and N is the
number of the spectra. Then, the ACR values of all samples
were calculated for fruit orientation T1 and T2, respectively.
The spectral normalization and area calculation were processed
by Matlab2012a (The Math Works, Natick, USA).

SSC Measurement

Immediately after the spectra collection and analysis of ACR,
the SSC was determined using traditional destructive test.

According to Schmutzler and Huck (2014), for different parts
of the same apple, SSC values were found with significant
variations higher than 2°Brix. In order to make the spectrum
and SSC correspond more appropriately, tissue sample was
cut from each sample at the location of the spectrum measure-
ment in fruit orientation T1 or T2 according to the results of
ACR analysis. Then, juice was squeezed and dropped onto a
refractometer (ARIAS 500, Reichert Technologies, New
York, USA) to record the SSC value.

Spectra Preprocessing

The spectrum acquired from spectrometer might contain back-
ground information or noise besides sample information, so it
is necessary to preprocess the spectral data to establish a reli-
able, accurate, and stable calibration model (Cen and He
2007). Different spectral preprocessing methods including
SG smoothing (Savizky and Golay 1964), multiplicative scat-
tering correction (MSC) (Helland et al. 1995), standard nor-
mal variate transformation (SNV) (Barnes et al. 1989), base-
line offset correction, and second derivative (Demetriades-
Shah et al. 1990) were tried to preprocess the raw spectral
data. Because SNV and MSC had the similar function of re-
ducing the (physical) variability between samples due to scat-
tering and adjusting for baseline shifts between samples (Jie
et al. 2013), so only MSC was used in our study. SG smooth-
ing was an average algorithm that fits a polynomial to the data
points and was necessary to optimize the signal-to-noise ratio
(Perkin et al. 1988). Baseline offset correction was often used
to adjust the spectral offset by adjusting the data to the mini-
mum point in the data. The second derivative spectra were
calculated using the method of Savitsky-Golay smoothing al-
gorithm to correct for additive and multiplicative effects in the
spectra. These spectral preprocessing treatments were per-
formed in the Unscrambler v9.7 (CAMO PRECESS AS,
Oslo, Norway).

Regression Analysis

PLS regression is a powerful multivariate calibration method
that is insensitive to collinear variables and tolerant to large
numbers of variables and widely employed in chemometric
analysis (Huang et al. 2008). PLS has the potential to consider
not only variable matrix X (spectral data) but also variable
matrix Y (the properties of interest). Generally, PLS is applied
to extract no more than top 20 latent variables (LVs) from a
large set of highly correlated and collinear original spectral
data (Leiva-Valenzuela et al. 2013). The LVs can explain the
variance and reduce the dimensionality of the original spectra.
In this study, calibration models between spectral data of test-
ed fruits and their quality attributes (SSC) were developed
using PLS. In the development of a PLS model, the optimal

Fig. 2 General sketches of two fruit orientation modes: stem-calyx axis
horizontal mode T1 (a) and stem-calyx axis vertical mode T2 (b)
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number of LVs was determined by a full cross-validation of
the calibration samples.

Variable Selection Methods

MCARS

CARS is an innovative and useful variable selection algorithm
first proposed by Li et al. (2009), which has the potential to
select an optimal combination of the effective variables
existing in the full spectrum coupled with PLS regression.
Absolute values of regression coefficients of PLS model are
used as an index for evaluating the importance of each vari-
able. Then, CARS sequentially selects N subsets of variables
from NMonte Carlo sampling run in an iterative and compet-
itive manner according to the importance level of each vari-
able. In each sampling run, some samples are first randomly
chosen in a fixed ratio to build a calibration model. Next, the
exponentially decreasing function (EDF) and adaptive
reweighted sampling (ARS) process are adopted to select the
key variables based on the regression coefficients. Finally, the
subset with the lowest root mean square error of cross-
validation (RMSECV) is chosen. The procedure of CARS
was performed in the Matlab2012a with libPLS toolbox avail-
able at http://www.libpls.net/. However, Yun et al. (2014)
thought that CARS is a very fast method but not always stable
due to the Monte Carlo sampling. Therefore, in order to im-
prove the stability of CARS behavior and guarantee the reli-
ability of the model, the MCARSmethod was proposed in our
study. Firstly, the CARS was conducted 500 times to obtain
the selected frequency of each variables. Then, the variables
were added to develop PLSmodels according to the frequency
of selections (i.e., in the model with n variables, the n most
frequently selected variables were selected), and the corre-
sponding RMSECV were calculated. The optimal subset
was obtained with the lowest value of RMSECV.

SPA

SPA is a forward selection method applying vector projection
operations in a vector space for the selection of relevant var-
iables for multivariate calibration, which begins with one
wavelength variable and then incorporates a new one at each
iteration, until it obtains variables with a minimum of collin-
earity. The principle of variable selection by SPA is that the
candidate variables selected by SPA has the maximum projec-
tion value on the orthogonal subspace of the previous selected
variables. In the algorithm, candidate subsets of variables with
minimum collinearity are first generated and evaluated by the
value of root mean square error (RMSE) obtained from vali-
dation set of MLR calibration, and then, the uninformative
variables are removed by a variable elimination procedure
without significant loss of prediction capability. Details of

the SPA methodology could be referred to the previous liter-
ature (Araújo et al. 2001; Liu et al. 2009). The variable selec-
tion procedure was carried out in the Matlab2012a with a
graphical user interface for SPA (GUI_SPA) which was
downloaded from www.ele.ita.br/~kawakami/spa/.

Evaluation of the Performance of Models

In developing a calibration model, 100 samples were selected
randomly from 130 apples as calibration set for developing the
calibration model. To ensure the SSC of calibration set cov-
ered that of all prediction set, two samples of the highest and
the lowest concentrations were put into the calibration set
manually. The remaining 30 were selected as prediction set
to verify the prediction power of the calibration model. No
single sample was used in calibration set and validation set at
the same time. The performance of the calibration model was
evaluated in terms of correlation coefficient of calibration (rcal)
and prediction (rpre), root mean square error of calibration
(RMSEC) and RMSEP. The calculations of rcal, rpre,
RMSEC, and RMSEP are defined in the following equations
(Liu et al. 2010):

rcal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc

ypi−ymi
� �2

s . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc

ypi−ymean
� �2

s
ð3Þ

rpre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

np

ypi−ymi
� �2

s . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

np

ypi−ymean
� �2

s
ð4Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc

Xnc
i¼1

ypi−ymi
� �2

vuut ð5Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

Xnp
i¼1

ypi−ymi
� �2

vuut ð6Þ

where ypi is the predicted value of SSC in fruit number i, ymi is
the measured value of SSC in fruit number i, ymean is the mean
value of SSC in the calibration or prediction set, and nc and np
are the number of fruits in the calibration set and prediction
set, respectively. Generally, a good model should be selected
based on not only the higher rcal and rpre values and lower
RMSEC and RMSEP values but also a small difference be-
tween RMSEC and RMSEP (Li et al. 2014).

The calibration and prediction results may vary depending
on how the calibration and prediction samples were actually
selected (Huang et al. 2014). Therefore, the calibration and
prediction procedure described above was repeated 10 times
by electing a random set of samples. Then, the results (i.e., rcal,
rpre, RMSEC, and RMSEP) were averaged to estimate the
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final performance of the models. Finally, t test was performed
on the average RMSEPs for the 10 runs to compare the statis-
tical differences of different variable selection methods for
predicting SSC of apple.

Results and Discussion

Spectral Features and ACR Analysis

The raw diffuse transmittance spectra of apple samples rang-
ing from 650 to 910 nm acquired in fruit orientation T1 are
shown in Fig. 3. As can be seen, the trends of these spectra
were similar. There were two strong absorption peaks around
750 and 850 nm. The absorption peak around 750 nm was
associated with the third overtone of the H2O, and the absorp-
tion peak around 850 nm was due to the third overtone of the
C–H functional group (Jamshidi et al. 2012). Similar spectral
features were observed for the spectra acquired in fruit orien-
tation T2.

Figure 4 shows the ACR values of all 130 fruit samples
calculated from the Eq. (2) for fruit orientation T1 and T2,
with the mean ACR values of 0.0125 and 0.0333, respective-
ly. As shown in Fig. 4, for most of the samples, the ACR
values for fruit orientation T2 were much bigger than those
for T1. Moreover, the ACR values fluctuated drastically for
fruit orientation T2. These results showed that the variation of
the spectral curve was small for the fruit orientation T1 and the
stability of spectra acquired in fruit orientation T1 was better
for our designed diffused transmittance spectrum measure-
ment system. Consequently, the mean spectra acquired in fruit
orientation T1 were used for further preprocess and calibration
analysis.

Statistics of SSC

After the analysis of ACR, tissue sample cut from the equator
position of each sample at the location of the spectrum

measurement in fruit orientation T1 was used to measure real
SSC value. The distribution of SSC of all apple samples is
presented in Fig. 5. The SSC measurements of 130 samples
were fairly normally distributed around the mean value
(14.07°Brix) with standard deviations of 1.09. The SSC
values varied between 8.78 and 19.49°Brix, covering a large
enough range. More importantly, the range of calibration sets
were bigger than prediction sets by putting the two samples of
the highest and the lowest SSC values into the calibration sets
manually. These features were helpful to develop a good cal-
ibration model (Li et al. 2013).

Calibration Models of SSC with Full Spectra

The full-spectrum PLS models were developed using raw
spectra and preprocessed spectral data pretreated by SG
smoothing, MSC, baseline correction, and second derivative,
respectively. The results showing a comparison of these pre-
processing methods in the SSC prediction by PLS are present-
ed in Table 1. It can be found that the prediction results were
significantly improved by using the spectra pretreated by SG
smoothing (21-point window size and third-order polynomial)
than those using raw spectra for PLS calibration models
(p<0.05). In comparison to the results obtained by raw spec-
tra, themodel performance based on other processingmethods

Fig. 3 Raw diffuse transmittance spectra of apple samples acquired in
fruit orientation T1

Fig. 4 Area change rate (ACR) values of all 130 fruit samples

Fig. 5 Distribution of soluble solids content of all 130 fruit samples
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including MSC, second derivative (31-point window size and
third-order polynomial), and baseline correction was not im-
proved and no significant statistical difference was found
(p>0.05). So, the best result of PLS model for SSC prediction
was obtained by using spectra after SG smoothing preprocess-
ing with rpre of 0.928 and RMSEP of 0.606. Therefore, further
analysis was conducted based on the spectra data after SG
smoothing preprocessing.

PLS Models with Effect Variables

The MCARS and SPA variable selection methods were used
for PLS regression to pick out the most effective variables for
SSC prediction based on one date set which was randomly
selected from 10 calibration and prediction sets.

Variables Selected by MCARS

For MCARSmethod, the CARS procedure was run 500 times
to improve the stability behavior. In this study, for each run-
ning of CARS, the number ofMonte Carlo sampling runs was
set to 100 and the number of variables to be selected was
determined by 10-fold cross-validation. Figure 6 shows the
changing trend of the number of sampled variables (Fig. 6a)
and 10-fold RMSECV values (Fig. 6b) with the increasing of
sampling runs from one CARS running. As can be seen in
Fig. 6a, the number of sampled variables decreased fast at the
first stage of EDF and then slowly at the second stage of EDF,
which displayed the fast selection and refined selection of
CARS. On the other hand, Fig. 6b gives the corresponding
10-fold RMSECV values for SSC. According to the minimal
10-fold RMSECV value in the 17th sampling run which was
marked by the open square in Fig. 6b, the optimal variable
subsets were determined for SSC prediction, while the corre-
sponding number of sampled variables was 130 (red solid dot
in Fig. 6a) and they were selected as effective variables in this
CARS running.

After the process of MCARS, the selected frequency of
each variable by running was shown in Fig. 7. Then, the
RMSECVs were calculated through the PLS models with
the variables added according to the frequency of selections
(i.e., in the PLS model developed with n variables, these n
variables were most frequently selected). Clearly, when 164
variables were added to the PLSmodel, the RMSECVreached
the minimum, corresponding to the cutoff threshold in Fig. 7.
Then, the 164 variables in the subset were selected as the key
variables for determining SSC of apple by using MCARS.
The selected variables were set as the inputs to develop PLS
models for all the 10 calibration and prediction sets to deter-
mine the SSC of apple. The average of 10 calibration and

Table 1 Average of 10 calibration and prediction results for SSC by
PLS with different preprocessing methods

Pretreatment LVs Calibration Prediction

rcal RMSEC rpre RMSEP

Raw 12 0.963 0.411 0.920 0.768 a

SG 10 0.957 0.541 0.928 0.606 b

MSC 14 0.979 0.271 0.874 0.794 a

Second derivative 9 0.943 0.616 0.870 0.810 a

Baseline 11 0.953 0.477 0.874 0.796 a

RMSEPs with different letters represent statistical difference (p<0.05) of
prediction models between the raw spectra and tested preprocessing
method

Fig. 6 The changing trend of the number of sampled variables (a) and
10-fold RMSECV values (b) with the increasing of sampling runs from
one CARS running

Fig. 7 The selected frequency of each variable by running MCARS

Food Anal. Methods (2016) 9:1333–1343 1339



prediction results ofMCARS-PLSmodels using 164 variables
for SSC prediction were shown in Table 2. Furthermore, for
comparison with the performance of MCARS-PLS models,
the PLS models were developed using 130 variables selected
by one CARS running which was stated above. The average
of 10 calibration and prediction results by CARS-PLS models
were also shown in Table 2. As can be seen, the performance
of MCARS-PLS model was significantly improved (p<0.05)
with rpre of 0.951 and RMSEP of 0.513°Brix compared with
the results of full-spectrum PLS model with rpre of 0.928 and
RMSEP of 0.606°Brix, whereas relatively poor results were
obtained for CARS-PLS models (rpre=0.938, RMSEP=
0.584°Brix). In addition, small difference between calibration
and validation was found in MCARS-PLS models. These re-
sults indicated that MCARS was a very effective variable
selection method to improve the prediction accuracy of the
calibration models for the SSC determination of apple, and
such improvement was even achieved by using only about
21 % of variables of full-range spectra (164 vs. 785).

Variables Selected by SPA

After the MCARS processing, the number of variables de-
creased to 164, but with respect to the online detection of the
SSC, there were still too many variables for application. In
addition, some collinear variables which contain a number of
redundant information might still exist in the spectra data.
Therefore, in order to further simplify the model and improve
the robustness, SPA was carried out on 164 selected variables
for further variable selection. Meanwhile, the full spectrum was
also employed as the input of the SPA to investigate whether the
MCARS method would have effect on the SPA-PLS model.

SPAwas firstly performed to select effective variables from
the full spectra for the prediction of SSC. During performing
the SPA, a cross-validation procedure was used for the calcu-
lation of a sequence of RMSE values using the selected vari-
able subsets. The optimal number of selected variables was
determined by this process. After SPA, 60 variables were se-
lected from the full spectrum for the prediction of SSC. The
results of PLS models developed with the selected variables

were shown in Table 2. Compared with the full-spectrum PLS
model, although the number of variables decreased sharply
after using the SPA, the predicting ability of SPA-PLS models
was not improved significantly (p>0.05) with rpre of 0.930
and RMSEP of 0.595°Brix. It might be caused by that SPA
was operated on the full spectrum which contained some un-
informative variables. In addition, Liu et al. (2014) thought
that one disadvantage of variable selection by SPAwas its low
S/N or insufficiency in multivariate calibration, which could
negatively affect the accuracy of the model prediction. To
reduce this limitation, it might be possible to improve the
SPA performance by conducting SPA operation after using
MCARS. Therefore, SPA was carried out on 164 variables
selected by MCARS for further variable selection.

As a result of MCARS-SPA, 27 variables that were obtain-
ed from the full spectra for prediction of SSC included 733.21,
755.48, 818.10, 791.47, 737.61, 760.51, 809.26, 650.08,
795.11, 655.34, 745.72, 777.21, 821.69, 772.21, 852.78,
834.37, 864.32, 868.48, 878.66, 906.43, 871.98, 748.75,
849.24, 899.83, 841.82, 766.87, and 700.43 nm. In order to
estimate the performance of variables obtained by MCARS-
SPA, PLS calibration models were developed by using the 27
variables for the prediction of SSC. The results were also
shown in Table 2. As can be seen, MCARS-SPA-PLS models
showed better prediction ability (rpre=0.946, RMSEP=
0.527°Brix) than full-spectrum PLS models (p<0.05). In con-
trast with the MCARS-PLS models, the MCARS-SPA-PLS
models used far less variables, making a great help for the
simplification of the prediction model and the satisfaction of
the requirement of online detection. It is also worth mention-
ing that the absolute difference values between RMSEC and
RMSEP of the MCARS-PLS and MCARS-SPA-PLS models
were 0.118 and 0.017 for SSC, showing that the established
models using the variables selected by MCARS-SPA were
more robust than those with the variables selected by only
MCARS. The results implied that it was effective to adopt
MCARS method to eliminate the variables with irrelative in-
formation for modeling before applying the SPA procedure.
The proposed MCARS-SPA method which combines the ad-
vantage of the MCARS and SPA would be an effective

Table 2 Average of 10
calibration and prediction results
for SSC by different PLS models

Model No. of variables LVs Calibration Prediction

rcal RMSEC rpre RMSEP

Full-spectra PLS 785 10 0.957 0.541 0.928 0.606 a

MCARS-PLS 164 11 0.975 0.395 0.951 0.513 b

CARS-PLS 130 15 0.989 0.271 0.938 0.584 a

SPA-PLS 60 10 0.959 0.529 0.930 0.595 a

MCARS-SPA-PLS 27 10 0.962 0.510 0.946 0.527 b

RMSEPs with different letters represent statistical difference (p<0.05) of prediction models between the full-
range spectra and tested variable selection method
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variable selection method. Figure 8 shows the scatter plots of
measured versus predicted SSC obtained by PLS combining
MCARS and SPA methods for one of the 10 calibration and
prediction sets. The solid line represents the ideal regression
line, as the closer the points are to this line, the better the
model is (Xie et al. 2011).

Discussion

The selected variables in our study at 650.08 nm was due to the
chlorophyll b (Jamshidi et al. 2012), 733.21 and 737 nm were
due to the O–H stretching third overtone (Liu et al. 2014), and
745.72 and 748.75 nm were associated with H2O third overtone
(Fu and Ying 2014). In addition, 791.47 and 795.11 nm (N–H
stretching third overtone); 841.82 (O–H combinations); and 849,
852, and 899 nm (C–H stretching third overtone) (Jamshidi et al.
2012; Fu and Ying 2014) were also included in the MCARS-
SPA-PLSmodel which was no longer a black boxmodel but had
a physicochemical background. The selected variables at 700.43,
745.72, 748.75, 809.26, 821.69, 841.82, and 906.43 nm in our
study were the same as variables selected by Qing et al. (2007)
for the prediction of SSC of Fuji apple, while the variables at
650.08, 655.34, 700.43 755.48, 760.51, 766.87, and 849.24 nm
were similar to the variables selected by semi-supervised affinity
propagationmethod using hyperspectral scattering imaging tech-
nique for determining the SSC of BGolden Delicious^ apples
(Zhu et al. 2013). The variables selected in our study for
predicting the SSC of Fuji apples were not totally identical with
those selected in the literature stated above and might be due to
the differences of themeasurement spectrum system, the process-
ing methods (preprocessing methods and variable selection
method), or the variety of apple samples. Moreover, the variables
at 737.61, 748.75, 791.47, 809.26, 864.32, and 878.66 nm were
also selected for the prediction of SSC of pears (Xu et al. 2012),
while the variables at 650.08, 748.75, and 849.24 nm were in-
cluded in the model to determine the SSC of citrus fruit (Wang
and Xie 2014). These results indicated that some variables were

associated with the prediction of SSC of fruits. Therefore, an
additional analysis for discovering chemical compounds
matching to the selected variables may be an interesting future
subject.

As for the SSC prediction of Fuji apple, the results obtained
based on 27 effective variables in this study are comparable
with those obtained by Liu et al. (2007) with RMSEP=
0.77°Brix using FT-NIR diffuse reflectance technique in 12,
500–4000 cm−1 spectrum region Qing et al. (2007), with
RMSECV=0.90°Brix for SSC based on 16 variables which
were selected from the diffuse reflectance spectrum in the re-
gion of 600–1100 nm. On the other hand, the results in our
study are a little worse than those obtained by Xiaobo et al.
(2007) with rpre=0.936 and RMSEP=0.414°Brix using 44 var-
iables selected from the full FT-NIR interaction spectrum (11,
000–3800 cm−1) and those obtained by Liu and Ying (2005)
with rpre=0.968 and RMSEP=0.455°Brix with the full FT-NIR
spectrum. Better results also have been found in Fuji apple with
r2pre=0.982 and RMSEP=0.277°Brix for SSC prediction using
the wavelength range of 650–920 nm in diffused transmittance
mode (Fan et al. 2009). As can be seen, the SSC values of Fuji
apple could be well predicted using Vis/NIR technique in liter-
atures stated above. In addition, the effective variables could
simplify the prediction model and improve the model efficien-
cy. By comparing the results obtained in the literatures about the
SSC prediction of Fuji apples, it can be concluded that the
diffused transmittance technology could be more suitable for
the online determination. In order to meet the needs of online
detection, it is meaningful to combine the technique with vari-
able selection methods to improve efficiency. Although the
results in our study are a little inferior to several studies stated
above, the slight difference of prediction results between differ-
ent studies has beyond what a consumer may perceive for SSC.
Moreover, in postharvest quality sorting and grading, we nor-
mally do not need to determine the SSC for each apple exactly;
instead, we only need to sort apples into different classes ac-
cording to their SSC values. So, the RPD values, which are
defined as the ratio between the sample standard deviation
and RMSEP, were also calculated to measure the ability of a
model for classification (Nicolaï et al. 2007). The average RPD
value of the MCARS-SPA-PLS models developed using the
spectra from 10 calibration and prediction sets was 3.680,
which means that the model was good to excellent prediction
accuracy and could be used for sorting and grading apple fruits
based on their SSC values. These results implied that the PLS
calibration method based on the 27 variables selected by
MCARS-SPA in this work was reasonable and applicable.

Conclusion

The determination of SSC of apple was studied using visible
and near-infrared (Vis/NIR) diffuse transmittance. The ACR

Fig. 8 Scatter plot of measured versus predicted SSC by the PLS
calibration models combining MCARS and SPA methods
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was proposed to investigate the stability of spectra collected in
two fruit orientations, with stem-calyx axis being horizontal
(T1) and with stem-calyx axis being vertical (T2), which
showed that the fruit orientation T1 was better for our de-
signed spectrum measurement system. Then, the performance
of PLS calibration methods based on several preprocessing
methods was analyzed and compared. Finally, in order to es-
tablish an accurate, robust, and simplified model, MCARS,
SPA, and their combination were used to select the optimal
variables for future online application. It concluded that the
MCARS-SPA-PLS model based on the spectra after prepro-
cessing of SG smoothing achieved better results for SSC pre-
diction (rpre=0.946, RMSEP=0.527°Brix) andMCARS com-
bined with SPA was an effective approach for selecting vari-
ables. Moreover, the physicochemical properties of 27 select-
ed variables were discussed to obtain a better interpretation of
the calibration model. The overall results indicated that the
designed diffuse transmittance spectrum system together with
PLS calibration model with 27 effective variables selected by
MCARS-SPA method had a potential application for online
detection of apple SSC. Future work will be focused on the
online detection of apple SSC detection using the diffuse
transmittance spectrum system. However, the limitation of
our research is that only a small portion of each individual
apple was assessed. In order to evaluate the quality of
SSC comprehensively, more research is needed to gain
more spectral information by increasing spectral mea-
surement portion along the peel to get a more accurate
and robust calibration model.
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