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Abstract Hyperspectral reflectance imaging technology in
near-infrared regions (900–1,700 nm) was used to evaluate
soluble solids content (SSC), firmness, moisture content
(MC), and pH values of ‘Fuji’ apples during a 13-week stor-
age period. Totally, 167 apples were divided into calibration
set (125) and prediction set (42) based on the joint x-y distance
sample set partitioning method. Mean spectrum of the regions
of interest in the hyperspectral image of each apple was used
for analysis. Two typical variable selection methods, i.e., suc-
cessive projection algorithm (SPA) and uninformative vari-
able elimination (UVE), were applied to extract the character-
istic variables from full spectra (FS). The partial least squares
(PLS) regression, least squares support vector machine
(LSSVM), and backpropagation (BP) network modeling
methods were used to establish models to predict SSC, firm-
ness, MC, and pH of apples, respectively. The results showed
that the SSC and MC could be predicted exactly by all devel-
oped models, and SPA-LSSVM and FS-BP could be used to
predict pH value roughly. All models failed to predict firm-
ness. The SPA-LSSVMmodel had better comprehensive abil-
ity in determining SSC, MC, and pH than others, with the
correlation coefficient of prediction of 0.961, 0.984, and
0.882 and residual predictive deviation of 3.49, 5.51, and
2.06, respectively. The results demonstrated the feasibility of
using near-infrared hyperspectral reflectance imaging technol-
ogy as a non-invasive method for predicting SSC, MC, and
pH of apples simultaneously.
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Introduction

Apple is one of the most popular and the most important cash
fruits in the world. It originated in Central Asia and Europe
(Harris et al. 2002). Now, China is the largest cultivation coun-
try of apples, and it exported about 976 thousand tons of apples
to the rest of the world in 2012 (National Bureau of Statistic of
People’s Republic of China 2013). Sorting is an important pro-
cess during fruit postharvest processing. At present, apples are
usually sorted manually or automatically on the basis of size,
shape, color, gloss, and surface defects and decay. However,
some internal quality attributes, such as soluble solids content
(SSC), firmness, moisture content (MC), and acidity (usually
expressed as pH value), which directly contribute to the apples’
unique taste, are essential to meet different tastes of customers
(Maniwara et al. 2014). Standard methods for these quality
measurements are mostly destructive, inefficient, or time con-
suming. Developing nondestructive and efficient methods for
sorting apples based on internal qualities is required.

Over the past decades, considerable studies have been carried
out to explore nondestructive evaluation methods for fruit qual-
ities based on different technologies, e.g., sonic (Morrison and
Abeyratne 2014), electrical (Guo et al. 2010, 2011), and optical
technologies (Lu 2003; McGlone et al. 2002; Sun et al. 2009).
Among these emerging technologies, optical-based methods
demonstrated to have great potential in online application
(Mendoza et al. 2011). Near-infrared (NIR) spectroscopy has
been applied widely as a nondestructive tool for predicting fruit
quality (Liu et al. 2010; McGlone et al. 2002; Zhu et al. 2007).
However, NIR spectrum is acquired with relatively small point
source, which could not offer much information on samples.
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Hyperspectral imaging technology integrates spectroscopic
and imaging techniques in one system for providing an infor-
mative image of a sample on the spatial and spectral simulta-
neously (Kamruzzaman et al. 2012). Each hyperspectral im-
age contains a large amount of information in a three-
dimensional (3-D) form called Bhypercube^ which can be
analyzed to characterize the object more reliably than the tra-
ditional machine vision (Kumar and Mittal 2010) or spectros-
copy techniques (Tao and Peng 2014). Hyperspectral imaging
technology has been used for predicting internal qualities such
as SSC or total sugar content, firmness, MC, and pH of
peaches (Lu and Peng 2006), blueberries (Leiva-Valenzuela
et al. 2013), strawberries (ElMasry et al. 2007), and bananas
(Rajkumar et al. 2012). For apples, Peng and Lu (2008) inves-
tigated the firmness and SSC of ‘Golden Delicious’, Mendoza
et al. (2011) predicted the firmness and SSC of three varieties
of apple, i.e., ‘Jonagold’, ‘Red Delicious’, and ‘Golden
Delicious’, and Guo et al. (2014) evaluated the pH value of
‘Fuji’ apples. These studies indicated that hyperspectral imag-
ing technology is feasible to nondestructively predict internal
quality attributes of fruits. However, only few reports have
been found to investigate these main quality attributes togeth-
er. Therefore, the work was intended to provide model foun-
dation for online determination of SSC, firmness, MC, and pH
values of apples using hyperspectral reflectance imaging tech-
nology. A linear model and a nonlinear model were used to
establish quality prediction models. Different variable selec-
tion methods were applied to extract characteristic variables,
and different combinations were investigated. At last, the op-
timal models for predicting internal quality attributes were
determined and proposed.

Materials and Methods

Samples

‘Fuji’ apples were picked from a local orchard located at 34°
21′ north latitude, 108° 10′ east longitude, and at an elevation
of 455 m in Yangling, Shaanxi Province, China on October 12,
2013. After the apples were transported to the laboratory, they
were kept in polyethylene bags with holes and stored at room
temperature (20±2 °C). Measurements were taken initially and
at 1-week interval during the 13-week storage period. Before
experiment, 10–15 intact apples were washed with tap water to
remove any foreign materials on surface and wiped dry. Then,
theyweremarked and used for acquiring hyperspectral images.
Totally, 167 apples were used in the study.

NIR Hyperspectral Imaging System

A NIR hyperspectral reflectance imaging system in the spec-
tral rang of 900–1,700 nm was used to acquire the images of

apples. The system mainly consists of a high-performance
back-illuminated 8-bit charged couple device (CCD) camera
(OPCA05G, Hamamatsu, Japan) coupled with a camera lens,
an imaging spectrograph (Imspector N17E, Spectral Imaging
Ltd., Oulu, Finland), an illumination unit equipped with four
100-W halogen lamps at an angle of 45° (HSIA-LS-TAIF,
Zolix instruments Co., Ltd., Beijing, China), a conveyer plat-
form (PSA200-11-X, Zolix Instruments Co., Ltd., Beijing,
China), data acquisition software (Spectra SENS, Zolix
Instruments Co., Ltd., Beijing, China), and a computer.
Figure 1 is the schematic diagram of the applied NIR
hyperspectral reflectance imaging system. The distance be-
tween the CCD camera lens and fruit holding platform was
fixed at 65 cm, and the exposure time of the camera was set as
10 ms. Apples were placed on the conveyer platform operated
by a stepper motor moving at a speed of 20 mm/s. NIR
hyperspectral image acquisition was finished by spectral
SENS and carried out at room temperature (20±2 °C). Each
image was acquired as a 3-D image (x, y, λ) which includes
320×256 pixels in spatial dimensional (x, y) and 256 spectral
bands from 865.11 to 1,711.71 nm with 3.32-nm interval be-
tween contiguous bands in spectral dimensional (λ).

Procedures

To obtain repeatable readings, the NIR hyperspectral reflec-
tance imaging system was turned on and kept in a standby
condition for at least 1 h. Then, the system was calibrated with
background by closing the lens cap and white reference using a
standard Teflon white board with 99 % reflectance. Two NIR
hyperspectral images were obtained at blush side and non-blush
side around the equator with 180° interval for each apple. After
completion of the NIR hyperspectral image acquisition on each
apple, a peeler was used to remove the peel on four spots in the
equatorial region with an interval of 90°. Of which, two spots
were on the blush side and non-blush side which were used for
hyperspectral image acquisition. The firmness of apples was
measured with a GY-3 fruit firmness tester (Beijing THY
Science & Technology Co., Ltd, China), whose diameter of
the penetrometer tip was 8 mm. After firmness measurements,
pulp adjacent to the spot for firmness measurement was put into
a garlic press to extract juice for measuring SSC using a digital
refractometer (PR-101α, Atago Co., Ltd., Japan). Then about
3–5 g undamaged pulp adjacent to the each spot for firmness
measurement was used to determine moisture content determi-
nation for 24 h at 70 °C in an air drying oven (101-1AB, Tianjin
Taisite Instrument Co., Ltd., China). Four readings at four spots
were recorded for SSC, firmness, and MC. An average of four
measurements for SSC, firmness, and MC were calculated,
respectively, and were used as the results of the sample.

Finally, the left apple pulp of each sample was cut into
pieces and placed in the garlic press to expel juice which
was collected in a 10-ml beaker for pH determination with a
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pH meter (PHSJ-3F, Shanghai Electrical and Instrument
Analysis Instrument Co., Ltd., China). Three pH readings
were taken for each apple, and their average was used as the
pH value of the sample.

Image Processing

To eliminate the differences from camera quantum and
physical configuration of hyperspectral imaging system,
the raw image RO, acquired from the imaging system, was
calibrated to obtain the corrected reflectance image R using
the following equation:

R ¼ RO−B
W−B

� 100 % ð1Þ

where B is background recorded by closing the lens cap,
and W is white reference image collected using a standard
Teflon white board with 99 % reflectance.

Because of the difference of apple feature and apple size
between different samples, a region of interest (ROI) with a
size of 40×40 pixels in the center of the apple in each image
was manually identified. The average reflectance spectrum of
the ROI was calculated and used for further analysis. The cal-
culation was carried out using Environment for Visualizing
Images software (ENVI 4.8) software (ITT Visual
Information Solutions, Boulder, CO, USA).

Spectral Data Preprocessing

The purpose of spectral preprocessing is to eliminate the ef-
fects of noise, distortion, and observational environment and
to improve the precision and stability of models. After com-
paring different preprocessing methods including standard
normal variate (SNV), multiplicative scatter correction
(MSC), and first and second derivatives, we found that SNV

could offer better quality determination performance than oth-
er three methods. Therefore, SNV was used to preprocess the
obtained reflectance spectra in this study. SNV is a row-
oriented transformation which centers and scales individual
spectra. It is capable of correcting multiplicative noise, e.g.,
particle size influence, scatter interference, and path length
effect, arising from the physical structure of samples (Feng
and Sun 2013). SNV preprocessing was implemented using
Unscrambler (version 9.7, CAMO, Trondheim, Norway).

Sample Division Methods

Sample set partitioning based on the joint x-y distance (SPXY)
algorithm, developed by Galvão et al. (2005) and extended
from the classic Kennard-Stone (KS) algorithm, encompasses
both x- and y-differences in the calculation of inter-sample
distances. Since SPXY can cover a multidimensional space
efficiently, and can acquire typical sample calibration set and
improve the accuracy of model (Zhu et al. 2009), it has been
widely used in sample division in spectrum analysis (Shang
et al. 2013). In the study, SPXYwas used to divide sample sets
according to the ratio of 3:1, indicating 125 samples in cali-
bration set and 42 samples in prediction set.

Characteristic Wavelength Selection Strategy

The acquired hyperspectral images usually suffer from the
problem of multicollinearity during a multivariate analysis.
Some congruent wavelengths are related to similar constitu-
ents and consequently contain much of the same information
(Liu et al. 2014). Therefore, it is essential to find few charac-
teristic wavelengths that would be most influential on the
quality evaluation of the product and to eliminate wavelengths
having no discrimination power. The most widely used suc-
cessive projection algorithm (SPA) and uninformative vari-
able elimination (UVE) were applied here to select

CCD camera

Spectrograph coupled

with a lens

Illumination unit

Conveyer platform

Power supply

for lamp

Computer

Fig. 1 Schematic diagram of
NIR hyperspectral imaging
system
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characteristic wavelengths or to eliminate uninformative var-
iables from full spectra.

Successive Projection Algorithm

SPA is a forward variable selection algorithm designed to
minimize collinearity problems in multiple linear regression.
It employs simple projection operations in a vector space to
obtain subsets of variables with minimal collinearity (Zou
et al. 2010). The new variables selected by SPA have the
maximum projection value on the orthogonal sub-space of
the previous selected variables.

The main procedures of SPA are as follows: (1) set the
maximum number of variables N to be selected before a start
vector is chosen in a space of m-dimensions (where m is the
number of original variables); (2) in an orthogonal sub-space,
the vector with high projection is selected and becomes the
new starting vector; and (3) keep the iteration until N is
reached. The final number of selected variables can be deter-
mined according to the smallest root-mean-square error of
cross-validation (RMSECV), which was used to evaluate the
error of each calibration model. It is calculated as follows:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc byni−yi� �2

n c

vuuut
ð2Þ

where ŷ\i is the estimated result for i-th sample when the
model is constructed without sampled i, yi is the measured
value of the i-th sample, and nc is the number of apples in
the calibration set.

Uninformative Variable Elimination

UVE is a backward variable removal method based on
the stability analysis of the regression coefficients of
partial least squares (PLS) models. An advantage com-
pared to other selection methods is that the level to cut
the uninformative variables is user-independent and therefore
does not present any configuration problems (Centner et al.
1996). It can eliminate uninformative variables by adding ar-
tificial random variables to the data set as a reference so that
those variables which play a less important role in the
model than the random variables could be detected (Cai et al.
2008). By using the variables selected by UVE, an overfitting
model could be avoided and the predictive ability could be
improved.

Modeling Methods

A linear model (PLS) and two nonlinear models (least squares
support vector machine (LSSVM) and backpropagation (BP)

network) were employed to establish determination models
for each internal quality parameter.

Partial Least Squares

PLS is a widely used algorithm combined factor analysis with
regression. By using PLS, the original independent informa-
tion (spectral data) is projected onto a small number of latent
variables (LVs) to simplify the relationship between the spec-
tral data and the target quality property matrix (Shao and He
2007). In the development of PLS model, full cross-validation
was used to validate the quality and to prevent overfitting of
calibration model. PLS modeling is often assumed to be in-
fluenced by just a few underlying variables called latent var-
iables (Wold et al. 2001a). The LVs were considered as new
characteristic vectors of the original spectra to reduce the di-
mensionality and compress the original spectra data (Li et al.
2013).

Least Squares Support Vector Machine

LSSVM, proposed by Suykens et al. (2002), is a modified
algorithm of the standard support vector machine (SVM). It is
capable of dealing with linear and nonlinear multivariate cali-
bration and resolving these problems in a relatively fast way.
Previous studies showed that SVM could obtain better quality
determination performance in the study. Therefore, LSSVM
was applied here. Linear kernel, polynomial kernel, and radial
basis function (RBF) kernel could be used as kernel function of
LSSVM. Contrasted with linear and polynomial kernel func-
tions, RBF kernel function is more able to reduce the compu-
tational complexity of training procedure and could handle the
nonlinear relationships between the spectra and target attri-
butes. Therefore, RBF was used as the kernel function of
LSSVM. Simplex technique and tenfold cross-validation were
applied to find the optimal values of the two important param-
eters, i.e., regularization parameter (γ) and kernel function pa-
rameters (σ2) of LSSVM. Lssvm toolbox (LSSVM v1.5,
Suykens, Leuven, Belgium) was employed for LSSVM regres-
sion. The computations and data analysis were preformed in
MATLAB (R2013a, MathWorks, Natick, MA, USA).

Backpropagation Network

BP network is one of the most popular and widely used neural
networks. It is a feedforward network and can actualize non-
linearity mapping between input and output exactly. BP is the
generalization of the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear differentiable transfer functions.
The details of BP algorithm could be found elsewhere (He
et al. 2006). In this study, a standard three-layer network,
including one input layer, one hidden layer, and one output
layer, was established.
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Model Assessment

The model performances were evaluated by correlation coef-
ficient of calibration set (RC), correlation coefficient of predic-
tion set (RP), root-mean-square error of calibration set
(RMSEC), and root-mean-square error of prediction set
(RMSEP). Besides, residual predictive deviation (RPD) was
used to assess the prediction ability of a model. These indices
are defined as follows:

RC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc byi−yið Þ2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc byi−ycð Þ2
s

ð3Þ

RP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

np byi−yið Þ2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

np byi−yp� �2
s

ð4Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc

X
i¼1

nc byi−yið Þ2
s

ð5Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

X
i¼1

np byi−yið Þ2
s

ð6Þ

RPD ¼ stdprediction=RMSEP ð7Þ

where ŷi is the predicted value of an attribute of the
i-th apple. yc and yp are the mean values of the calibra-
tion and prediction sets, respectively. np is the number
of apples in the prediction set. A good model should
have high values of RC and RP and low values of RMSEC and
RMSEP.

According to Nicolaï et al. (2007), an RPD value less
than 1.5 indicates very poor prediction, a value between
1.5 and 2.0 means that the model can discriminate low
from high values of the response variable, a value be-
tween 2.0 and 2.5 indicates that coarse quantitative pre-
dictions are possible, and a value between 2.5 and 3.0
or above corresponds to good and excellent prediction
accuracy.

Results and Discussion

Internal Quality Parameters of Samples

The statistics of SSC, firmness, MC, and pH values of used
167 apples in the calibration and prediction sets are shown in
Table 1. Table 1 indicates that for each parameter, its mini-
mum in prediction set was larger than that in calibration set,
and its maximum in prediction set was smaller than that in
calibration set. The standard deviation of each parameter was
19–26 % of the difference between the maximum and mini-
mum values of that parameter both in calibration set and pre-
diction set. This expresses that the data set contained a

Table 1 The statistics of SSC, firmness, MC, and pH values of 167 samples in the calibration and prediction sets

Quality parameter Sample set Amount of samples Minimum Maximum Mean Standard deviation

SSC (°Brix) Calibration set 125 8.48 16.60 11.92 2.08

Prediction set 42 8.55 16.20 11.12 1.86

Firmness (kg/cm2) Calibration set 125 3.87 7.43 4.99 0.68

Prediction set 42 3.97 5.97 4.82 0.43

MC (%) Calibration set 125 81.03 90.98 87.12 2.49

Prediction set 42 81.24 90.54 87.67 2.45

pH Calibration set 125 3.73 4.45 4.101 0.14

Prediction set 42 3.81 4.31 4.12 0.12
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Fig. 2 Original reflectance spectra (a) and spectra after SNV (b) for 167
samples
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sufficiently large variation to allow for a meaningful calibra-
tion (Savenije et al. 2006). Moreover, each quality parameter
in the two sets covers a similar range. All these indicate a
rational sample division and a potential ability in developing
effective models.

Spectral Features

Since heavy noises existed at both ends of the spectral range,
spectrum data below 928.19 nm and above 1,661.91 nm were
discarded, leading to spectra within the range of 928.19–1,
661.91 nm with a total of 222 bands for further analysis.
Figure 2 shows the original reflectance spectra and spectra
after SNV for the 167 apple samples between 928.19 and 1,
661.91 nm. It can be seen that the trends of spectra for all
apples during the 13-week storage were similar to each other,
but the reflectance values were different, especially for origi-
nal spectra.

Near-infrared spectra were sensitive to the concentrations
of organic materials, which involved the response of molecu-
lar bonds of C–H, O–H, and N–H. Low values of reflectance,
i.e., high absorbance, in the region of 950–980 nmwere likely
attributed to the combination effect of O–H second overtone
from carbohydrates and water (Leiva-Valenzuela et al. 2013).
Reflectance decreased rapidly at the wavelengths of 1,100–1,
170 nm and reached an absorption peak at a wavelength close

to 1,200 nm, which was likely attributed to C–H stretching
second overtone from carbohydrates (fructose, sucrose, and
glucose). In addition, a strong absorption peak at 1,450 nm
due to water absorption bands related to O–H stretching first
overtone indicates that moisture dominates the spectral signa-
tures (Kamruzzaman et al. 2012). Similar results were also
found in other fruits such as pear (Li et al. 2014), kiwifruit
(Liu and Guo 2014), and jujube (Yu et al. 2014) among others.

Characteristic Variable Selection

Characteristic Variables Selected by SPA

The changed RMSECVwith the number of variables included
in SPA for SSC is shown in Fig. 3. Figure 3 tells that the
RMSECV decreased as the number of variables increased.
The decrease was great when the number was less than 13.
It decreased slowly between 13 and 25 and increased a little
above 25. The smallest RMSECV (0.603) was found at 25.
Since more variables will increase the complexity of
established model, a significance level of α=0.25 for F test
criterion was used to determine the optimal number of vari-
ables, as suggested in Galvão et al. (2008). The determined
variable number was 17 (RMSECV=0.623). The result was
marked with a solid square in Fig. 3. The same method was
also used to select the optimal numbers of variables in SPA for
firmness, MC, and pH, and the determined numbers were 11
(RMSECV= 0.633), 23 (RMSECV= 0.586), and 8
(RMSECV=0.093), respectively. The selected variables
(wavelengths) are listed in Table 2. These wavelengths were
sequenced in the order of importance in the projection pro-
duce. Take SSC for instance, wavelength at 1,107.47 nm was
the most relevant variable selected by SPA.

Characteristic Variables Selected by UVE

UVE, based on PLS, is assumed to be influenced by some
underlying variables, i.e., latent variables (Wold et al.
2001b). The number of variables was selected by UVE chang-
es with the number of LVs. To acquire a more effective SSC
prediction model, the number of LVs was set from 1 to 20 and

Table 2 The selected variables (wavelengths) for SSC, firmness, MC, and pH by using SPA

Quality attributes No. of selected variables Selected variables (wavelength) (nm)

SSC 17 1,107.47, 1,047.71, 1,339.87, 1,376.39, 1,542.39, 1,618.75, 1,150.63, 1,353.15, 1,373.07,
938.15, 1,422.87, 1,124.07, 1,582.23, 1,011.19, 1,396.31, 1,658.59, 928.19

Firmness 11 1,462.71, 1,359.79, 1,595.51, 1,107.47, 1,300.03, 1,230.31, 1,396.31, 1,373.07, 1,635.35,
971.35, 928.19

MC 23 1,107.47, 954.75, 1,615.43, 1,608.79, 1,060.99, 1,326.59, 1,651.95, 1,383.03, 1,529.11,
1,406.27, 1,592.19, 1,124.07, 1,618.75, 981.31, 938.15, 1,369.75, 1,575.59, 1,147.31,
1,641.99, 948.11, 1,578.91, 1,263.51, 928.19

pH 8 1,356.47, 1,041.07, 1,120.75, 964.71, 1,373.07, 1,200.43, 1,532.43, 1,389.67
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Fig. 3 Changed RMSECVwith the number of variables included in SPA
for SSC. Black square represents the point at which the final number of
variables was decided
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was determined by the smallest RMSECV. Figure 4 shows the
changed RMSECV with the number of latent variables for
SSC.When the number of LVs was 12, the RMSECVreached
the minimum (0.659). Therefore, 12 LVs were used in SSC
prediction model. Figure 5 illustrates the stability of real var-
iables and random variables for SSC by UVE with 12 LVs.
The 222 input spectral variables are at the left of the vertical
line, while random variables are at the right side. Two dot lines
are the cutoff threshold which is set as the maximum of abso-
lute value among the random variables. The variables, whose
stabilities within the cutoff lines, are considered to be uninfor-
mative, and the rest variables are selected as the character-
istic variables. Finally, 135 variables were selected as char-
acteristic variables for SSC by using UVE.

With the same process, the obtained optimal numbers of
LVs for firmness, MC, and pH were 5, 13, and 12, and the
selected characteristic variables were 71, 122, and 108, for
firmness, MC, and pH, respectively.

Modeling Results

All selected characteristic variables by SPA and UVE as well
as the full spectra were used as the inputs to establish PLS,
LSSVM, and BP models for determination of each internal
quality parameter of apples.

PLS Modeling Results

A critical step in building a robust PLS model is choosing the
correct number of LVs, which can avoid establishing an
overfitting or underfitting model. Most of the variations can
be captured within the first few latent variables/factors, while
the remaining latent variables describe random noise or linear
dependencies between the wavelengths (ElMasry et al. 2011).
Generally, the optimal number of latent variables corresponds
to the lowest value of RMSECV (Zou et al. 2007). The num-
ber of latent variables for SPA-PLS model of SSC, firmness,
MC, and pH was determined by RMSECVas shown in Fig. 6.

Figure 6 indicates that the RMSECV decreased rapidly until
the number of LVs reached a value for each quality parameter,
then decreased gradually or even kept constant. Since more
latent variables may lead to overfitting problem, the optimal
numbers of LVs for predicting SSC, firmness, MC, and pH
using SPA-PLS were identified as 12, 8, 11, and 6, respective-
ly. The same method was also used to decide the optimal
numbers of LVs for each quality parameter when the full
spectra (FS) and selected characteristic parameters by UVE
were used in building PLS models. The results are shown in
Table 3. The calibration and prediction performances by using
PLS models for determining SSC, firmness, MC, and pH of
used ‘Fuji’ apples were shown in Table 4, respectively. Table 4
shows that SPA-PLSmodel had the highest RC (0.962) and the
lowest RMSEC (0.573) for SSC prediction. The FS-PLSmod-
el had the highest RP (0.953) and the lowest RMSEP (0.590).
That is the SPA-PLS had the best calibration performance and
the FS-PLS had the best prediction performance for SSC. The
RPD values of the three PLSmodels for SSCwere higher than
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Fig. 6 Changed RMSECV with the number of latent variables in SPA-
PLS for SSC, firmness, MC, and pH
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3.0, meaning all established PLS models had excellent SSC
determination ability. FS-PLS had the highest RPD (3.19), a
little higher than that of SPA-PLS (3.12), but it used 222
variables, much more than SPA-PLS (17). When there is less
use of variables, the model is more efficient. Therefore, it was
suggested that SPA-PLS was the best model for SSC
determination.

For firmness prediction, FS-PLS model had the highest RC

(0.622) and the lowest RMSEC (0.533), SPA-PLS model had
the highest RP (0.506) and the lowest RMSEP (0.375), but
their RPD values were only 1.07 and 1.16, less than 1.5, re-
spectively. This indicates that all PLS models had poor deter-
mination ability for firmness.

For MC prediction, SPA-PLS model had the highest RC

(0.974) and the lowest RMSEC (0.565) forMC determination,
but had the highest RMSEP (0.566), indicating the stability of
SPA-PLS was the worst. UVE-PLS had the highest RP

(0.978), the lowest RP (0.525), and a better RC (0.964). FS-
PLS and UVE-PLS had the same RPD value (4.71),
higher than SPA-PLS (4.38), but much less variables
(22) were used in SPA-PLS than that in FS-PLS (222) and
UVE-PLS (122). SPA-PLS has much more potential in online
determination of MC.

For pH, FS-PLS had the best calibration performance (the
highest RC and the lowest RMSEC), and SPA-PLS had the

best prediction performance (the highest RP and the lowest
RMSEP). The RPD values of all PLS models for pH were
between 1.57 and 1.65, a little higher than 1.5, illustrating that
all PLS models just can discriminate low values from high
values of pH. SPA-PLS has better comprehensive ability than
FS-PLS and UVE-PLS in pH determination.

LSSVM Modeling Results

The determined modeling parameters of LSSVM for each
quality parameter under different variable selection methods
are listed in Table 3. The calibration and prediction perfor-
mances for SSC, firmness, MC, and pH of ‘Fuji’ apples by
LSSVM models under different characteristic variable selec-
tion methods are listed in Table 5.

Table 5 tells that FS-LSSVM model had the highest RC

(0.982) and the lowest RMSEC (0.397), but had the lowest
RP (0.959) and the highest RMSEP (0.550), meaning FS-
LSSVM was unstable. SPA-LSSVM and UVE-LSSVM had
almost same calibration performance, but SPA-LSSVM had a
little poorer prediction performance than UVE-LSSVM. As
PLS models, the established LSSVM models had good SSC
determination ability since their RPD values were higher than
3.0. For predicting firmness, the RPD values of all LSSVM
models were not higher than 1.4, indicating the established

Table 4 Comparison of
determination results for different
quality attributes of ‘Fuji’ apples
by PLS models

Quality attributes Variable selection method Calibration set Prediction set RPD

RC RMSEC RP RMSEP

SSC, °Brix FS 0.958 0.595 0.953 0.589 3.19

SPA 0.962 0.573 0.949 0.602 3.12

UVE 0.955 0.620 0.945 0.620 3.03

Firmness, kg/cm2 FS 0.6222 0.533 0.378 0.407 1.07

SPA 0.5870 0.552 0.506 0.375 1.16

UVE 0.4640 0.604 0.226 0.444 0.98

MC, % FS 0.967 0.637 0.977 0.526 4.71

SPA 0.974 0.565 0.975 0.566 4.38

UVE 0.9644 0.657 0.978 0.525 4.71

pH FS 0.81743 0.082 0.783 0.074 1.57

SPA 0.793 0.087 0.806 0.070 1.65

UVE 0.812 0.083 0.785 0.074 1.58

Table 3 The determined number of LVs in PLS models and γ and σ2 in LSSVMmodels for each quality parameter under different variable selection
methods

Variable
selection method

SSC Firmness MC pH

Number of LVs γ σ2 Number of LVs γ σ2 Number of LVs γ σ2 Number of LVs γ σ2

FS 11 1.03×104 217 9 1.99 0.75 11 1.79×104 172 9 157 11.7

SPA 12 1.10×104 54.9 8 2.83 0.04 11 1.27×105 178 6 154 1.33

UVE 9 2.18×105 5,090 5 1.26 0.51 12 1.90×104 254 8 170 8.38
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LSSVM models were incapable of predicting firmness of ap-
ples using hyperspectral imaging technology. All LSSVM
models for moisture content prediction achieved a good per-
formance both in calibration set and prediction set. The best
prediction model was SPA-LSSVM with RC and RMSEC of
0.985 and 0.432, RP and RMSEP of 0.984 and 0.450, and
RPD of 5.51, respectively. For predicting pH, SPA-LSSVM
had the highest RP (0.882), the lowest RMSEP (0.057), and
the highest RPD. But its RPD was 2.06, just higher than 2,
indicating SPA-LSSVM could be used to obtain a coarse
quantitative prediction for pH.

BP Modeling Results

The parameters which have significant impact on BP model
include activation function, learning rate, threshold residual
error, etc. A three-layer network was developed with Btansig^

transfer function in the input layer and the hidden layer and
Bpureline^ transfer function in the output layer. The learning
rate was set as 0.1, and the threshold residual error was set as
1.0×10−4 after several times trials. The BP modeling results
for each quality attribute are listed in Table 6.

Table 6 shows that FS-BP performed best for SSC deter-
mination, with the highest RC (0.987) and RP (0.962), the
lowest RMSEC (0.361) and RMSEP (0.535), and the highest
RPD. The RPD values of all BP models were higher than 3.0,
indicating SSC could be predicted exactly by BP models. All
BP models were incapable of predicting firmness since their
RP values were lower than 0.62, and their RPD values were
less than 1.3. For MC prediction, the RPD values of the three
BP models were higher than 3.0, especially SPA-BP and
UVE-BP, whose RPD were higher than 5.0, indicating the
BP models could predict moisture content of apples exactly.
For pH prediction, the best model was FS-BP with the highest

Table 6 Comparison of
determination results for different
quality attributes of ‘Fuji’ apples
by BP models

Quality attributes Variable selection method Calibration set Prediction set RPD

RC RMSEC RP RMSEP

SSC, °Brix FS 0.987 0.361 0.962 0.535 3.51

SPA 0.979 0.434 0.955 0.564 3.33

UVE 0.982 0.412 0.959 0.554 3.39

Firmness, kg/cm2 FS 0.835 0.428 0.575 0.355 1.23

SPA 0.794 0.465 0.618 0.342 1.28

UVE 0.753 0.486 0.518 0.369 1.18

MC, % FS 0.983 0.558 0.982 0.609 4.07

SPA 0.984 0.456 0.984 0.481 5.15

UVE 0.990 0.368 0.983 0.482 5.14

pH FS 0.922 0.060 0.865 0.058 2.01

SPA 0.855 0.075 0.853 0.061 1.92

UVE 0.899 0.065 0.851 0.061 1.90

Table 5 Comparison of
determination results for different
quality attributes of ‘Fuji’ apples
by LSSVM models

Quality attributes Variable selection method Calibration set Prediction set RPD

RC RMSEC RP RMSEP

SSC, °Brix FS 0.982 0.397 0.959 0.550 3.42

SPA 0.970 0.509 0.961 0.539 3.49

UVE 0.970 0.510 0.963 0.517 3.64

Firmness, kg/cm2 FS 0.961 0.257 0.572 0.355 1.23

SPA 0.974 0.209 0.694 0.314 1.39

UVE 0.849 0.403 0.603 0.345 1.27

MC, % FS 0.993 0.295 0.979 0.510 4.86

SPA 0.985 0.432 0.984 0.450 5.51

UVE 0.985 0.432 0.980 0.503 4.93

pH FS 0.965 0.039 0.870 0.062 1.89

SPA 0.878 0.068 0.882 0.057 2.06

UVE 0.942 0.049 0.879 0.060 1.94
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RC (0.922) and RP (0.865) and the lowest RMSEC (0.060) and
RMSEP (0.058). But its RPD was 2.01, just higher than 2.0,
expressing that FS-BP could be used to obtain a coarse quan-
titative prediction for pH.

Comprehensive Comparison for Different Models

When the calibration and prediction performances of PLS,
LSSVM, and BP models were compared, it was found that
LSSVM had better performances than PLS and BP for each
investigated quality parameter in most cases. The SSC and
MC could be predicted precisely by all developed models,
and SPA-LSSVM and FS-BP could be used to predict pH
value roughly. However, all models were incapable of
predicting firmness. The poor pH and firmness determination
capability might lie in the narrow data range. UVE-LSSVM
had the highest RP and RPD, and the lowest RMSEP for SSC
prediction. SPA-LSSVM had the highest RP and RPD and
lowest RMSEP not only for moisture content but also for
pH prediction.

It is worth noting that variable selection could improve
LSSVM model predictive ability but could not always im-
prove predictive ability of PLS and BPmodel. Compared with
UVE, SPA can select more less characteristic variables for
each quality parameter. For example, for moisture content,
the selected variables by SPA and UVE were 23 and 122,
respectively. The number of the later was 5.3 times of the
former. Therefore, variable selection methods still have capac-
ity to save time and simplify models. Considering prediction
performance and the amount of variables used in model, it is
suggested that SPA-LSSVM was the best model for determi-
nation of SSC, MC, and pH. The measured values of SSC,
MC, and pH against predicted ones in calibration and predic-
tion sets using SPA-LSSVM are shown in Fig. 7.

Comparison with Reported Data

Hyperspectral imaging technology combined with chemomet-
ric methods have been used to predict the internal qualities of
apples. In predicting SSC, SSC, of ‘Fuji’ apple was predicted
by SPA-MLR with RP

2 of 0.9501 and RMSEP of 0.3087
(Huang et al. 2013). For ‘Golden Delicious’, Peng and Lu
(2008) employed modified Lorentzian function for prediction
with RP of 0.883 and standard error of prediction (SEP) of
0.73 %, and for ‘Golden Delicious’, ‘Jonagold’, and
‘Delicious’, RP=0.66–0.88 and SEP=0.7–0.9 % (Mendoza
et al. 2011). The prediction performance of SSC in this study
was better than that obtained by Mendoza et al. (2011) and
Peng and Lu (2008) but poorer than that obtained by Huang
et al. (2013).

For firmness prediction, PLS model was built for ‘Fuji’
apple with RP and SEP values of 0.88 and 0.88×105 Pa, re-
spectively (Peng et al. 2012). SVM model was built for ‘Fuji’

apple with RP=0.6808 (Zhao et al. 2009). Firmness for
‘Golden Delicious’ was predicted using modified Lorentzian
function with RP=0.894 and SEP=6.14 N (Peng and Lu
2008), and for ‘Golden Delicious’, ‘Jonagold’, and
’Delicious’, RP=0.84–0.95 and SEP=5.9–8.7 N (Mendoza
et al. 2011). Hyperspectral laser-induced fluorescence imag-
ing was used for ‘Golden Delicious’ firmness prediction with
RP of 0.76 (Noh and Lu 2007). The reported results for firm-
ness were better than those obtained here.

As for pH prediction, Guo et al. (2014) established synergy
internal partial least squares (siPLS) model based on shortwave
infrared hyperspectral imaging (1,000–2,500 nm) for ‘Fuji’ ap-
ple with the best RP of 0.8474 and RMSEP of 0.0398. The
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prediction performance was similar to what was obtained here.
At present, no reports have been found to predict moisture
content by using hyperspectral imaging technology.

Conclusions

A near-infrared hyperspectral reflectance imaging system
(900–1,700 nm) was used to acquire hyperspectral images of
‘Fuji’ apples during the 13-week storage period. PLS, LSSV
M, and BP modeling methods were used to establish models
for determining internal qualities of apples, and SPA and UVE
were used to select characteristic wavelengths or eliminate
uninformative variables from full spectra. Some useful infor-
mation was lost during characteristic variable selection. SPA
was more effective than UVE in selecting characteristic vari-
ables. The established LSSVM models had better perfor-
mances than PLS and BP in predicting investigated quality
parameters. The best model in predicting SSC, MC, and pH
was SPA-LSSVM with the correlation coefficient of predic-
tion of 0.961, 0.984, and 0.882 and residual predictive devia-
tion of 3.49, 5.51, and 2.06, respectively. All models could be
used to predict firmness. The study indicates that
hyperspectral imaging technology coupled with multivariate
data analysis methods can be used to predict soluble solids
content and moisture content of apples exactly and to predict
pH values roughly. Further researches will be conducted to
improve firmness prediction ability.
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