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Abstract Elemental determination was carried out on 36
grape juice samples (19 organic and 17 ordinary), with the
goal of identifying significant differences between the two
types of juice for classification purposes. Inductively coupled
plasma-mass spectrometry was used for the determination of
24 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, La, Mg,
Mn, Mo, Na, Ni, P, Pb, Rb, Se, Sn, Ti, V, and Zn. Ba, Ce, La,
Mg, P, Pb, Rb, Sn, and Ti concentrations were found to be
higher in organic versus ordinary samples, while Na and Va
concentrations were higher in ordinary versus organic sam-
ples. The remaining investigated elements exhibited statisti-
cally equivalent concentration levels in both types of samples.
Principal component analysis (PCA) and soft independent
modeling of class analogy (SIMCA) statistical techniques of
the elemental fingerprints were readily able to discriminate

organic from ordinary samples and can be used as alternative
methods for adulteration evaluation.

Keywords Chemometrics . ICP-MS .Multi-element
fingerprinting . Organic food . Quality control . Grape juice

Introduction

Analytical techniques capable of providing the elemental
composition of samples have been frequently combined with
multivariate statistical methods for identification and classifi-
cation of agricultural products according to their geographical
region (Coetzee et al. 2005; Kaufmann 1997; Martinez et al.
2003) and/or authenticity (Barbosa et al. 2013, 2015; Borges
et al. 2015). The successful application of such an approach
depended on finding an appropriate set of elements able of
providing a distinct spectral pattern for fingerprint identifica-
tion of the products of interest. Among the numerous tech-
niques that exist for elemental analysis, inductively coupled
plasma mass spectrometry (ICP-MS) offers the required de-
tection sensitivity to capture multi-elemental compositions of
samples at trace levels (Coetzee et al. 2005; Gonzalvez et al.
2009;Millour et al. 2011; Nardi et al. 2009; Şahan et al. 2007).
ICP-MS has been used to identify the geographical origin of
samples such as honey (Batista et al. 2012; Chen et al. 2014;
de Andrade et al. 2014), wine (Arvanitoyannis et al. 1999;
Versari et al. 2014), meat (Schwägele 2005), fruit juices
(Zielinski et al. 2014), rice (Cheajesadagul et al. 2013;
Suzuki et al. 2008), beef (Zhao et al. 2013b), tea (Moreda-
Piñeiro et al. 2003), and wheat (Zhao et al. 2013a).

Herein, ICP-MS was applied to investigate the authenticity
of organic grape juice samples, which, to our knowledge, has
not previously been applied for this purpose. Our work includ-
ed juice samples from several grape varieties, harvested at
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different Brazilian locations. Principal component analy-
sis (PCA) and soft independent modeling of class anal-
ogy (SIMCA) were used for the interpretation of the
spectrometric data. We demonstrate here that the com-
bination of ICP-MS spectral fingerprints and chemomet-
ric algorithms provide a robust approach for comparison
of grape juice samples and for verifying the authenticity
of organic grape juice.

Material and Methods

Instrumentation

Determination of elements in grape juice was carried
out using a PerkinElmer (Waltham, MA, USA) ELAN
DRCII ICP-MS ins t rument . High-pur i ty argon
(99.999 %, White Martins, Brazil) was used throughout
the study. Detailed instrumental parameters and opti-
mized conditions have been described in (Batista et al.
2009); they are briefly summarized in Table 1.

Reagents and Materials

With the exception of HNO3, all chemicals were of analytical
reagent grade. HNO3 was purchased from Synth (Diadema,
Brazil) and was purified in a quartz sub-boiling still (Kürner
Analysentechnik, Rosenheim, Germany) before use. High-
purity deionized water (resistivity 18.2 MΩ cm) was generat-
ed using a Milli-Q water purification system (Millipore,
Bedford, MA, USA). One thousand milligrams per liter of
aqueous solutions of rhodium, iron, magnesium, zinc,
copper, and multi-element (10 mg L−1) standard aqueous
mixtures were obtained from PerkinElmer. Triton® X-100
and tetramethylammonium hydroxide solution (TMAH,
25 % w/v) in water were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Sampling and Analytical Procedures

Certified organic (n=19) and ordinary grape juices (n=17)
samples were obtained from local Brazilian retail markets.
All organic samples were certified by the Brazilian IBD-
Agricultural and Food Inspections and Certifications, which
is accredited by the International Federation of Organic
Agriculture Movements.

The ICP-MS method used in this study was based on the
assay described by Batista et al. (2009) and used to determine
24 elements, namely, Al, Cr, As, Pb, Cd, Mn, Co, Se, Rb, Ni,
Ba, V, Zn, Cu, Fe, Ca, Mg, Na, P, La, Ce, Mo, Ti, and Sn. A
solution of rhodium at 10μg L−1was used as internal standard.
A full description of the composition of the 36 grape juice
samples is summarized in Table S1 (see Supplementary
Material).

Data Analysis

PCA and SIMCA were performed using Pirouette
(Version 3.11, Infometrix, Woodinville, WA, USA).
Before applying PCA and SIMCA, all variables were
Bauto-scaled.^ This procedure gave all variables the
same importance, by subtracting the average value
from each variable and dividing the variable by its
standard deviation. F test and t test (Miller and
Miller 2005) were calculated using Microsoft Excel
2007. The dataset presented in this work is presented
in Table S1 (see Supplementary Material).

SIMCA used cross-validation test; during this test, a sam-
ple was removed from the dataset. The classification model is
rebuilt, and the removed sample is classified in this new mod-
el. All samples of the data set were sequentially removed and
reclassified. Finally, a percentage of good classifications is
also given (Frías et al. 2003).

Table 1 Instrument settings for q-ICP-MS

Instrument Elan DRCII
(PerkinElmer SCIEX)

Nebulizer Meinhard®

Spray chamber Cyclonic

Torch injector Quartz for clinical
sample (2.0 mm)

Auto lens On

RF power (W) 1100

Gas flow rates (L min−1) Nebulizer 0.56–0.98;
plasma 15; auxiliary 1.2

Interface Platinum cones

Sampler 1.1 mm

Skimmer 0.9 mm

Internal standard 103Rh

Scanning mode Peak hopping

Integration time (ms) 2000

Replicates 3

Sweeps 40

Readings 1

Dwell time (ms) 50

Lens voltage (V) 6.0

Sample uptake rate (mL min−1) 1.0

Correction equations

Zinc=64Zn–(0.035247×60Ni)

Selenium=82Se–(1.007833×83Kr)

Antimony=−0.125884×125Te
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Results and Discussion

Basic Statistics of Microchemical and Macrochemical
Elements in Ordinary and Organic Grape Juices

Table 2 shows average and standard deviations obtained for
the investigated macrochemical and microchemical elements
in organic and ordinary grape juice samples. In addition,
P(F≤f) one-tail and P(T≤t) one-tail values are given in the
table.

Firstly, we applied the F test to both groups (organic and
ordinary samples). The F test tells us whether two variances
are Bsignificantly^ different from each other. P(F≤f) one-tail
explains how to use the F test, to see whether two standard
deviations are Bthe same^ or whether they are Bdifferent.^ For
example, comparing Al variances in organic and ordinary
grape juice samples, we found a P(F≤ f) one-tail value of
3.81×10−4, which meant that there was a 3.81×10−2 % prob-
ability of observing the Al variance of organic grape juices in
ordinary grape juices. Thus, assuming a 95 % confidence in-
terval [P (0.05)], we assume that variances of Al average

concentrations in organic and ordinary grape juice samples
are different.

Considering the F test at a confidence level of 95 % [P
(0.05)], 14 elements had different variances (Al, Ba, Ca, Cd,
Co, Cu, Fe, Mn, Na, P, Pb, Se, Ti, and V), while 10 elements
exhibited equivalent variances (As, Ce, Cr, La, Mg, Mo, Ni,
Rb, Sn, and Zn).

We use a t test to compare averages, to decide whether or
not they are Bthe same.^ Statisticians say that the null
hypothesis is tested, which states that the average values from
two populations (organic and ordinary) are not different. If the
F test indicates that the standard deviations are statistically
equivalent at a 95 % confidence interval, a t test is carried
out assuming equivalent variances. For example, there
was no evidence that the As variances in ordinary and
organic samples were different, because P(F≤ f) one-tail
had a value of 0.44. Thus, a t test was carried out
assuming equivalent variances and a P(T≤ t) one-tail
value of 0.20 was found, which meant that there was
a 20 % chance of Al averages being identical, and thus,
we confirmed the null hypothesis.

Table 2 Descriptive statistical analysis of the concentrations of 24 chemical elements in ordinary and organic grape juice samples from Brazil

Average Averagea Standard deviation Standard deviationa P(F≤f) one-tail P(T≤t) one-tail

Al 1926.5 2363.9 1038.0 2539.5 3.81E−04 2.49E−01
As 21.34 18.73 12.96 12.51 4.39E−01 2.01E−01
Ba 1818.3 5263.3 2039.3 5922.9 4.34E−05 1.29E−02
Ca 533.5 394.6 620.80 92.23 2.82E−11 1.87E−01
Cd 2.20 1.57 1.89 0.83 6.27E−04 1.08E−01
Ce 1561.3 2311.3 748.5 1004.5 1.21E−01 8.40E−03
Co 30.68 25.48 16.99 28.20 2.34E−02 2.52E−01
Cr 1130.2 1146.8 183.4 260.2 8.28E−02 4.14E−01
Cu 2328.4 2836.4 3506.8 1850.6 5.36E−03 2.99E−01
Fe 6.14 5.44 4.07 1.56 1.05E−04 2.56E−01
La 1204.0 2080.3 718.1 961.1 1.24E−01 2.10E−03
Mg 284.04 368.28 90.13 112.21 1.92E−01 9.48E−03
Mn 5758.1 6578.3 1604.5 2616.8 2.74E−02 1.30E−01
Mo 10.75 9.77 6.12 7.16 2.67E−01 3.32E−01
Na* 223.77 24.03 263.7 14.38 5.70E−19 3.30E−03
Ni 83.83 70.92 59.26 57.96 4.60E−01 2.57E−01
P 449.1 642.4 98.85 188.0 6.42E−03 2.62E−04
Pb 10.11 27.23 4.83 25.66 7.67E−09 5.10E−03
Rb 9191.5 15228.2 5488.4 7852.6 7.80E−02 6.18E−03
Se 22.22 16.32 18.24 6.45 3.35E−05 1.10E−01
Sn 18.76 45.77 18.00 22.94 1.68E−01 2.18E−04
Ti 904.9 1375.5 307.6 486.9 3.54E−02 7.09E−04
V 31.64 9.58 34.01 16.56 2.18E−03 1.18E−02
Zn 2092.1 2083.4 655.9 984.3 5.44E−02 4.88E−01

Fe, Ca, Mg, Na, and P concentrations are expressed in μg/g; all other values as ng/g
a Organic samples
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Considering the t test at a confidence level of 95 % [P
(0.05)] and assuming different variances, ordinary samples
had higher Na and V concentrations than organic samples,
while organic samples exhibited higher Ba, P, Pb, and Ti con-
centrations than ordinary samples. There was no statistical
evidence that remaining elements (Al, Ca, Cd, Co, Cu, Fe,
Mn, and Se) had different concentrations. Considering the t
test at a confidence level of 95 % [P (0.05)] and assuming
equivalent variances, organic samples exhibited higher Ce,
La, Mg, Rb, and Sn concentrations than ordinary samples.
There was no statistical evidence that the remaining elements
(As, Cr, Mo, Ni, and Zn) had different concentrations.

Organic farming cannot use pesticides; application of cer-
tain pesticides is reflected in higher contents of Cu, Mn, and
Zn in wine (Angelova et al. 1999; Komárek et al. 2010; Kristl
et al. 2003; Mackie et al. 2012). Viticulturists use a Cu fungi-
cide to combat downy mildew. The use of these Cu fungicides
can increase Cu concentration in grape juice and wine
(Angelova et al. 1999; Komárek et al. 2010; Kristl et al.
2003;Mackie et al. 2012). Organic samples should have lower
levels of Cu, Mn, and Zn than ordinary samples, because
organic farming is not supposed to use pesticides. However,
there was no evidence that Cu, Mn and Zn concentrations in

organic samples were different from those in regular samples
and vice versa.

Principal Component Analysis

PCA was used to achieve reduction of dimensions and to ob-
serve a primary evaluation of between-class similarity. PCA is a
projection method that allows easy visualization of all the infor-
mation contained in a dataset. In addition, PCA helps to eluci-
date how one sample is different from another and which vari-
ables contribute most to this difference. PCA was used to ob-
serve similarities among different grape juice samples, reducing
dimensions from 24 variables to two principal components
(Moreda-Piñeiro et al. 2003). For example, a dataset was obtain-
ed that consisted of 36 grape juice samples (19 organic and 17
ordinary) and 24 elements: Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cu,
Fe, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Se, Sn, Ti, V, and Zn.
The actual measurements can be arranged in a table or a matrix
of size 36×24; this table is shown in Table S1 in the
Supplementary Material (Bro and Smilde 2014)

With 36 lines and 24 columns, obtaining a proper overview
of the available information within the dataset was difficult.
PCA is a convenient statistical technique for this purpose,

PC
 2

 1
5%

PC 1 25%

PC 1 25%

PC
 2

 1
5%

A)

B)

Fig. 1 Principal component
analysis of elemental
concentration levels based on 24
chemical element levels in 36
grape juice samples. a score plot,
b loading plot. Organic samples
are gray and marked with the
prefix B#^
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however, providing new variables, which better describe the
variation in the entire dataset (Bro and Smilde 2014).

From the data, it was obvious that some variables were mea-
sured at much larger quantities than others. For example, Fe, Ca,
Mg, Na and Pwere present atμg/g levels, whereas all remaining
elements were seen in the ng/g range. If these scale differences
are not properly handled, then PCA will only focus on high
concentration numbers (Bro and Smilde 2014; Moreda-Piñeiro
et al. 2001). It is always desired to model all variables; there is a
preprocessing tool called auto-scaling, which adjusts all columns
to the same Bsize,^ giving them an equal opportunity of being
modeled (Bro and Smilde 2014). Auto-scaling means that from
each variable, the mean value is subtracted and then the variable
is divided by its standard deviation. Thus, our data was auto-
scaled before the PCA model was build.

Initially, PCA analysis was carried out using 24 element
concentrations as shown in Fig. 1, where Fig. 1a is the scores
plot and Fig. 1b is the loadings plot. The variables were re-
duced by a projection of the 36 grape juice samples onto two
new variables termed principal components (PCs). These
were orientated and the first PC (PC1) described as much
original variation as possible between the objects. In Fig. 1,
the PC1 accounted for 25 % of total variance and the second
principal component PC2 accounted for 15 % of total
variance.

The importance of each variable to the original variables
included in the PC is described by the loadings. By plotting
the loadings for the two PCs, it is possible to assess the relative
importance of each of the variables. In the loadings plot, the
farther the distance of a chemical element is from the origin,
the higher is its importance to the PC. For examples, in
Fig. 1b, Ca, Cd, Fe, and Na are placed far from the origin in
the left hand side and Mg, Mn, P, Rb, and Ti are placed far
from the origin in the right hand side, which means that these
concentrations have high importance in PC1. This observation
could be extended to the description of the importance of each
variable to PC2. Cr, Pb, and Sn are placed far from the origin
in the bottom and As, Co, Mn, Mo, Na, Ni, and Se are placed
far from the origin in the top, which indicates that these var-
iables have high contributions to PC2. Elements placed close
to the origin, such as Cu and Al, have lower importance to
both PCs. The importance of each original variable in the
distribution of samples (grape juice) is shown in the scores
plot. For example, samples, which are placed at the right hand
side, have higher Mg, Mn, P, Rb, and Ti concentrations and
lower Ca, Cd, Fe, and Na concentrations.

Figure 1a shows that organic and ordinary grape samples
were separated into two classes. Organic samples fell into the
right hand side, while ordinary samples were located at the left
hand side. Thus, the discrimination power was based on PC1.

A) 

B) 

PC 1: 42% 

PC 1: 42% 

PC
 2

: 1
3%

 
PC

 2
: 1

3%
 

Fig. 2 Principal component
analysis of elemental
concentration levels based on 11
chemical element levels in 36
grape juice samples. a score plot,
b loading plot. Organic samples
are gray and marked with the
prefix B#^
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The distribution of the samples in Fig. 1a was in accordance
with basic statistical analysis, where ordinary samples, with
higher Na concentrations, were placed at the left hand side,
while ordinary samples, with higher Mg, Mn, P, Rb, and Ti
levels, were placed at the right hand side

Our first PCA model was unable to differentiate all organic
samples from ordinary samples. Thus, a new PCA model was
built using variables, which were statistically different. The
new PCA model was carried out using Ba, Ce, La, Mg, Na,
P, Pb, Rb, Sn, Ti, and Va concentrations, and is shown in
Fig. 2, where Fig. 2a shows the scores plot and Fig. 2b the
loadings plot. The model has a higher discrimination power in
PC1 than the previous PCA model; it readily separated ordi-
nary from organic samples, as is obvious from comparing both
score plots (Figs. 1a and 2a).

In the new PCA model, the elements with high importance
were Na and V, at the left hand side, and Mg, P, Rb, and Ti at
the right hand side. Organic samples, which were placed at the
right hand side, had lower Na and Vand higherMg, P, Rb, and
Ti concentrations than ordinary samples, which were placed in
the left hand side. However, this model was still unable to
separate all organic samples from ordinary samples.

Classifications of Results via Soft Independent Modeling
of Class Analogy

SIMCA is a modeling statistical technique that uses a box for
each category. The center of the box is the mean value of the
objects, and the orientation is defined by principal compo-
nents; a range for each component is built on the basis of the
distribution of the scores. Initially, the SIMCA model was
carried out using 24 chemical element concentrations; three
components were used for ordinary grape samples and four
components for organic grape juice samples.

The recognition of the two classes (organic and regular)
was highly satisfactory and SIMCA recognition only
misclassified regular sample no. 16 as an organic sample,
giving 94 % prediction ability for regular and 100 % for or-
ganic grape juice samples. Coomans plot (Fig. 3) showed that
none of the built models admitted samples from the other
category; thus, specificity was 100 % in all cases.

The SIMCAmodel was also carried out using only chemical
element concentrations, which are statically different, as in our
second PCA model. This SIMCA model was carried out using
four components for ordinary and organic grape juice samples.
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Fig. 3 Coomans plot of the
SIMCA model carried out for 24
chemical element concentrations.
CS2@4 (y-axis) are ordinary
samples. CS1@3 (x-axis) are
organic samples. Organic samples
have the prefix #; continuous lines
are the critical SIMCA distances
for each category
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SIMCA model carried out for 11
chemical element concentrations
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are ordinary samples. CS1@4
(x-axis) are organic samples.
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prefix #; continuous lines are the
critical SIMCA distances for each
category
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The recognition of the two classes (organic and regular)
was highly satisfactory and SIMCA recognition misclassified
four samples; three regular samples were misclassified as or-
ganic and one organic sample as ordinary, giving 82 % pre-
diction ability for regular and 95 % for organic grape juice
samples. Coomans plot (Fig. 4) showed that none of the built
models admitted samples from the other category; thus, spec-
ificity was 100 % in all cases.

The threshold lines divide the plot into four quadrants. A
sample in the fourth quadrant is a member only of the x-axis
class; its distance to that class is small enough for it to be
considered a member of the class. A sample falling in the
second quadrant is a member only of the y-axis class. A sam-
ple in the third quadrant could belong to either category and
one in the first quadrant belongs to neither. These plots can be
thought of as decision diagrams, as described by Coomans
(Frías et al. 2003).

In the Coomans plot, samples placed in the third quadrant
could reduce SIMCA’s prediction ability for samples placed
outside of the calibration dataset. The first SIMCA model,
which was carried out with 24 concentrations, had higher
prediction ability than the second model, which was carried
out using 11 chemical element concentrations. However, the
second SIMCA model contained fewer samples in the third
quadrant than the first SIMCAmodel, which indicates that the
second SIMCA model afforded a better prediction ability of
samples that were outside the training dataset.

Conclusion

This paper describes the first application of ICP-MS to
the discrimination of organic and regular grape juices.
The concentration levels of 24 chemical elements (both
macroelements and microelements) were interpreted
using techniques such as PCA and SIMCA, which pro-
vided a robust approach for evaluation of authenticity of
organic grape juice samples. In addition, the SIMCA
model, which was carried out with 11 chemical element
concentrations, may provide a better prediction ability
for samples that are outside of the calibration dataset
than the SIMCA model, which was carried out with
24 chemical element levels. In Brazil, organic grape
juices are 2–5 times more expensive than ordinary grape
juices, and the approach presented here is therefore ex-
pected to be very useful for the verification of the or-
ganic authenticity.
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