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Abstract In this study, Fourier-transform near infrared
(FT-NIR) spectroscopy in combination with chemometrics
was utilized to determine the antioxidant capacity and γ-
aminobutyric acid (GABA) content of Chinese rice wine
(CRW). Interval partial least-squares (iPLS) and extreme
learning machine (ELM) were used to improve the perfor-
mances of partial least-squares (PLS) models. In total, four
different calibration models, namely PLS, iPLS, ELM, and
ELM models based on the subintervals selected by iPLS
(iELM), were developed in this study. It was observed that
the performances of models based on the efficient spectra
intervals selected by iPLS were much better than those
based on the full spectrum. In addition, nonlinear models
were superior to linear models. After systemically compar-
ison and discussion, it was found that for all of the four
parameters determined, iELM model achieved the best re-
sult with excellent prediction precision. The coefficient of
determination for the prediction set (R2 (pre)), and the
residual predictive deviation for the prediction set were
0.932 and 4.07 for 1,1-diphenyl-2-picrylhydrazyl assay,
0.970 and 6.21 for 2,2-azino-bis-(3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt assay, 0.974 and 6.29
for total reducing antioxidant power assay and 0.952 and
4.75 for GABA, respectively. The overall results demonstrated
that FT-NIR combined with efficient variable selection algo-
rithm and nonlinear regression tool could be used as a rapid

alternative method for the prediction of the antioxidant capac-
ity and GABA content of Chinese rice wine.
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Introduction

Chinese rice wine (CRW), also called as yellow wine, is a
traditional Chinese alcoholic beverage fermented from gluti-
nous rice with wheat Qu (as a source of saccharification en-
zymes) and yeast (Saccharomyces cerevisiae). It is one of the
most popular alcoholic beverages in China and other Asian
countries with an annual consumption of more than 2 million
kiloliters (Xu et al. 2014). Due to the high contents of amino
acids, proteins, oligosaccharides, vitamins, and mineral ele-
ments, CRW is also widely known for its health care function
(Li et al. 2013). CRW has been claimed to have beneficial
effects on the prevention of cancer, cardiovascular disease,
atherosclerosis, diabetes, and aging (Que et al. 2006a). It is
generally known that one of the key development steps of
these chronic diseases is the oxidation process, which is main-
ly caused by the reactive oxygen species (ROS) and reactive
nitrogen species (RNS), including free radicals such as super-
oxide anion radicals, hydroxyl radicals, and non-free radical
species such as H2O2 and singled oxygen (Zhang et al. 2013;
Schonbichler et al. 2014). Thus, it is hypothesized that anti-
disease effects of CRW are related with the antioxidant prop-
erties (Que et al. 2006b), in consideration of the fact that the
strong antioxidant properties of CRW have been proved in
several researches (Que et al. 2006a, b). Recent studies have
also shown that there is a large amount of γ-aminobutyric acid
(GABA) in CRW. GABA, catalyzed from glutamic acid by
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glutamic acid decarboxylase, is the most important inhibiting
neurotransmitter in the brain with numerous health effects, such
as increasing dopaminergic neuronal function, easing anxiety,
and detoxification (Haugstad et al. 1997; Joye et al. 2011;
DeFeudis 1983). Due to the increasing recognized functionality
and health benefits of Chinese rice wine, antioxidant activity and
γ-aminobutyric acid content have become two of the most
important indicators of CRW quality. The determination of
total antioxidant activity is generally based on the wet
chemistry methods. For the analysis of antioxidant activity,
several methods such as ferric ion reducing antioxidant pow-
er (FRAP) assay, 2,2′-diphenyl-picrylhydrazyl (DPPH) assay,
and 2,2-azino-bis-(3-ethlbenzothiazoline-6-sulfonic acid)
diammonium salt (ABTS) assay are commonly used
(Schonbichler et al. 2014). While for the measurement of
γ-aminobutyric acid, the high-performance liquid chromatog-
raphy (HPLC) method has been used for a long time (Kim
et al. 2015). These traditional methods often show good
precision, accuracy, and reliability. However, they are often
time-consuming, labor intensive, subjective, and require ex-
pensive chemical regents and equipments.

To overcome these drawbacks, infrared spectroscopy (IR)
has emerged as a novel tool for quantitative measurements of
these important indicators. IR technique, based on the mole-
cules property to absorb infrared light and experience a wide
variety of vibrational motions characteristic of the correspond-
ing chemical compositions, is a fast, objective, and non-
destructive method and has been gradually developed as an
alternative to wet chemistry in the food industry and agricul-
ture in the last few years (Jiang et al. 2012; Shen et al. 2011).
In recent years, due to the distinct advantages including rapid-
ity and easiness, several studies have been carried out on the
application of mid infrared spectroscopy (MIR) technique in
the determination of antioxidant activity in various wines (Lu
et al. 2011; Versari et al. 2010). Nevertheless, few studies have
focused on the application of near infrared spectroscopy (NIR)
technique in the rapid measurement of antioxidant activity of
wines. The NIR region of the electromagnetic spectrum lies
between the visible and infrared regions and spans the range
of wavelengths between 4,000 and 12,500 cm−1. This region
contains information concerning the relative proportions of
C–H, N–H, S–H, and O–H bonds which are the primary struc-
tural components of organic molecules. CRWs from different
wineries contain different contents of various chemical com-
ponents which associate with the antioxidant capacity of
CRW. These differences between different samples from differ-
ent wineries can be reasonably existed in near infrared spectra
and provide the potential of predicting the total antioxidant
capacity and GABA by NIR. NIR tends to detect broad and
unspecific overtone and combination vibrations originating
from anharmonicities and seems to have advantages for the
determination of sum parameters such as antioxidant activity,
in comparison with MIR, which detects basic vibrations and

has exhibits advantages for quantification of individual com-
pounds in some studies (Schonbichler et al. 2014; Wu et al.
2015). In addition, to the best of our knowledge, the combina-
tion of IR and chemometrics has not been used for the deter-
mination of antioxidant activity and GABA content of CRW.
Moreover, almost all the studies regarding the rapid determina-
tion of antioxidant activity using IR technique focus on the
multivariate regression models based on the full spectrum
(Silva et al. 2014; Machado et al. 2014), little research exists
on the calibration model based on the selected spectral region.
As for wine samples, strong water absorption and a large num-
ber of uninformative and redundant spectral variables which
would inevitably weaken the performances of final models
exist in NIR spectra (Wu et al. 2014). A large number of studies
have proved the efficiency of the application of variable selec-
tion methods in improving the performance of the multivariate
regression models. In this study, interval partial least-squares
(iPLS) algorithm, a promising spectral variable selection
method proposed by Norgaard et al. (2000), is used to
eliminate the uncorrelated variables existing in the full
spectrum and improve prediction accuracy of the regression
model. Moreover, CRW is a complex mixture consisting of
hundred of component substances present at different con-
centrations (Shen et al. 2012a), complex correlations be-
tween determined parameters (antioxidant activity and γ-
aminobutyric acid content) and NIR spectra data may exist,
and linear regression models may not present perfectly the
relationship between the NIR spectra and chemical param-
eters in CRW samples. In these cases, methods for linear
modeling of nonlinear surfaces are needed. Extreme learn-
ing machine (ELM), as a new fast learning algorithm, is
not only extremely fast but also tends to reach the smallest
training error and norm of weights, and has shown its good
performance in regression applications as well as in large
dataset (and/or multi-label) classification applications (Chen
et al. 2012; Huang et al. 2010; Lan et al. 2010; Rong et al.
2008). It is used in this study to provide a better solution
to the modeling problem.

The aim of this study is to develop calibration models using
NIR combined with characteristic variable selection algorithm
(iPLS) and non-linear algorithm (ELM) for the prediction of
antioxidant capacity and γ-aminobutyric acid content of
Chinese rice wine. This approach would be useful for the
evaluation of antioxidant capacity and γ-aminobutyric acid
content in the beverage and nutraceutical industry.

Materials and Methods

Reagents

Sodium phosphate, borax, sodium azide, methanol, acetoni-
trile, γ-aminobutyric acid, 1,1-diphenyl-2-picrylhydrazyl, and
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2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
diammonium salt (ABTS) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Potassium ferricyanide,
disodium hydrogen phosphate, sodium dihydrogen phos-
phate, trichloroacetic acid, iron trichloride, and ascorbic acid
(vitamin C) were obtained from SinopharmChemical Reagent
Co., Ltd. (Shanghai, China). All reagents and solvents used
were analytical or HPLC grade. Water was purified by means
of Milli-Q from Millipore (Bedford, MA, USA).

Sample Preparation

To build robust and reliable calibrations models, rice wine sam-
ples from five most well-known rice wine wineries were used
in this study. Among, 21 samples were from BGuyuelongshan^
brand, 25 samples were from BKuaijishan^ brand, 23 samples
were from BShazhouyouhuang^ brand, 28 samples were
from BMinzuhong^ brand, and 23 samples were from
BShikumen^ brand. A total of 120 Chinese rice wine sam-
ples were prepared for spectral and chemical analysis in the
experiment. Additionally, even for the same brand of Chinese
rice wine, they were independent because of different
manufacturing dates, types (according to total sugar content),
and quality grades.

Reference Analysis

HPLC Determination of γ-Aminobutyric Acid Content

The GABA content was determined following partially mod-
ified methods of Fürst et al. (1990). It was carried out using an
HPLC gradient system (Thermo Fisher Scientific Co., LTD,
MA, USA) equipped with a C18 column (6 mm×150 mm,
5 μm, Acclaim 120, Dionex, Sunnyvale, CA, USA) and a
fluorescence detector (FLD, UltiMate 3000, Thermo Fisher
Scientific Co., LTD, MA, USA) detector. The sample was
measured under an excitation wavelength of 335 nm and fluo-
rescent wavelength of 390 nm. Binary eluents (mobile phase
A containing 10 mM sodium phosphate, 10 mM borax,
0.5 mM sodium azide at pH 8.2, and mobile phase B
containing acetonitrile, methanol, and distilled water at
45, 45, and 10 %, respectively) were used with a gradient
program: 0–12 min, 10 % B; 12–13 min, 10–30 % B;
13–17 min, 30–90 % B; 17–20 min, 90–100 % B. The
flow rate was 1.2 mL/min. The GABA concentration of each
sample was determined using the standard curve.

Determination of Antioxidant Activity

1,1-Diphenyl-2-picrylhydrazyl Assay Reference analysis for
DPPH assays was in accordance with the method described
by Silva et al. (2014) with slight modifications. Briefly, a
standard solution of DPPH 24 mg/L was prepared in

methanol. Wine sample (100 μL) was mixed with 2 mL of
DPPH solution, and the absorbance was measured immediate-
ly at 517 nm against a methanol blank with a UV–Vis spec-
trophotometer (TU-1900, Purkinje General Corporation,
Beijing, China). After 30 min at room temperature, the absor-
bance was read again. The percent inhibition of DPPH radical
caused by a wine sample was determined according to the
following formula: (AC(0)−AA(t)) / AC(0)×100, where AC(0) is
the absorbance of the sample at t=0 min and AA(t) is the ab-
sorbance of sample at t=30min. All samples were analyzed in
triplicate.

2,2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
Diammonium Salt Assay The ABTS assay was performed
according to the method reported by Ozgen et al. with slight
modifications (Ozgen et al. 2006). For the assay, ABTS+ rad-
ical was prepared by mixing an ABTS stock solution (7 mM
in water) with 2.45 mM potassium persulfate. This mixture
was allowed to stand for 12–16 h at room temperature in the
dark until reaching a stable oxidative state. The ABTS+ solu-
tion was diluted with 20mM sodium acetate buffer (pH 4.5) to
an absorbance of 0.70±0.01 at 734 nm. The reaction was
started by the addition of 200 μL of rice wine samples to
2 mL of the diluted ABTS+ solution. ABTS+ bleaching was
monitored at 734 nm and 25 °C for at least 30 min, and the
percentage of discoloration after 15 min was used as the mea-
sure of antioxidant activity. The ABTS+ bleaching was pro-
portional to the concentration of the sample added to the me-
dium. The antioxidant activity of CRW was calculated as vi-
tamin C equivalents antioxidant activity (VCEAC) and was
expressed as milligram of vitamin C equivalents per liter of
rice wine sample. All measurements were performed in tripli-
cate. A standard curve of the percentage of ABTS+ inhibition
in function of vitamin C concentration (0.00–100.00 mg/L)
was used for the calculations.

Total Reducing Antioxidant Power Assay The assay was per-
formed according to the methods reported by Oyaizu (1986).
Based on the preliminary experiment, 1 mL of each CRW
sample was diluted fivefold with distilled water; then 1 mL
of the diluent was mixed with 2.5 mL of phosphate buffer
(0.2M, pH 6.6) and 2.5 mL of potassium ferricyanide solution
(10 g/L). The mixture was incubated in a water bath at 50 °C
for 20 min. Then, 2.5 mL of trichloroacetic acid (TCA) solu-
tion (100 g/L) was added, and the mixture was then centri-
fuged at 3,000×g for 10 min. Of the upper layer, 2.5 mL was
combined with 2.5 mL of distilled water and 0.5 mL of a ferric
chloride solution (1 g/L). In this reaction, K3Fe(CN)6 was
reduced by the sample, and K4Fe(CN)6 was formed, which
in turn was reacted with Fe3+; then Prussian blue was formed,
and a commercial spectrophotometer TU-1900 (Purkinje
General Corporation, Beijing, China) was used to detect the
absorbance at 700 nm of the reacted solution in a 1-cm-thick
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quartz cell. Higher absorbance indicates greater total reducing
antioxidant power (TRAP), which represents higher antioxi-
dant activity. The ferric reducing antioxidant power of the
CRW samples was determined in triplicate and expressed as
milligram of vitamin C equivalents (mg VCEAC/L).

FT-NIR Instrumentation and Spectral Collection

An Antaris II near-infrared spectrometer (Thermo Electron
Corp., Madison, WI, USA) in combination with the software
package RESULT (v. 8.0, Thermo Electron Corp., Madison,
WI, USA) was utilized to obtain the NIR spectra. The spectral
data were collected at controlled temperature (25±1 °C) and
the spectra were recorded for each sample from 10,000 to 4,
000 cm−1 by averaging 16 scans for each sample with a spec-
tral resolution of 8 cm−1. Rice wine samples were measured in
a quartz cuvette with a 1-mm optical path length that was a
standard accessory from this spectrophotometer. Water was
used to clean the cuvette and dried with the help of a soft
tissue paper to avoid contamination over samples. Spectra
were recorded in triplicate for each sample and the mean
was used in the next analysis.

Data Analysis

Before forming multivariate regression models, to mitigate
background information and noises except sample informa-
tion exist in the raw spectra collected from NIR measure-
ments, eight pretreatment methods were employed to prepro-
cess the raw spectra, i.e., Savitzky–Golay (SG) smoothing
(window size of 9 points, two-order polynomial), multiplica-
tive scattering correction (MSC), standard normal variate
(SNV), the first derivative (D1), the second derivative (D2),
baseline (BL), moving average smoothing (MA), and de-
trending (DT). For MSC, full MSC function was adopted in
this study. While for D1 and D2, smoothing points from 3
to 11 and the polynomial orders of 1 and 2 were
attempted. The optimal pre-processing method is achieved
in accordance with the lowest root mean square error of
cross validation (RMSECV) value based on partial least-
squares (PLS) models, considering that PLS is the most
widely used regression methods.

In order to reduce colinearity and redundancy of NIR spec-
tra and to build more robust calibration models, iPLS algo-
rithm was used to select efficient wavelengths in this study.

Calibration models between NIR spectra and the reference
measurements were developed using PLS and ELM regres-
sion algorithms with leave-one-out cross validation
(LOOCV). Cross validation estimated the prediction error by
splitting all samples into two groups. One group was reserved
for validation (only one observation in this group), and the
others were used for calibration. The process was repeated
until all the samples had been used once in the validation

set. This verification approach is useful because it does not
waste data (all samples are involved in the development of the
model), and it is more suited to a small amount of samples (de
Oliveira et al. 2014). The optimum number of factors in the
PLS regression models is determined by the lowest number of
factors that yields the minimum value of the prediction resid-
ual error sum of squares (PRESS) in the cross validation to
avoid over fitting in the models. Outlier detection was also
applied before the development of calibrationmodels by using
the leverage criteria and the student residuals

To evaluate the model fit to the data in the calibration set,
the coefficient of determination for the calibration set
(R2 (cal)) and RMSECV were used in this study and were
calculated according to Eqs. (1–2):

R2 calð Þ ¼ 1�
X n

i¼1
byci � ycið Þ2

X n

i¼1
byci � ycð Þ2

ð1Þ

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX nc

i¼1
byci � ycið Þ2
nc

vuut ð2Þ

where nc is the number of samples in the calibration set, yci is
the reference measurement value obtained from chemical
methods for the sample i, ŷci is the predicted value by NIR
spectra for sample i, and yc is the mean of the reference mea-
surement results for all samples in the calibration set.

The prediction accuracy of the calibration model was tested
by the coefficient of determination for the prediction set
(R2 (pre)) and root mean square error of prediction (RMSEP),
which were calculated by Eqs. (3–4):

R2 preð Þ ¼ 1�
X n

i¼1
bypi � ypi

� �2

X n

i¼1
bypi � yp

� �2 ð3Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX np

i¼1
bypi � ypi

� �2

np

vuut ð4Þ

where np is the number of samples in the prediction set, ypi is
the reference measurement value obtained from chemical
methods for the sample i, ŷpi is the predicted value by NIR
spectra for sample i by the model developed when the ith
sample is left out, and yp is the mean of the reference mea-
surement results for all samples in the prediction set.

Additionally, residual predictive deviation (RPD), which is
defined as the ratio of the standard deviation (SD) of the ref-
erence data to the standard error of cross validation or the
standard error of prediction, was also used in this study to
standardize the predictive accuracy. Generally, if an RPD
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value is greater than 3, the model can be used for analytical
purposes with excellent prediction accuracy. An RPD value
between 2 and 3 is considered that this model has a good
precision. Whereas, if the value of RPD is lower than 2, the
model is considered insufficient for prediction purposes (Shen
et al. 2011). The higher the RPD value, the greater the ability
of the model to predict the chemical compositions accurately
for external samples outside the calibration set.

The spectral pretreatments and PLS were implemented in
the commercial chemometric software The Unscrambler
(v 10.2; CAMO Software AS, Oslo, Norway). The ELM
models were implemented in Matlab R2010a (MathWorks,
Natick, USA) under Windows XP. The iPLS algorithm in
the work was developed by Nørgaard et al. and the iPLS
Matlab codes were downloaded from http://www.models.
kvl.dk/ for free of charge, while the Matlab codes of ELM
algorithm were downloaded from http://www.ntu.edu.sg/
home/egbhuang/ELM_Codes.htm for free of charge.

Results and Discussions

GABA Content and Total Antioxidant Capacities in Chinese
Rice Wine

The mean, standard deviation, range, and coefficient of vari-
ation of Chinese rice wine data set for DPPH, ABTS, TRAP,
and GABA content are summarized in Table 1. Results for the
four parameters measured in this study show a wide range of
values, which may be due to differences in the manufacture
practices and composition of the raw materials. The GABA
contents in Chinese rice wines varied from 146.3 to 324.7mg/L,
with a mean value of 228.3 mg/L. For the evaluation of the total

antioxidant capacity of CRW samples, three different kinds of
antioxidant assays, namely DPPH, ABTS, and TRAP, were
applied in this study. TRAP assays measured the capacity of
reducing metals (ferric to ferrous iron). TRAP values ranged
from 21.3 to 112.8 mg VCEAC/L with a mean value of
52.9 mg VCEAC/L. For the DPPH assay, the higher the per-
centage inhibition, the higher the antioxidant capacity for the
radical the CRW sample has. In this study, DPPH inhibition
changed from 20.3 to 66.7 % with an average value of
40.0 %. ABTS assays is originally introduced as TEAC assay
by Miller et al. and modified by Re et al. (Schonbichler et al.
2014). In the present study, ABTS assays had also a wide range
of variation between 23.7 and 45.4 mg VCEAC/L with an av-
erage value of 35.8 mg VCEAC/L. These important differences
among the samples are beneficial for the development of robust
calibration models. In addition, results also show that Chinese
rice wines have a significant antioxidant capacity due to their
chemical composition, regardless of the brands and the manu-
facture dates of CRWused in this study, whichwas also reported
by other researchers (Que et al. 2006b). Chinese rice wine is
widely known for its healthy function and is honored as Bliquid
cake,^ dun to its high contents of various amino acids, proteins,
polyphenols, Maillard reaction products, GABA, oligosaccha-
rides, vitamins, and mineral elements (Li et al. 2013). These
functional components play important roles in the forming of
the strong antioxidant capacity of Chinese rice wine, which had
been proved by many researchers (Que et al. 2006b; Pang and
Zhang 2011; Xie et al. 2005; Ye et al. 2006; Fan and Qiao 2000;
Peng et al. 2012; Tan et al. 2014). Thus, the antioxidant capacity
of CRW is the result of many variables including redox poten-
tials of the compounds present in the matrix, cumulative and
synergistic interaction, and nature of the oxidizing substrate.
Furthermore, obvious differences among the results of three
different antioxidant methods used in this study were observed.
Among the three assays, the TRAP assay obtained the highest
values, whereas the ABTS assay demonstrated the lowest value.
The DPPH assay gave an intermediate result. The trend ob-
served here for results of the three assays for total antioxidant
capacity determination was also observed by Schonbichler et al.
(2014). The variations of total antioxidant capacity determined
by different chemical assays also validated the problems of
using one-dimensional method to evaluate multifunctional food
and biological antioxidants, suggesting the necessary of efficient
method to solve this problem. The contents of GABA of CRW
samples obtained are generally in agreement with values report-
ed in the previous studies (Liu et al. 2014; Xie et al. 2005).

FT-NIR Spectral Features of Chinese Rice Wine

Fourier-transform near infrared (FT-NIR) spectra of CRW
samples for the whole sample set are presented in Fig. 1a.
The absorbance in the NIR is comparable with those reported
in the literatures (Yu et al. 2007; Shen et al. 2012b). As could

Table 1 Descriptive statistics for the chemical parameters used for the
development of FT-NIR calibration and prediction models

Mean SDa Range CVb

Calibration (n=90)

DPPH (%) 40.2 11.5 20.3–66.7 28.6

ABTS (mg VCEAC/L) 35.9 5.0 23.7–45.4 14.0

TRAP (mg VCEAC/L) 53.3 24.7 21.3–112.8 46.4

GABA(mg/L) 228.8 43.5 146.3–324.7 19.0

Prediction (n=30)

DPPH (%) 39.2 11.1 21.1–64.5 28.2

ABTS (mg VCEAC/L) 35.5 5.1 23.7–45.0 14.3

TRAP (mg VCEAC/L) 51.6 23.4 22.1–106.4 45.4

GABA(mg/L) 226.7 43.0 152.1–304.2 19.0

a Standard deviation
b Coefficient of variation [{SD / mean} × 100]
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be seen in the figure, the main features of the spectra are at
around 4,155, 6,896, 5,000–5,250, 4,453, and 4,338 cm−1.
These absorption bands are more evident in the first derivative
plot (Fig. 1b). The three dominating absorption peaks that
belonged to water (the most abundant component in wine
samples) were observed at around 4,155 cm−1 corresponded
to the combination of stretch and deformation of the CH2

group (Zhang et al. 2014), at around 6,896 cm−1 related to
the first O-H overtone in water or carbohydrate, and at 5,
000–5,250 cm−1 related to the combination of stretch and
deformation of the O–H group (Shen et al. 2010b). The small
absorption band at 5,108 cm−1 was related to O–H stretch and
C=O second overtone combinations, that at 5,917 cm−1 might
be related to the –CH3 stretch first overtone or C–H groups in
aromatic compounds, and that at 5,586 cm−1, associated with
the absorption of –CH3 and C–H stretching and O–H from
sucrose, fructose, and glucose (Niu et al. 2008). Two charac-
teristic broad absorption bands which belong to ethanol were
observed at around 4,453 cm−1, assigned to C–H combina-
tions and O–H stretch overtones, and at around 4,338 cm−1,
explained by the combination of stretch and deformation of

C–H from the –CH2 group (Shen et al. 2010a). According to
the literature (Niu et al. 2008), the smaller absorption bands at
8,438 cm−1 might due to the combination of the first overtone
of the O–H stretching and bending from water.

Quantitative Analysis

All 120 samples were divided into two subsets. The first sub-
set was called calibration set to be used for building model,
while the other one was called prediction set to be used for
testing the robustness of the model. To avoid bias in subset
division, the divisionwas made using the Kennard-Stone (KS)
algorithm, which proposed a sequential method that should
cover the experimental region uniformly. The KS algorithm
ensures that the prediction samples are in the experimental
space of the calibration set, minimizing the extrapolation
when the prediction samples are predicted. The detailed pro-
cedure consists of selecting the first two samples with the
largest Euclidean distance for the calibration set. Then, from
the rest of all possible samples, the one that is most distant
from those already selected was chosen, and it was included in
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Fig. 1 Raw spectra (a), D1 (b), SNV (c), and MSC (d) preprocessed FT-NIR spectra of all CRW samples
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the calibration set. The selection process was repeated until
the desired number of samples for the calibration set was
reached. The remaining samples were used to create the pre-
diction set. Finally, the calibration set contained 90 samples
and the prediction set contained 30 samples. The descriptive
statistics for the four parameters measured in this study are
shown in Table 1. It is observed that the ranges of four refer-
ence measurements results of DPPH, ABTS, TRAP, and
GABA in the calibration set cover the entire range in the
prediction set, and their standards deviations in the calibration
and prediction sets are no significant differences. Thus, their
distributions of the samples are appropriate in the calibration
and prediction sets.

Spectral Data Processing

Table 2 shows the results of PLS models with full cross vali-
dation using different processing methods. Some of the pre-
treatment methods increased the performances of the PLS
model, while the prediction accuracy decreased by using some
other preprocessing methods. This might due to the fact that
on one hand appropriate pretreatments may eliminate some
unwanted background information, on the other hand, signif-
icant noise might also generated. It is observed that for all of
the four parameters used in this study, good performances are
obtained, with the best R2 of each parameter over 0.900, indi-
cating excellent calibration models were obtained. The opti-
mal preprocessing methods for the four parameters are prom-
inently shown in italics. As shown in Table 2, for DPPH,
ABTS, and TRAP, SNV achieved the best results with the
lowest RMSECV and the highest R2, whereas for GABA,
the best processing method was MSC. Thus, NIR spectra
preprocessed by SNV (for DPPH, ABTS, and TRAP) and
MSC (for GABA) were applied for the following analysis.
And the spectra preprocessed by SNVand MSC were shown
in Fig. 1c and d, respectively.

Selection of Efficient Spectra Intervals

iPLS algorithm, a new type of graphically oriented local
modeling procedure, is an interactive extension to PLS. The
basic principle of this algorithm is as follows: first, the full
data interval is subdivided into a number of smaller equidis-
tant subintervals; second, PLS models for all spectral intervals
were developed with adequate number of latent variables;
finally, the RMSECV is calculated for each PLS model based
on different subintervals. The subintervals with the lowest
RMSECVare chosen to construct the optimal iPLS models.

By using iPLS algorithm, most of the redundant or uninfor-
mative variables that exist in NIR spectra can be removed.
However, it has shown that, in some cases, the prediction preci-
sion of model would be inevitably weakened when inappropri-
ate number of divided subintervals was applied in the research
(Wu et al. 2015). Thus, the number of the divided subintervals
was optimized in this work. The whole spectrum region was
divided into 11–25 intervals, and then iPLS models based on
different number of intervals divided were established. Results
of the RMSECV values of the optimal iPLS models under dif-
ferent number of subintervals divided in this work for the four
parameters studied were shown in Fig. 2. It was observed that
for DPPH and ABTS, the lowest RMSECVwas achieved when
the full spectra were divided into 18 subintervals, while for
TRAP, the number of subdivided spectral intervals was 20, for
GABA, that was 21. Figure 3 shows the optimal subintervals
selected by iPLS algorithm for the prediction of DPPH, ABTS,
TRAP, and GABA. As could been seen in the figure, for TRAP,
the optimal iPLS model (with the lowest RMSECV) was
achieved when the second subinterval in the range of 4,
601.32–4,898.31 cm−1 was used to establish PLS regression
models; for GABA, the optimal iPLSmodel was achievedwhen
the second subinterval in the range of 4,288.91.376–4,
574.32 cm−1 was chosen to develop PLS models, while for
DPPH and ABTS, the efficient spectral interval was the fourth
subinterval in the range of 4,670.75–5,002.44 cm−1.

Table 2 Results of PLS models
using different pretreatments Pretreatment DPPH ABTS TRAP GABA

R2 RMSECV R2 RMSECV R2 RMSECV R2 RMSECV

Raw 0.872 3.58 0.918 1.07 0.934 4.99 0.883 12.60

SG 0.882 3.47 0.922 1.06 0.928 5.30 0.911 12.11

MSC 0.860 3.83 0.898 1.28 0.924 5.35 0.924 11.66

SNV 0.903 3.32 0.927 1.01 0.943 4.55 0.914 11.88

D1 0.891 3.40 0.903 1.20 0.918 5.52 0.882 12.90

D2 0.874 3.57 0.924 1.03 0.932 5.22 0.911 11.96

BL 0.889 3.44 0.912 1.10 0.933 5.10 0.920 11.72

MA 0.863 3.71 0.910 1.14 0.920 5.43 0.894 12.42

DT 0.869 3.66 0.914 1.08 0.931 5.22 0.903 12.25
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Comparison of Different Kinds of Calibration Models

In this study, the selected wavenumbers were used inputs of
PLS and ELM to build more robust calibration models. In
total, four different regression models, namely PLS, iPLS,
ELM, iPLS-based ELM (iELM), were constructed and their
results were systemically compared and discussed. A summa-
ry of the results of four different multivariate regression
models developed for each parameter was shown in Table 3.

Results of PLS Models

Investigated from Table 3, good performances were obtained
from the PLS models established in this study. In the calibra-
tion sets, the correlation coefficients of calibration (R2 (cal)),
RMSECV (%), and the RPD were of 0.903, 8.26, and 3.46,
respectively, for DPPH; 0.927, 2.80, and 4.99, respectively,
for ABTS; 0.943, 8.53, and 5.43, respectively, for TRAP; and
0.924, 5.10, and 3.73, respectively, for GABA. The R2 of the
four parameters were all higher than 0.900, while the RPD
value obtained for these four parameters were all higher than
3. According to the criteria reported by other authors (Wu et al.
2015), the overall results indicated that FT-NIR could be used
as a rapid method to determine the antioxidant capacity and
GABA content of Chinese rice wine. It was remarkable that a
relative high RMSECV (%) (or RMSEP (%)) and a relative low
RMSECV (%) (or RMSEP (%)) were observed for TARP and
ABTS, respectively, in comparison with that of DPPH and
GABA. This may be due to that the RMSECV (RMSEP) value
is related with the range of reference values. A wide range in
chemical composition usually results in high RMSECV
(RMSEP) values, and vice versa. It is in accordance with the
statistics shown in Table 1, the widest range (or CV value) is
observed for TARP while the narrowest range (or CV value) is
observed for ABTS.

Results of iPLS Models

As could be seen in Table 3, iPLS model showed its robust-
ness in comparison with PLS model based on full-spectral
region, as all of the iPLS models developed for the four pa-
rameters based on the optimal subintervals performed much
better than those models developed based on the full spectrum
except TRAP. The classic calibration models are often con-
structed based on the full spectrum. However, a large number
of unrelated and collinear spectral variables such as variables
from the saturated absorption bands of O–H from water in-
volve in the full spectrum, with which a worse prediction be
obtained. Therefore, spectra variables selection is needed to
improve the performance of the full spectrum model. The
main force of iPLS algorithm is to provide an overall picture
of the relevant information in different spectral subdivisions,
thereby focusing on important spectral regions and removing
interferences from other regions. It was found that the efficient
intervals selected by iPLS for DPPH, ABTS, and TRAP were
all at around 4,500–5,000 cm−1, which related with the C–H
stretch, O–H stretch, and its interaction with the aromatic ring
(Schonbichler et al. 2014). According to the opinion of Que
et al. (2006a), two phenolic compounds, namely syringic acid
and (+)-catechin, contributed most to the total antioxidant ca-
pacity of CRW. The O–H group and aromatic ring were the
main functional groups of the abovementioned two polyphe-
nol. There were as high as five hydroxyl groups attached to
two benzene rings in one syringic acid molecule and one O–H
group and one benzene ring in one catechin molecule. Thus,
the selected NIR regions well represent the contents of these
two most important polyphenols in CRWs. While for GABA,
the selected optimal interval was the second interval in the
range of 4,288.91–4,574.32 cm−1. The spectra in this region
were assigned to the combinations of the first overtone of
C=O stretch with fundamental N–H in plane bend and the first
overtone of N–H in plane bend with fundamental C=O stretch

Fig. 2 Results of the optimal
iPLS models under different
number of subintervals divided
for DPPH, TRAP, ABTS, and
GABA
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(Zhang et al. 2014; Ouyang et al. 2012). To better under-
stand the results got from iPLS, the regression coefficients
for the optimal PLS models of the four parameters based
on the full spectrum were also studied. As could be seen in
Fig. 4, for DPPH, ABTS, and TRAP (Fig. 4a–c), a signif-
icant broad band was all observed at around 4,500–4,

800 cm−1, indicating that spectral variables in this region
contribute more than other variables in building robust
models. For GABA (Fig. 4d), the main region with the
highest regression coefficients was obtained in the spectral
interval 4,300–4,500 cm−1. Overall, the results got from
the plots of regression coefficients accorded with the

Fig. 3 The optimal subintervals
selected by iPLS algorithm for the
prediction of DPPH and ABTS
(a), TRAP (b), and GABA (c)
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Fig. 4 Regression coefficients obtained for PLS models of DPPH (a), TRAP (b), ABTS (c), and GABA (d)

Table 3 Comparison of results based on different regression models

Parameters Model Variables Calibration Prediction

R2 RMSECV RMSECV (%) RPD R2 RMSEP RMSEP (%) RPD

DPPH PLS 1,557 0.903 3.32 8.26 3.46 0.894 3.35 8.55 3.30

iPLS 87 0.920 3.01 7.49 3.81 0.910 3.26 8.32 3.39

ELM 1,660 0.924 2.84 7.06 4.04 0.914 3.15 8.03 3.52

iELM 87 0.942 2.58 6.41 4.46 0.932 2.72 6.93 4.07

ABTS PLS 1,557 0.927 1.01 2.80 4.99 0.924 1.03 2.89 4.94

iPLS 87 0.941 0.89 2.46 5.67 0.932 0.96 2.71 5.27

ELM 1,660 0.959 0.85 2.37 5.89 0.953 0.87 2.45 5.83

iELM 87 0.972 0.79 2.19 6.39 0.970 0.82 2.30 6.21

TRAP PLS 1,557 0.943 4.55 8.53 5.43 0.933 5.01 9.70 4.68

iPLS 78 0.934 4.99 9.36 4.95 0.927 5.32 10.31 4.40

ELM 1,660 0.963 3.90 7.32 6.33 0.961 4.21 8.17 5.56

iELM 78 0.982 3.55 6.65 6.97 0.974 3.73 7.22 6.29

GABA PLS 1,557 0.924 11.66 5.10 3.73 0.922 11.69 5.16 3.68

iPLS 74 0.941 9.61 4.20 4.53 0.939 9.88 4.36 4.36

ELM 1,660 0.938 10.02 4.38 4.34 0.933 10.57 4.66 4.07

iELM 74 0.954 8.75 3.82 4.97 0.952 9.07 4.00 4.75

2550 Food Anal. Methods (2015) 8:2541–2553



results obtained from the iPLS algorithm. Therefore, the
spectra variables selected by iPLS algorithm contained a
lot of information related to the corresponding characteris-
tic matters. As a result, better prediction performance
established by the efficient subintervals could be better
than those based on full spectrum. In addition, the iPLS

model contained only less than 90 variables, far fewer than
those included in the full-spectrum PLS model (1,557 var-
iables). The number of wavelength variables decreased by
94.22 %; thus, the iPLS model was less complex and more
interpretable, at the same time, the computation time used
to analysis the model was considerably shortened.

Table 4 Results of iELM multivariate regression models based on different number of hidden layers for DPPH, ABTS, TRAP and GABA

Number of hidden layers DPPH ABTS TRAP GABA

R2 RMSECV R2 RMSECV R2 RMSECV R2 RMSECV

5 0.234 33.83 0.158 9.24 0.091 29.05 0.522 33.22

10 0.639 21.91 0.544 2.92 0.653 16.12 0.681 25.10

15 0.863 14.46 0.811 2.31 0.829 11.38 0.920 15.62

20 0.892 11.55 0.833 2.03 0.922 9.12 0.954 8.75

25 0.940 3.07 0.972 0.79 0.892 10.19 0.943 10.41

30 0.929 5.89 0.770 2.49 0.934 7.21 0.852 19.97

35 0.932 5.74 0.892 1.44 0.926 8.97 0.929 14.46

40 0.942 2.58 0.932 1.26 0.963 5.86 0.893 18.75

45 0.931 5.81 0.937 1.15 0.982 3.55 0.933 13.70

50 0.920 6.32 0.962 0.84 0.941 6.37 0.938 11.42
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Fig. 5 Scatter plots of reference measurements and FT-NIR predictions for DPPH (a), TRAP (b), ABTS (c), and GABA (d) by iELM models
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Comparison Between the Performances of Linear Regression
Models and Nonlinear Regression Models

ELM as an emergent technology has been developed for the
Bgeneralized^ single-hidden layer feed-forward networks
(Huang et al. 2010). Different from traditional learning algo-
rithms for neural networks, ELM not only tends to reach the
smallest training error but also the smallest norm of output
weights. In ELM model, the hidden node parameters are ran-
domly generated, the output weights can be analytically deter-
mined by using Moore-Penrose generalized inverse. The only
parameter that needs to be determined is the number of hidden
nodes. In this work, the number of hidden nodes was opti-
mized in the range from 11 to 25 with an interval of 5; ELM
models based on different number of hidden nodes were con-
structed. The optimal number of hidden nodes was according
to the RMSECV values. The results of iELM models under
different number of hidden nodes for DPPH, ABTS, TRAP,
and GABAwere shown in Table 4. The performance param-
eters of the optimal models of the four parameters are prom-
inently shown in italics.

The statistics shown in Table 3 indicated that compared
with iPLS models, iELM models achieved better perfor-
mances on predicting the four parameters studied in this work.
Among the four parameters, the predict precisions of ABTS
improved the most. For regressionmodels developed based on
the NIR spectra, R2 (pre) and RPD of ABTS increased from
0.932 and 5.27 in iPLS model to 0.970 and 6.21 in iELM
model, while RMSEP (%) decreased from 2.71 to 2.30.
Chinese rice wine sample was a complex system, in which a
large number of chemical components existed. These chemi-
cal compounds included many chemical bonds in fundamen-
tal groups including C–H, S-H, C=O, N–H, O–H, C–O, etc.;
as a result, overtones and combinations of fundamental vibra-
tions of different chemical bonds occurred in NIR spectra.
Therefore, some latent nonlinear relationship existed between
NIR spectra and the fermentation parameters.

Among all the four different kinds of models (PLS, iPLS,
ELM, iELM), the iELM model got the best performance with
the highest R2 (pre) and RPD and the lowest RMSEP (%).
Compared with PLS models using all wavelengths of NIR
spectra, R2 (pre) of iELM models increased by 4.49, 5.43,
4.30, and 3.26 %, respectively, for DPPH, ABTS, TRAP,
and GABA. The scatter plots of reference measurements and
NIR predictions for the four parameters obtained from iELM
models and PLS models based on full-spectral region were
shown in Fig. 5. The green diagonal represents ideal re-
sults—the closer the points are to this, the better is the model.
As could be seen in the plots, compared with PLS models
based on the full-spectral region, iELMmodels based on spec-
tral subintervals selected by iPLS algorithm had a better fitting
effect between the predicted and reference data (all of the data
points clustered closely to the diagonal lines).

Conclusions

The applicability of FT-NIR combined with chemometrics for
the prediction of the antioxidant capacity and GABA content
of Chinese rice wine was investigated. In developing calibra-
tionmodels, iPLS showed its incomparable superiority in con-
trast with classical PLS calibration method. Furthermore,
ELMmodels performed significantly better than PLS models,
indicating the correlations between the spectra and the chem-
ical components were inclined to be nonlinear rather than
linear. From all the results presented, it can be concluded that
NIR together with iPLS and ELM could be utilized as alter-
native technique to rapidly provide information on the healthy
function properties (including the antioxidant activity and
GABA content) of Chinese rice wine, and has a high potential
to be implemented for the rapid screening of several total
antioxidant capacity assays concurrently. In the near future,
for evaluating the total antioxidant capacity and GABA of
CRW, firstly, with an NIR spectrometer, the spectra of a large
number of CRWs from various brands and geographical ori-
gins were collected. Secondly, iPLS algorithm was used to
select the most important spectral subinterval. Thirdly, the
selected spectra region was input as independent X variables
to build nonlinear regression models, that is iELM models.
Finally, the constructed iELM model can be used to rapidly
predict the total antioxidant capacity and GABA of external
CRW samples.
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