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Abstract Enterobacteriaceae is one kind of harmful micro-
organisms commonly presented in raw fish products, and de-
tection of Enterobacteriaceae plays a very important role in
evaluating microbial contamination. This work was carried
out to exploit the potential of emerging hyperspectral imaging
technique to determine the Enterobacteriaceae contamination
of salmon flesh during cold storage. The spectral information
ranging from 900 to 1700 nm (239 wavelengths) was extract-
ed to relate to the Enterobacteriaceae loads (recorded as log
10 CFU/g) using partial least square (PLS) regression, devel-
oping a PLS model with correlation coefficient of prediction
(rP) of 0.94 and root mean square error of prediction (RMSEP)
of 0.53 as well as residual predictive deviation (RPD) of 2.97.
By applying successive projection algorithm (SPA), eight
wavelengths at 924, 931, 964, 1068, 1262, 1373, 1628 and
1668 nm among the 239 wavelengths were selected as infor-
mative wavelengths to reduce the information redundancy and
optimise the PLS model. With the eight informative wave-
lengths, a simplified PLS model defined as SPA-PLS was
established with rP of 0.95, RMSEP of 0.47 and RPD of
3.23. To visualise the contamination degree of salmon flesh
caused by Enterobacteriaceae, the SPA-PLSmodel was trans-
ferred to each pixel of images, and colourful distribution maps
were produced with different colour represented different
numbers of Enterobacteriaceae colonies. The results showed
that hyperspectral imaging operating in 900–1700 nm is
promising in evaluating Enterobacteriaceae contamination
of salmon products. More studies are still required to further

refine the multispectral imaging system to achieve online
application.
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Introduction

With the development of optical technology, a novel tech-
nique called hyperspectral imaging has emerged as a smart
and non-destructive technique to create, record and display
the images at a large number of discrete, contiguous spectral
bands (ElMasry et al. 2012a). Because of its powerful ability
to provide spectral and spatial information simultaneously,
hyperspectral imaging technique has attracted tremendous in-
terests and attentions both in academia and industry. In prin-
ciple, a hyperspectral image of a sample is composed of a
series of congruent three-dimensional “datacube” (x, y, λ), in
which (x, y) and (λ) represent spatial and spectral information,
respectively. The hyperspectral image can be described either as
separate spatial image (x, y) at each individual wavelength (λ) or
as a spectrum (λ) at each pixel (x, y) (Wu and Sun 2013a).
Spectral data combined with spatial images provide a large
amount of information, which can be analysed to characterise a
target object more objectively and reliably. Moreover, imaging
function, as an obvious advantage of hyperspectral imaging, pro-
vides a direct and simple way to visualise the spatial variation of
quality attributes of an object, which cannot be done by conven-
tional spectroscopic technology and other destructive methods.
On the other hand, although imaging or computer vision is often
used for quality assessment by providing spatial images of food
samples (Valous et al. 2009; Jackman et al. 2009, 2008; Sun
2004;Wang and Sun 2002), just like hyperspectral imaging does
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by its visualisation feature, it cannot obtain the quality-related
spectral information at every pixel. Hence, it can be said that
hyperspectral imaging is a more advanced technique, and its
potential should be exploited to guarantee food quality, thus sat-
isfying the increasing consumer demands.

Up to now, many applications on the use of hyperspectral
imaging for quality evaluation and assessment have been
reported in various kinds of agri-food products, such as pork
(Dissing et al. 2012; Barbin et al. 2012), lamb (Kamruzzaman
et al. 2011; 2012a), beef (Wu et al. 2012a; ElMasry et al.
2011b, 2012b), turkey ham (ElMasry et al. 2011c), poultry
(Feng and Sun 2013), fruits and vegetables (Rajkumar et al.
2012; Taghizadeh et al. 2009), eggs (Abdel-Nour and Ngadi
2011), milk (Qin et al. 2012) and cereals (Shahin et al. 2013).
Besides, aquatic products have also been evaluated in terms of
physical and chemical attributes, involving texture profile analy-
sis (Wu and Sun 2013b; He et al. 2014a), moisture and drip loss
distribution (He et al. 2013, 2014b) and colour measurement
(Wu et al. 2012b). Among aquatic products, salmon is especially
worth mentioning because of its preferable nutritional value and
economic importance. Being rich in many valuable nutritive
elements including high-quality lipids, tocopherol and
astaxanthin, salmon becomes one of the most popular fish spe-
cies (Johnston et al. 2006). Salmon farming has been one of the
most successful aquaculture industrieswith a production substan-
tially larger than the total aquaculture production in recent
decades (Asche et al. 2013). In fish market, salmon fillets are
always sold on ice and exposed directly to the air without any
protection from microbial contamination. On the other hand,
salmon fillets are so perishable because of excellent environment
(moist and nutritious flesh) for growth of spoilage microorgan-
isms (Wu and Sun 2013c). Therefore, it is very necessary to
inspect and control emerging microorganism contamination in
order to ensure salmon fillets being safely consumed.

Enterobacteriaceae as a large group of harmful microorgan-
isms mainly contains Escherichia coli, Shigella, Salmonella and
Yersinia. They can transform carbohydrate (sugar) into acids and
gas during the process of fermentation (Feng et al. 2012). The
output of the transformation could cause serious public health
concerns to consumers (Pitout and Laupland 2008). In food and
food products, the number ofEnterobacteriaceae colonies, which
isEnterobacteriaceae loads, is often used as a useful indicator for
food safety evaluation (Zaragozá et al. 2012; Tosukhowong et al.
2011). Conventional techniques for Enterobacteriaceae detection
commonly include standard plate colony-counting method
(Botsoglou et al. 2010), immunological method (enzyme-linked
immunosorbent assay, ELISA) (Dwivedi and Jaykus
2011), molecular method (polymerase chain reaction,
PCR) (Liu et al. 2013) as well as PCR-ELISA method
(Kuo et al. 2010). However, these methods are time-consum-
ing, labour-intensive, tedious, inefficient, destructive and thus
not suitable for a rapid, non-destructive and high-efficient in-
spection application. Therefore besides methods and

techniques such as drying (Sun and Byrne 1998; Sun and
Woods 1997; Delgado and Sun 2002a, b), refrigeration (Sun
1997; Sun et al. 1996; McDonald and Sun 2001; Kiani and
Sun 2011) and edible coating (Xu et al. 2001) are often re-
quired to ensure food quality and safety, there is a urgent need
for efficient and effective assessment methods.

Hyperspectral imaging that emerged as a promising tech-
nique provides a possible way to conduct quality evaluation in
fish products. In recent years, hyperspectral imaging has been
used as an analytical tool for quality assessment of fish prod-
ucts such as flesh tenderness evaluation (He et al. 2014a), fat
determination (ElMasry and Wold 2008), water-holding ca-
pacity measurement (Wu and Sun 2013d; Zhu et al. 2012)
and freshness identification (Sone et al. 2012). Besides,
hyperspectral imaging has also been used for microbial eval-
uation in meat (Peng et al. 2009, 2011; Tao et al. 2012; Teena
et al. 2013), contamination in fruits (Liu et al. 2007) and par-
asite detection in fish fillets (Sivertsen et al. 2011). In this
study, the main objective of this study was to explore the
potential of hyperspectral imaging for rapid determination of
Enterobacteriaceae in farmed salmon flesh during cold stor-
age. The contamination degree of salmon samples caused by
Enterobacteriaceae was quantified based on the analysis of
hyperspectral images and then further visualised using distri-
bution maps. The specific aims of this study were to (1) ac-
quire hyperspectral images of salmon samples in the wave-
length range of 900–1700 nm at different storage time, (2)
identify the regions of interest (ROI) within the acquired
hyperspectral images and extract the spectral information
from the ROIs, (3) develop a mathematical model to correlate
the extracted spectra of samples with their Enterobacteriaceae
loads measured by the standard pour plate method, (4) select
informative wavelengths for the reduction of redundant infor-
mation among the full wavelength range, (5) establish
optimised models based on the selected informative wave-
lengths and evaluate their performance in terms of correlation
coefficient (r) and root mean square error (RMSE) as well as
residual predictive deviation (RPD), and (6) transfer a better
optimised model into the pixels of images of samples to gen-
erate colour maps for Enterobacteriaceae load visualisation.

Materials and Methods

Fillet Preparation and Sampling

Thirty fresh farmed Atlantic salmon fillets (Salmo salar) origi-
nated fromNorwaywere supplied by local seafood supermarkets
in Dublin, Ireland. The fillets were vacuum-packed and
transported to the laboratory of Food Refrigeration and
Computerised Food Technology (FRCFT), University College
Dublin, Ireland, and then used for sampling and experiment.
Each fillet was cut into several cubes (approximately 10 g) with

2428 Food Anal. Methods (2015) 8:2427–2436



the size of 3 cm×3 cm×1 cm (length × width × thickness),
obtaining a total of 94 samples from the thirty fillets. All the
cubed samples were then packed using cling film (Tesco
Stores Ltd, UK), labelled and stored at 4 °С in a digital
refrigerator for 0, 3, 6, 8, 10 and 13 days.

Hyperspectral Imaging System

In this work, a line scan pushbroomnear-infrared hyperspectral
imaging system was used for the acquisition of hyperspectral
images of the cubed samples in reflectance mode. The main
components of the system are presented in Fig. 1. In detail, the
hyperspectral imaging system is composed of an imaging spec-
trograph (Specim ImSpector N17E, Spectral Imaging Ltd.,
Oulu, Finland), a CCD camera (SUI Goodrich SU320M-
1.7RT, a 12-bit high performance of 320 spatial × 256 spec-
tral), a lens (Xeva 992, Xenics Infrared Solutions, Belgium), a
pair of tungsten lamps (V-light, Lowel Light Inc, USA), a
translation stage (MSA15R-N, AMT-Linearways,
SuperSlides & Bushes Corp., India) and a computer installed
with an image acquisition software (SpectralCube, Spectral
Imaging Ltd., Oulu, Finland). The spectrograph covers a broad
near-infrared spectral range from 897 to 1753 nm (256 spectral
bands) with an increment of 3.34 nm between every two
wavebands. Due to the low signal-to-noise ratio of the
ranges within 897–900 and 1700–1753 nm, only the
wavelength range of 900–1700 nm with 239 spectral
wavebands was used for further data analysis.

Image Acquisition and Data Extraction

At each test day, about 15 samples were taken out of the
refrigerator and placed on the translation stage of the
hyperspectral imaging system. Scanning was performed line
by line to acquire hyperspectral images of the samples, with
the moving speed of translation stage of 2.8 cm/s to obtain the
same resolution in the horizontal and vertical directions. The

acquired images were the combination of congruent two-
dimensional sub-images (x, y) at the 239 wavelength bands
(λ) that spanned from 900 to 1700 nm. In fact, the raw
hyperspectral images collected by the CCD camera attached
in the hyperspectral imaging system reflected the signal inten-
sity rather than the reflectance spectra. Therefore, image cal-
ibration was required to correct the raw hyperspectral images
into reflectance images. Two reference images, white and
black, were needed during the calibration process. The white
image (IWhite) was obtained by scanning a white board with
about 99.9 % reflectance. The black image (IBlack) was ac-
quired by turning off the light source and covering the camera
lens completely, making the black image with about 0 % re-
flectance. The raw hyperspectral images (IRaw) were finally
calibrated (ICalibrated) using a formula shown below:

ICalibrated ¼ IRaw−IBlack
IWhite−IBlack

� 100 ð1Þ

With the regions of interest (ROI) function of ENVI v4.6
software (Research Systems Inc., Boulder, CO, USA), the re-
gion that had the same shape of the corresponding sample in the
calibrated hyperspectral image was isolated from the back-
ground. The spectra of all pixels within the isolated ROI were
extracted and averaged to obtain one spectrum representing the
ROI. As a result, 94 mean spectra corresponding to the 94
samples were obtained as the basis for further spectral analysis.

Microbiological Analysis

Once the image acquisition and calibration were completed,
the salmon samples were immediately used to measure their
reference numbers of Enterobacteriaceae colonies according
to the method described by Sallam (Sallam 2007).
Enterobacteriaceae presented in each sample were incubated
in a pour plate of Violet Red Bile Glucose Agar (VRBGA,
CM0485, Oxoid, Basingstoke, UK) at 37 °С and then

Fig. 1 The configuration of the
lab line-scanning near-infrared
hyperspectral imaging system
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enumerated after 24 h. The Enterobacteriaceae loads were re-
corded as colony-forming units (CFU) and logarithmically trans-
formed. The final results are listed in Table 1, and the growing
trend ofEnterobacteriaceae loads of salmon samples is presented
in Fig. 2. To avoid bias in the selection of calibration and predic-
tion data, the 94 samples were sorted from small to large accord-
ing to their values ofEnterobacteriaceae loads. One of every four
samples was selected into the prediction group. Finally, 71 sam-
ples among the 94 samples were selected for model calibration,
and the rest of the samples (23 samples) were used for prediction.

Chemometric Analysis

To establish the quantitative relationship between the spectra
extracted from the salmon samples and the measured
Enterobacteriaceae loads, chemometric analysis was conducted
to mine the spectral data using partial least square (PLS) regres-
sion. PLS is a linear algorithm and often applied to model in the
situation where the number of predictor variables (e.g. wave-
lengths) is larger than that of response variables, and there is a
high correlation or colinearity among the predictor variables at
the same time (Barbin et al. 2013). In this study, by reducing the
original wavelengths to a set of unrelated wavelengths, optimal
latent variables (LVs) were found in the PLS procedure to pre-
dict Enterobacteriaceae loads from the 239 spectral variables.

The performance of established regression models was exam-
ined in terms of correlation coefficient of calibration (rC), root
mean square error of calibration (RMSEC), correlation coefficient
of prediction (rP), root mean square error of prediction (RMSEP)
and residual predictive deviation (RPD). Generally, a goodmodel
should have high correlation coefficients (rC and rP), high RPD
and low root mean square errors (RMSEC and RMSEP)
(ElMasry and Wold 2008; Gómez et al. 2006). In addition, an
absolute value between RMSEC and RMSEP, which is |RMSEC
−RMSEP|, was also calculated to evaluate model robustness.

Informative Wavelength Selection

In general, hyperspectral images containing hundreds or thou-
sands of spectral variables are always characterized by high
dimensionality, which requires more time to do information
processing (Kamruzzaman et al. 2012b). Moreover, the con-
tiguous wavelengths often exhibit similar spectral informa-
tion, which produces a problem of multicollinearity, leading
to information redundancy. In addition, irrelevant or useless
information might hide in the spectra, which will weaken the
performance of predictive model. The elimination of

uninformation variables (wavelengths) is helpful to predigest
calibration and improve prediction accuracy (Wu et al.
2012c). Therefore, the most useful wavelengths, that is, infor-
mative wavelengths, are preferable to be selected for data
analysis. As claimed by Keskin et al. (Keskin et al. 2004),
the wavelengths holding the most useful information should
be recommended while the wavelengths carrying irrelevant
information should be eliminated. To sum up, the implemen-
tation of informative wavelength selection will not only con-
tribute to the reduction of information dimensionality and
multicollinearity, but also simplify the modelling process
and accelerate the data analysis.

It has been reported that regression coefficients of PLS
model can be used for informative wavelength selection
(ElMasry et al. 2011). In this method, wavelengths corre-
sponding to the large values of regression coefficients (regard-
less of sign) are regarded as informative wavelengths and
carry the most important spectral information related to spe-
cific quality parameter. Successive projection algorithm (SPA)
is another variable selection method proposed to solve the
collinearity problems of spectral wavelengths (Wu et al.
2014). In SPA procedure, there are two steps required to select
the important wavelengths for Enterobacteriaceae contamina-
tion prediction. First, the candidate subsets of variables includ-
ing spectra (X) and reference values of Enterobacteriaceae
loads (Y) were constructed and arranged in a matrix. Second,
the constructed candidate subsets were evaluated according to
the performance of the calibrated model. Informative

Table 1 The resulting
Enterobacteriaceae loads
measured by VRBGA plate
method

SD standard deviation

Number of samples Maximum Minimum Range Mean±SD

Calibration set 71 6.940 2.477 4.463 5.148±1.530

Prediction set 23 6.892 2.672 4.220 5.127±1.519

Fig. 2 The growing trend of Enterobacteriaceae loads of salmon
samples during cold storage
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wavelength selection by regression coefficients of PLS model
and SPA was operated with software Unscrambler v9.7
(CAMO, Oslo, Norway) and Matlab R2010b (The
Mathworks, Inc., Natick, MA, USA), respectively.

Visualisation of Enterobacteriaceae Distribution

Visualisation of quality attributes is an advanced function of
hyperspectral imaging over traditional spectroscopy. Such
function enables hyperspectral imaging to visualise the spatial
variation of quality attributes in the target sample (He et al.
2015; Sun 2010). In practice, it is very useful to show the
microbial change of food products using a visual image (spa-
tial distribution), especially many harmful microbes that can-
not be observed by naked eyes. A quantitative predic-
tion model in tandem with a spatial image will be more pow-
erful and effective in evaluating microorganism contam-
ination in food products, like Enterobacteriaceae present
in salmon flesh.

In this study, there were two steps required to carry out the
Enterobacteriaceae load visualisation in salmon samples.
First, different optimised models established with the informa-
tive wavelengths selected by regression coefficients of PLS
model and SPA were, respectively, evaluated and then com-
pared in terms of predictive ability. Second, a model with
better accuracy was chosen and then transferred to each pixel
of images with the help of an image processing algorithm. The
distribution map of Enterobacteriaceae loads was at last cre-
ated to exhibit the Enterobacteriaceae load variation from
sample to sample and spot to spot within the same sample.
The whole visualisation process was performed with the
Matlab R2010b software.

Results and Discussion

Spectral Profiles of Salmon Samples

The typical spectral profiles extracted from the ROI of
hyperspectral images of tested salmon samples with different
Enterobacteriaceae loads are shown in Fig. 3. It was observed
that there are several obvious absorption peaks emerged in the
whole 900–1700-nm range, which were associated with over-
tone and combination vibrations of hydrogen-containing func-
tional groups, such as C–H, O–H, N–H and S–H (ElMasry
et al. 2011). In specific, absorption maxima that appeared at
around 975 nm was assigned to the O–H stretching second
overtone of water (Ritthiruangdej et al. 2011). The absorption
peak around 1210 nm was due to the C–H stretching second
overtone (presence of fat) (Morales-Sillero et al. 2011). The
absorption peak at 1450 nm was related to the O–H stretching
first overtone (presence of water) (Cozzolino et al. 2013). In
general, the spectral profiles mainly exhibited the information

of chemical molecules such as water and fat, which are the
main components of salmon flesh. As shown in Fig. 3, the
three reflectance spectra curves had similar trends and that
may be due to the similar chemical compositions of salmon
samples. On the other hand, small differences between each
curve were observed, which may be caused by the changing of
the major chemical compositions in salmon sample during the
microbial contamination process.

Although no typical feature peaks of Enterobacteriaceae
were found in the near-infrared spectral region, spectral infor-
mation concerning these chemical components could be
mined using appropriate chemometrics method for the deter-
mination of Enterobacteriaceae loads in salmon flesh.

PLS Analysis Based on Full Range Spectra

In the PLS calibration, two matrixes containing the extracted
full range spectral data and the measured Enterobacteriaceae
loads were obtained for PLSmodel calibration and prediction,
respectively. The first matrix that had the size of 71×239
(sample×wavelength) was used for the model calibration,
while the other matrix with the size of 23×239 (sample×
wavelength) was used as an independent set to evaluate the
performance of the calibrated PLS model. After executing
PLS algorithm in software Unscrambler, a PLS model based
on the full 900–1700-nm range spectra was developed, and its
performance is shown in Table 2. The PLS model exhibited a
high ability for the prediction of Enterobacteriaceae
loads of salmon flesh, with rP of 0.94 and RMSEP of
0.53. Moreover, the |RMSEC−RMSEP| value was 0.10,
indicating a good robustness of the PLS model. The
nearer the value of |RMSEC−RMSEP| approximates to
zero, the better robustness PLS model has. Besides, the PRD
value in this study was 2.81, which is over 2.5 and that indi-
cated an excellent prediction accuracy of the PLS model
(Nicolaï et al. 2007).

Fig. 3 Average spectral profiles of samples with three different
Enterobacteriaceae loads
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Wavelength Selection and Model Optimisation

Although the predictive ability of the PLS model for
Enterobacteriaceae load prediction was good, the number of
the full 900–1700-nm wavelengths was still large, which
would need more time for data processing and model calibra-
tion. It was expected that the number of full wavelengths
could be reduced, and a new model with similar performance
could be developed based on the reduced wavelengths, com-
pared with the original PLS model. In view of this, wave-
length selection was conducted by the regression coefficients
of PLS model and SPA, respectively, to select informative
wavelengths from the whole 900–1700-nm range.

Informative Wavelengths Selected by Regression Coefficients

In the process of selecting the informative wavelengths by
regression coefficients, the wavelengths among the full 900–
1700-nm range corresponding to the large values of regression
coefficients (regardless of sign) of the PLS model were con-
sidered as the informative wavelengths for the PLS model
optimisation. As shown in Fig. 4, 11 individual wavelengths
at 921, 931, 964, 1008, 1105, 1145, 1252, 1366, 1628, 1658
and 1685 nm were selected as the informative wavelengths.

Based on the selected wavelengths, a new matrix with the
dimension of 94×11 (sample × wavelength) was obtained and
used for PLS model optimisation. In the new matrix, the first
71 lines of the matrix were used for calibration, and the re-
maining 23 lines were used for prediction. PLS algorithm was
applied with the new matrix to establish an optimised PLS
model (RC-PLS model for short), which had the rC of 0.95
with RMSEC of 0.47 and rP of 0.95 with RMSEP of 0.47
(Table 2). Although the number of wavelength variables was
reduced from 239 to 11, the performance of the RC-PLS
model in predicting Enterobacteriaceae loads of salmon flesh
was similar to the original PLS model. Moreover, the
|RMSEC−RMSEP| value in RC-PLS model was 0.01, 90 %
less than that of PLS model, which indicated that the RC-PLS
model had better robustness than the PLS model. Besides, the
RPD value of 3.11 in RC-PLS model was about 11 % higher
than that (2.81) of PLS model, showing a better ability of
RC-PLS model in predicting Enterobacteriaceae loads. In
general, use of regression coefficients of PLS model for infor-
mative wavelength selection was helpful to improve the
model predictive accuracy and robustness. Based on the
regression coefficients of RC-PLS model, a formula was
obtained and expressed as follows:

Y ¼ 3:331829þ 19:835X 920 nm−65:399X 931 nm þ 69:172X 964 nm

−97:146X 1008 nm þ 59:757X 1105 nm þ 130:337X 1145 nm−146:057X 1252 nm

þ 27:291X 1366 nm−75:149X 1628 nm þ 78:449X 1658 nm þ 10:197X 1685 nm

ð2Þ

Informative Wavelengths Selected by SPA

By running SPA program in software Matlab, RMSEV plots
were obtained to select the optimal number of informative
wavelengths. As shown in Fig. 5a, the formed RMSEV curve
exhibited a rise trend as the number of selected informative
wavelengths (variables) was increased from one to three, then
followed by a sharp fall when the variable number increased
from three to seven and at last a gradual fall when the
variable number increased from seven to thirteen. The
eighth plot was picked and marked with a square marker as

shown in Fig. 5a. The particular informative eight wave-
lengths of 924, 931, 964, 1068, 1262, 1373, 1628 and
1668 nm were identified and exhibited with square markers
in Fig. 5b.

With the eight important wavelengths selected by SPA, the
original matrix used for PLS model development was reduced
to 94×8 (sample×wavelength), with 71×8 submatrix and
23×8 submatrix used for a new model calibration and predic-
tion, respectively. With the reduced matrix, the PLS model
was simplified, and an optimised model defined as SPA-PLS
model was developed for Enterobacteriaceae load

Table 2 PLS calibration for
Enterobacteriaceae load
prediction by using full
900–1700-nm wavelengths and
selected informative wavelengths,
respectively

Model Number
of wavelength

Number of
latent factors

Calibration set Prediction set

rC RMSEC rP RMSEP RPD

PLS 239 9 0.96 0.43 0.94 0.53 2.81

RC-PLS 11 6 0.95 0.47 0.95 0.48 3.11

SPA-PLS 8 7 0.93 0.55 0.95 0.47 3.23
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determination. As shown in Table 2, although the wavelength
number was reduced by 97 % (239 vs 8), the performance of
the SPA-PLSmodel was comparable to the original PLSmod-
el. The |RMSEC−RMSEP| value of 0.08 in SPA-PLS model
was reduced by 20 % (0.10) compared with the PLS model,
which showed that the SPA-PLS model had a better robust-
ness than the PLSmodel. Besides, the RPD value of SPA-PLS

model was 3.23, about 15 % higher than that of PLS model,
which indicated a better predictive ability of SPA-PLS model
over the PLS model in predicting Enterobacteriaceae loads.
According to the regression coefficients of the SPA-PLSmod-
el, an equation for the prediction of Enterobacteriaceae loads
of salmon samples was obtained and is shown below:

Y ¼ 1:838659þ 62:943X 924 nm−126:709X 931 nm þ 110:62X 964 nm þ 27:658X 1068 nm

−155:122X 1262 nm þ 191:699X 1373 nm−157:308X 1628 nm þ 60:942X 1668 nm

ð3Þ

It was observed from Table 2 that the performance of the
SPA-PLS model was similar to that of the RC-PLS model in
predicting Enterobacteriaceae loads, although the wavelength
number in SPA-PLS model was less than that of RC-PLS
model (8 vs 11). The wavelength selection results showed that
SPA and regression coefficients of PLS model were all effec-
tive in select informative wavelengths for PLS model optimi-
sation. In practice, the SPA-PLS model was more suitable for
further development of multispectral imaging system for on-
line application, because of its less wavelength number.

Distribution of Enterobacteriaceae Loads

Besides chemometric analysis of spectra to develop quantita-
tive model for Enterobacteriaceae contamination prediction,
Enterobacteriaceae loads distributed in the salmon samples
were also spatially visualised by the near-infrared hyperspectral
imaging technique. The aim of visualising the distribution of
Enterobacteriaceae loads was to show the unvisible changes of
Enterobacteriaceae from sample to sample or spot to spot with-
in the same sample in pseudocolour images, achieving and
enhancing a better understanding of the Enterobacteriaceae
contamination process when salmon flesh was stored in cold
conditions. Such visualisation is generally the final important
step in the whole analysis of the acquired hyperspectral images
and also an advantageous feature of hyperspectral imaging over
the traditional spectroscopic technology.

In this study, the Enterobacteriaceae load visualisation was
realized by transferring the SPA-PLS model to each pixel of
images. The dot product was calculated between the regression
coefficients of SPA-PLS model shown in Eq. (3) and the spec-
trum of each pixel in the hyperspectral images at the selected
eight informative wavelengths, resulting in the predicted
Enterobacteriaceae loads of every pixel within the ROI of
salmon samples. A distribution map of Enterobacteriaceae
loads was then generated based on the predicted values of
Enterobacteriaceae loads and their pixel positions within
the ROI. In the generated map, pixels having similar
spectral features produced similar predicted values of

Enterobacteriaceae loads, which were then visualised in sim-
ilar colour in the distribution map.

In Fig. 6, several distribution maps of salmon samples were
displayed as examples to illustrate the spatial variation of
Enterobacteriaceae loads during the contamination process. In
the maps, a linear colour scale on the right side of samples was
assigned from blue to red to indicate the Enterobacteriaceae
loads in the salmon samples from low to high. The colour scale
was used to exhibit the contamination process of salmon sam-
ples, with blue, green and red colour representing the low, mid-
dle and high degree of Enterobacteriaceae contamination, re-
spectively. As shown in Fig. 6, a general trend of the increment
of contamination degree of salmon samples was observed with
the averageEnterobacteriaceae loads that increased from low to
high. At early stage of contamination, the distribution maps of
Enterobacteriaceae loads were almost in blue colour (e.g. the
sample with the mean Enterobacteriaceae loads of 2.643). At
the middle stage, green and red colour accounted for the
most of the distribution maps of Enterobacteriaceae loads,
like the distribution map of the sample with the average
Enterobacteriaceae loads of 4.741. At the later stage,
red was the overwhelming majority colour (e.g. distribution

Fig. 4 Informative wavelength selection by regression coefficients of the
PLS model
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map with mean Enterobacteriaceae loads being 6.601),
demonstrating the serious contamination caused by
Enterobacteriaceae.

Combination of spectral and spatial information enabled
the hyperspectral imaging technique to determine the
Enterobacteriaceae contamination of salmon flesh in a more
objective and reliable way. In addition to mining spectra relat-
ed to the reference Enterobacteriaceae loads, spatial image
was also produced to form a distribution map for visualising
the spatial changes of Enterobacteriaceae loads during the

process of contamination. The results consisted of quantitative
models and colourful distribution maps indicating that
hyperspectral imaging is a more useful and powerful
technique in evaluating the Enterobacteriaceae infection
of salmon fillets.

Conclusions

Rapid determination of harmful microorganisms such as
Enterobacteriaceae is very necessary in monitoring food
quality, especially perishable foods like salmon products.
Emergence of hyperspectral imaging integrating spectroscopy
and imaging techniques provides a potential way to evaluate
food quality rapidly and non-destructively. The results pre-
sented in current study indicated that near-infrared
hyperspectral imaging has a great potential for the evaluation
of Enterobacteriaceae contamination in salmon flesh during
cold storage. Near-infrared hyperspectral images of examined
salmon samples were successfully acquired at different stor-
age times. Spectral and spatial information within the ROIs of
the hyperspectral images were extracted, and the spectral data
were analysed by PLS algorithm. Eleven informative wave-
lengths (921, 931, 964, 1008, 1105, 1145, 1252, 1366, 1628,
1658 and 1685 nm) were selected by regression coefficients of
PLS model and eight ones (924, 931, 964, 1068, 1262, 1373,
1628 and 1668 nm) were selected by SPA to, respectively,
optimise the PLS model developed with the full spectra of
900–1700-nm range. Two optimised models, namely RC-
PLS and SPA-PLS, were developed, with RC-PLS model
using 11 wavelengths obtained from regression coefficient
method and SPA-PLS model using eight wavelengths obtain-
ed from SPA method, respectively. By comparison, the RC-
PLS model and the SPA-PLS model were all comparable to
the original PLS model in predicting Enterobacteriaceae con-
tamination. The RC-PLS model and the SPA-PLS model had
similar abilities to predict Enterobacteriaceae loads of salmon
flesh. In addition, the distribution of Enterobacteriaceae loads
was visualised by generating colourful maps after the trans-
formation of the SPA-PLS model. The degree of
Enterobacteriaceae contamination of salmon flesh was indi-
cated and exhibited with the extension of storage times. The
imaging feature would further enhance the understanding of
quality changes of salmon products in cold condition. Near-
infrared hyperspectral imaging showed its great promise for

Fig. 6 Distribution of
Enterobacteriaceae loads in some
tested samples

(a) 

(b) 

Fig. 5 Informative wavelength selection by successive projections
algorithm (SPA). a RMSEV plots obtained for the optimal number of
variables; b the selected wavelength shown in square markers

2434 Food Anal. Methods (2015) 8:2427–2436



rapid and non-contact Enterobacteriaceae inspection in salm-
on flesh. More studies are still required to refine the multi-
spectral imaging system for further online/offline application.
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