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Abstract In the present study, near-infrared spectroscopy
(NIRS) was explored as a fast and reliable screening method
for the detection of adulteration of skim milk powder (SMP).
Sixty genuine SMP were adulterated with acid whey (1–25 %
w/w), starch (2 and 5 %) and maltodextrin (2 and 5 %) for a
total of 348 adulterated samples. Two chemometric ap-
proaches were employed. In the first approach, an untargeted
one class model for genuine skimmilk powder was developed
by Soft Independent Modelling of Class Analogy. In the sec-
ond approach, adulterant-specific regression models were de-
veloped to assess the amount of each adulterant by partial least
square regression and principal component regression. The
class modelling approach had the advantage that several adul-
terants could be detected with the same chemometric model,
including situations where multiple adulterants are present in
the test sample or where yet unknown adulterants are present.
Regression models showed a better sensitivity with genuine
SMP samples completely discriminated from samples adulter-
ated with 5 % acid whey and 2 % of starch or maltodextrin.
NIRS proved to be a useful tool for the rapid and cost-efficient
untargeted and/or targeted detection of adulterations in SMP.
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Introduction

Milk powder is a dairy product which is manufactured by
evaporating milk to dryness (residual moisture content
≈5 %). Milk powder retains most of the desired nutritional
and organoleptic properties (colour, flavour, solubility) of flu-
id milk. Drying milk has the obvious advantages of reducing
transport and storage costs and to extend milk shelf-life. Milk
powders can be used for direct human consumption or as
ingredients in a wide range of food products including baked
goods, confectionery, dairy desserts, ice cream and infant
formula.

Recently, the phenomenon of adulteration of milk powder
has increased worldwide, favoured by the lack of strong de-
terrence in national and international regulations and the dif-
ficulties of carrying out multiple control tests to unveil several
potential adulterations. Milk powder adulteration can compro-
mise its nutritional quality, its safety (because of the potential
adulteration with toxic compounds, e.g. melamine) and results
in unfair competition towards legitimate businesses. The most
frequent adulteration consists in the addition of whey which is
a very cheap by-product of cheese manufacturing. Liquid
whey can be of two different types: (i) sweet whey (also
known as cheese whey) i.e. the by-product from the
manufacturing of rennet types of hard cheese and (ii) acid
whey (also known as sour whey) i.e. the by-product from
the manufacturing of acid types of cheese. Sweet and acid
whey has very similar composition, acid whey being slightly
richer in proteins and more acidic than sweet whey. Other
common contaminants in milk and milk powders are starch,
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sucrose, urea and other nitrogen replacers including melamine
and, less frequently, maltodextrin (MD) and sodium
hydroxide.

The detection of fraudulent addition of sweet whey to milk
or milk powder is easily carried out by checking the presence
or absence of glycomacropeptide also known as
caseinomacropeptide which is a bioactive 64-amino acid res-
idue glycopeptide released enzymatically in whey from k-ca-
sein by chymosin during cheese making. It is thus present in
the sweet whey but not in milk (Chavez et al. 2008). Unfor-
tunately, it is absent in acid whey either. For the detection of
acid whey adulteration in dairy products, methods based on
the whey protein/total protein ratio are preferentially used.
The whey protein/total protein ratio can be measured colori-
metrically (De Koning and Van Rooijen 1971), by polarimetry
(Lechner and Klostermeyer 1981), by SDS-PAGE (Basch
et al. 1985), by capillary electrophoresis (Kanning et al.
1993) or by spectroscopy. These last methods are based on
the zero- or first-order derivative (De Block et al. 1997;
Cartuyvels et al. 1999) or on fourth-order derivative (Meisel
1995; Miralles et al. 2000) and rely on the different derivative
spectroscopy responses of the amino acids tryptophan and
tyrosine and on the fact that the tryptophan/tyrosine ratio is
about 0.59 for whey proteins and 0.19 for caseins. However,
the natural variability in whey/total protein ratio in milk and
corresponding powder results in a substantially high limit of
detection for whey in skim milk powder (SMP). Lüthi-Peng
and Puhan (1999) reported a range for the whey/total protein
ratio of 12.7–21.0 % for raw cow milk. Miralles et al. (2000)
reported that the addition of acid and rennet whey to UHT
milk results in a significant difference in whey/total protein
ratio only upon addition between 2.5 and 5 %.

On the other hand, for the detection of starch in milk and
dairy products, the iodine test (Banks et al. 1971) is the meth-
od of choice because of its incomparable sensitivity (0.01 %
w/w) and the simplicity of the analysis. In this test, iodine
dissolved in an aqueous solution of potassium iodide quanti-
tatively reacts with the amylose-coiled chain of starch and the
amount of starch is quantified by potentiometric or ampero-
metric titration or by visible spectroscopy (amylose-iodine
complex gives a purple black colour).

Detection of MD with the iodine test may give false-
negative results if the glucose chain is too short to accommo-
date the I3− ions. Detection of MD in milk-based powder
therefore requires time-consuming chromatographic tech-
nique such as HPAEC–PAD (Rocklin and Pohl 1983) even
though a relatively fast screening method for the detection of
MD in milk powder and infant formula based on electrospray
ionization–mass spectrometry analysis and selective enzymat-
ic hydrolysis has been reported (Sanvido et al. 2010).

Near-infrared spectroscopy (NIRS) is a fast and high-
throughput analytical methodology which has had countless
applications for food authentication and detection of

adulterations in recent years as reviewed, for instance, by
Rodriguez-Saona and Allendorf (2011) and Cozzolino
(2012). NIRS radiation (800–2500 nm) triggers transitions
over two (first overtone), three (second overtone) or higher
vibrational energy levels of the sample molecules (Osborne
2000; Barton 2002). Each functional group of a molecule
shows characteristic NIRS absorption at specific wavelengths.
NIRS spectra thus represent a molecular fingerprint of the test
material that can be used to verify the nature of the sample
either quantitatively, i.e. to detect and quantify the amount of a
target adulterant, or qualitatively, i.e. by discriminating and
predicting the real nature of an unknown sample (e.g. organic
food). Remarkable advantages of NIRS over the traditional
wet analytical techniques are that NIRS is incomparably faster
and more high-throughput. This is even more so if one con-
siders that several parameters (not only chemical composition
but also physical properties and quality attributes) can be es-
timated simultaneously from the same NIRS spectra and the
information contained in an NIRS spectrum can be stored for
future use. Another remarkable advantage of NIRS is that it is
a non-destructive analysis, which makes it suited for the in-
line quality control. NIRS is also environmentally friendly
because it does not require the use of solvents and
chemicals and does not produce any waste. Finally, the
routine use of NIRS instruments from the sample prep-
aration for analysis (where needed) to the spectrum ac-
quisition is extremely simple and requires only minimal-
ly trained personnel.

NIRS applications for the authentication of milk powders
have been reported for the detection of sweet whey, starch and
sucrose (Borin et al. 2006), foreign proteins (Maraboli et al.
2002), melamine (Balabin and Smirnov 2011; Lu et al. 2009)
and whey concentrate powder (Mendenhall and Brown 1991).

The aim of this study was to evaluate the performance of
NIRS for the detection of acid whey, starch and maltodextrin
adulteration in SMP.

Materials and Methods

Skim Milk Powders and Adulterants

Sixty SMP were obtained in the framework of regular
control schemes carried out by the Dutch Food Safety
Authority (NVWA, The Netherlands). The two samples
of acid whey powders (AWP) were obtained from
D e n k a v i t N e d e r l a n d B V ( Vo o r t h u i z e n ,
The Netherlands) and Arion Dairy Products BV
(Groesbeek, The Netherlands). Corn starch (Chemical
Abstracts Service (CAS) number 9005-25-8) and malto-
dextrin (MD, dextrose equivalent 16.5–19.5, CAS num-
ber 9050-36-6) were purchased from Sigma-Aldrich (St.
Louis, MO).
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Design of the Adulteration

The whole lot of 60 SMP was divided in two sub-lots. For the
adulteration with acid whey, a full factorial design was applied
on a sub-lot of 27 SMP which were adulterated with four
levels of each of the two AWP for a total of 243 samples (27
genuine and 216 adulterated SMP). The adulteration levels
that were selected were the following: 1, 5, 15 and 25 % (w/
w). For the adulteration with starch and MD, a full factorial
design was applied on the 33 SMP of the second sub-lot at two
different adulteration levels: 2 and 5 % (w/w) for a total num-
ber of 66 samples adulterated with starch and 66 samples
adulterated with MD. AWP, starch and MD powders were
thoroughly mixed with the SMP for at least 1 h using a rotator
(Reax 2, Heidolph, Germany). Since the amount of each SMP
sample collected was insufficient for an independent spiking
of each adulterant concentration, the adulterated samples were
prepared with serial spiking: the lowest level of adulteration
was prepared and measured by NIRS. After each NIRS mea-
surement, the proper amount of the adulterant was added to
meet the second lowest concentration and so forth.

NIRS Measurements

NIRS spectra were recorded on genuine SMP and the adulter-
ated SMP bymeans of a FOSSNIRSystems 6500 SY-I system
(Foss Electric, Hillerød, Denmark) equipped with a spinning
module over the VIS/NIRS range (400∼2498 nm) with a 2-nm
sampling interval under the reflectance mode. Measurements
were taken on 1.0−1.5-cm-thick (about 5 g) portion, evenly
distributed into standard ring cups (diameter of 3.75 cm). All
the measurements were performed in duplicate on two inde-
pendent samples of approximately 5 g for each SMP or mix-
ture, and the final spectra that were used for chemometric
modelling were the average of those two replicates.

Chemometric Modelling

Principal component analysis (PCA) was performed to check
any natural clustering in the genuine SMP and detect the pres-
ence of outliers. Soft Independent Modelling of Class Analo-
gy (SIMCA) was used to develop a one class model for gen-
uine SMP. Partial least square regression (PLSR) and principal
components regression (PCR) were performed to construct
regression models for the prediction of the concentration of
each adulterant in SMP.

For each regression model, a theoretical critical signal
height (CSH) for type I errors and for single future predictions
was calculated based on the approach described in
Vogelgesang and Hadrich (1998). This CSH will correspond
to the upper limit of the prediction interval (at a fixed level of
confidence, α) at zero concentration (genuine SMP). In prac-
tice, that means that there is less than 100× α % chance that

each single future prediction on genuine SMP will be greater
than the calculated CSH. This CSH can be calculated accord-
ing to the following formula:

CSH ¼ AVGþ t 1 − α;n − 2ð ÞsX
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where AVG is the average of predicted % adulterant in
genuine SMP (corresponding to the intercept of the cal-
ibration equation), t(1−α;n−1) is the t-value for a one-
sided (1−α)×100 % confidence interval and n−2 de-
grees of freedom, sX is the residual standard deviation,
�x is the mean of all the adulteration levels of all the
calibration analyses and n the number of samples. The nor-
mality of the residual distribution for the genuine and adulter-
ated SMP was checked by means of a Shapiro–Wilk test for
normality (p=0.623, n=179). In practice, if the level of adul-
teration predicted by the NIRS model in a new test sample is
greater than the value calculated by Eq. 1 for a certain level of
confidence 1−α, there is less than α% to be wrong in classi-
fying the test sample as adulterated.

The limit of detection (minimum amount of adulterant that
can be predicted with a fixed level of certainty) is calculated
from the regression equation developed on the calibration set
for y=CSH. Once the CSH is calculated for a desired level of
significance for type I error, the identification limit (ID, the
minimum concentration of adulterant for which the level of
significance for a type II error is less than of a fixed value) can
be derived as the % adulteration which lower limit of the
prediction interval corresponds to CSH. Such ID limit can
be calculated at the desired level of significance for type II
error from the following equation:

CSH ¼ t 1 − β;n − 2ð Þ sX
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and solving for ID, where t(1−β; n−2) is the t-value for a one-
sided (1−β)×100 % confidence interval, n−2 are the degrees
of freedom, sX is the residual standard deviation and n the
number of samples.

For the development of SIMCA, PLSR and PCR models,
six transforms or combinations of transforms were applied: (i)
standard normal variate (SNV), (ii) first derivative, (iii) second
derivative, (iv) SNV+first derivative, (v) SNV+second deriv-
ative, (vi) multiplicative scatter correction (MSC), (vii)
MSC+first derivative and (viii) MSC+second derivative.
The first and the second derivatives were calculated using
the Savitzky–Golay algorithm (Savitzky and Golay 1964)
modified as suggested by Gorry (1990) with 21 points of
windows and a second-order polynomial function. SNV is
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an approach to compensate for scattering by solids in NIR
spectrometry. It consists in a row autoscaling: for each sample,
the sample mean is subtracted from each variable value and
the obtained values are dived by the sample standard devia-
tion. MSC is another standard approach to compensate for
scattering by solids in NIR spectrometry. Each sample spec-
trum is regressed linearly against an ideal spectrum to yield a
slope and intercept which are then used to Bcorrect^ the sam-
ple spectrum at each wavelength. The transformed data were
then mean-centred, and the algorithms were run. PCA, SIMC
A, PLSR and PCR models were performed in Pirouette 4.5
(Infometrix, Seattle, USA). Only the data in the range 1100–
2500 was used for the chemometric modelling.

Results and Discussion

Development of the Predictive Models

In Fig. 1, the normalized NIRS spectra for one SMP sample
and the two AWP as well as starch andMD used in the present
study are shown. The acid whey spectra resemble the
spectrum for lactose reported for instance by Ni et al.,
(2010) but do not exhibit clear absorption peaks at 2050 and
2176 nmwhich are found in the spectrum of whey concentrate
(Baer et al. 1983). This was expected, since AWP average
composition is as follows: lactose (65–70 %), whey proteins
(11–13 %) and ash (10 %). Slightly different NIRS spectra
were recorded for the two AWP samples. These differences
are especially apparent in the regions 1450–1600, 1950–2200
and 2280–2400 nm and reflect compositional differences
among different AWP and/or different spray-drying condi-
tions applied. For obvious reasons, the starch and the MD
NIRS spectra also resemble that of lactose and are different
from that of a standard SMP sample with more intense peaks

at 1450 and 1940 nm and a much lower signal in the region
ranging from 2120 to 2400 nm.

To evaluate the potential of NIRS to detect adulteration of
SMP with AWP, starch and MD, two approaches were tested:
(i) an untargeted class modelling approach for genuine SMP
and (ii) a targeted regression approach to predict the adulter-
ants level in SMP. Before the chemometric modelling of the
NIRS data, a PCA analysis was performed on the 60 genuine
SMP only (Fig. 2a). Data were transformed (SNV+second
derivative) and thenmean-centred. Four principal components
were included in the PCA model which explained ≈95 % of
the total variance. From the PCA score plot of the first two
PCs (data not shown), four milk powders appeared quite dif-
ferent from the bulk of the samples. However, only three sam-
ples showed a Mahalanobis distance (the distance of the sam-
ple from the multivariate mean) exceeding the 95 % probabil-
ity threshold computed for the four principal components in-
cluded in the model (Fig. 2b). Since three SMP samples ex-
ceeding the 95 % probability threshold are expected based on
statistical considerations and the excess was <60 % of the
computed threshold, it was decided to retain all the SMP for
the subsequent adulteration step and multivariate analysis.

The idea behind approach (i) was to build up a class model
for genuine SMP based on a library of NIRS spectra and that
non-authentic samples would classify as outliers with respect
to that class which would allow for non-specific anomaly
testing in SMP. To that purpose, SIMCA was used as class
modelling technique. For discrimination purposes, SIMCA
develops principal component models for each training set
class. When the set of measurements of a new sample is
projected into the PC space of each training class, the new
sample is assigned to the class(es) it best fits. In the present
study, we developed one SIMCA model for the genuine SMP
based on 44 SMP samples. The SIMCA model was based on
NIRS spectra after SNVand second derivative transformation

Fig. 1 Near-infrared spectra
(after SNV transform) of a
genuine milk powder, the two
acid whey, starch and
maltodextrin samples used in the
study
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of the data and included eight factors which explained 99% of
the total variance. The remaining 364 samples (16 genuine
SMP and 348 adulterated with acid whey, starch and MD)
were then projected in the PC space of the genuine SMP class,
and for each of them, the multivariate distance from the SMP
class was calculated and compared with a critical threshold
value. If the sample multivariate distance was lower than the
critical value, the sample was considered as belonging to the
SMP class. The sensitivity and the specificity of the model are
reported in Table 1, and the results are visually represented in
Fig. 3. Four SMP samples exhibited a multivariate distance
from the SMP class above the critical value and were then
misclassified as adulterated samples, whereas in total 60 adul-
terated samples were misclassified as genuine SMP. The
misclassified samples were most of the SMP adulterated with
1 % acid whey, but also, some SMP adulterated with 5 % acid

whey as well as some adulterated with 2 % of MD were
misclassified. It was noted that the inclusion of <8 factors in
the SIMCA model resulted in substantial lower type I errors
(genuine SMP predicted as adulterated) but a higher type II
error (adulterated samples predicted as genuine), whereas the
opposite was observed upon inclusion of >8 factors. A closer
look at the SIMCA model scores may provide a qualitative
indication of the type of adulterant present in the test sample.
The samples adulterated with starch and MD exhibited high
positive score along PC1, whereas sample adulterated with
acid whey showed high negative scores along PC2 (Fig. 4).

For approach (ii), two different algorithms, namely PLSR
and PCR, and several data transformswere tested in this study.
On average, PLS regression models performed better (lowest
root mean square error of prediction (RMSEP, expressed as %
added adulterant)) than PCR models. Light scattering correc-
tion was crucial to improve the predictive capability of the
models and second derivation performed on average better
than first derivation. For the prediction of %AWP adultera-
tion, the regression models were developed using a training
set of 180 samples (20 genuine SMP+160 samples from adul-
teration of each SMP with acid whey at all the adulteration
levels). The optimal number of factors for each regression
model was chosen based on the lowest RMSEP on the 96
samples of the validation set (40 genuine SMP and 56

Fig. 2 a First two components of
the PCA score plot (SNV+second
derivative+mean-centreing) for
the genuine skim milk powders.
The amount of variance explained
by each factor is reported in
brackets. b Mahalanobis distance
for the genuine skim milk
powders in the PCA model. The
horizontal line represents the
threshold value calculated for four
factors selected in the PCA model

Table 1 Confusion matrix for the SIMCA one class model (SNV+
second derivative+mean-centreing)

Predicted genuine Predicted adulterated

Actual genuine 12 (75 %) 4

Actual adulterated 60 288 (83 %)

Sensitivity and specificity of the model are given between brackets
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adulterated). The lowest RMSEP was obtained by PLS after
application of the SNV transform+second derivative. This
model included 11 factors which explained approximately
99 % of the total X variance. The model provided a root mean
square error of calibration (RMSEC) of 0.59 % (% of added
adulterant) and resulted in a RMSEP of 1.50 %. The amount
of Yvariance explained by the model (r2) in external validation
was 0.982. The fit between the predicted% of adulteration and
the actual level of adulteration for the selected model in cali-
bration and in validation is shown in Fig. 5a, b. Since SMP is
comparatively higher in proteins (with a whey protein/casein
ratio of approximately 15–20 %) and lower in lactose, the
adulteration of SMP with AWP results in a decrease of the
total protein content of the mixture compared to the original
SMP, as well as in the increase in the whey protein/casein ratio
and the increase in lactose content. In Fig. 6, the regression

vector for the selected model is shown. The regression vector
can be thought of as a weighted sum of the loadings included
in the model. Variables with high coefficients contribute sig-
nificantly to a prediction. From Fig. 5, it appears that the
region between 2250 and 2315 nm is especially important
for the correct prediction of the % of added AWP as well as
the region between 1650 and 1720 nm. These regions are
associated to the combination of C–H stretching and bending
modes and the first overtone for the C–H vibrational modes,
respectively (Miller 1989). Finally, in the regression vector,
peaks at 1950, 1980 and 2040 nm are also apparent. These
bands might be related to the different protein contents/
compositions in AWP-adulterated samples compared to gen-
uine SMP because the first is associated to the vibrationmodes
of CONH2 amide groups and the latter to vibration modes of
CONHR amide groups (Miller 1989).

For the regression analysis of the starch adulteration, 24
SMP were used for the model calibration with a total of 72
samples (24 genuine SMP and 48 from adulteration of each
SMP with 2 and 5 % of starch). The remaining 27 samples
(nine genuine SMP samples+18 adulterated SMP)+the gen-
uine SMP used for the development of the regression model
for acid whey were used for the validation (in total 54 sam-
ples). The best performingmodel (lowest RMSEP) was a PCR
model with MSC+second derivative transformation of NIRS
spectral data. This model included nine factors which ex-
plained approximately 99% of the total X variance. Themodel
provided a RMSEC of 0.40 % and resulted in a RMSEP of
0.36 %. The amount of Yvariance explained by the model (r2)
in external validation was 0.980. The fit between the predicted

Fig. 4 SIMCA (SNV+second derivative+mean-centreing) score plot of
the first two principal components for the samples of the validation set

Fig. 3 Distance of the samples of the validation set from the genuine
milk powder class modelled by SIMCA (SNV+second derivative+
mean-centreing). Horizontal line corresponds to the critical distance to

the genuine milk powder class. New samples falling beyond the line are
classified as adulterated milk powders
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% of adulteration and the actual level of adulteration for the
selected model in calibration and in validation is shown in
Fig. 5c, d. The RMSEP obtained for the best model for starch
showed that a lower amount of starch can be detected byNIRS
in SMP compared to acid whey. The regression vector for the
model shows six important peaks (Fig. 6): at 1410,
1910, 1950, 2180, 2260 and 2280 nm. The peak at
1410 would be associated with the first overtone of
vibrational modes of –OH functional groups. The peaks
at 1910, 1950 and 2180 nm might be associated with
the CHO functional groups of starch and those at 2260

and 2280 would correspond to combination of C–H
stretching and bending modes (Miller 1989).

The regression analysis on samples adulterated with MD
was performed as described for starch. The best model was a
PLS model based on SNV+second derivative of the NIRS
spectral data which gave a RMSEP of 0.41 % and a RMSEC
of 0.64 %. Six factors were selected which explained 98 % of
the total X variance, whereas the amount of Y variance ex-
plained was 0.903. The fit is provided in Fig. 5e, f. Surpris-
ingly, the regression vector for MD (Fig. 6) is somewhat dif-
ferent from that for starch even though the functional group

Fig. 5 Plot of the % of added adulterant as predicted by the best
regression model for each adulterant towards the actual concentrations.
a, b Results on calibration and validation set for acid whey (PLS, SNV+
second derivative+mean-centreing). c, d Results on calibration and

validation set for starch (PCR, MSC+second derivative+mean-
centreing). e, f Results on calibration and validation set for maltodextrin
(PLS, SNV+second derivative+mean-centreing). Diagonal line is the
line of perfect fit
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composition of SMP adulterated with starch and MD is sup-
posed to be very similar. Beyond the peaks at 1410 and
1915 nm which are related to –OH and CHO functional
groups, additional peaks at around 2040 and 2420 nm seem
to be very important for the prediction. This last peak would
be associated to combinations of vibrational modes of C–C
and C–H bonds (Miller 1989).

Based on the calibration equations for the three regression
models, CSH were calculated as 0.93 and 1.30 % for a confi-
dence level of 95 % (CSH95) and 99 % (CSH99), respectively,
for acid whey adulteration and as 0.62 and 0.73 % for α=0.05
and as 0.88 and 1.01 % for α=0.01 for starch and MD adul-
teration, respectively. The ID limits calculated for the three
regression models are summarized in Table 2.

This means, for instance, that there is less than 1 % chance
of wrongly classifying a genuine sample as adulterated with
acid whey if the predicted values is greater than the
CSH99, i.e. 1.33 %, and there is <1 % chance of

wrongly classifying a sample adulterated with at least
2.71 % acid whey as genuine if the predicted value is
lower than the CSH99.

The calculated CSHs can be compared with the results of
the prediction on the samples of the validation sets. For acid
whey, only two genuine samples of the validation set had
predicted % acid whey greater than the calculated CSH95

which was expected on 40 samples (i.e. based on normal
distribution, it is expected that 5 % of the sample have pre-
dicted values greater than CSH95 which means two samples
out of 40 samples). However, one of the samples adulterated
with 5 % acid whey had a predicted level less than both the
CSH values which suggests that perhaps the actual limits for
type II errors are higher than the calculated theoretical limits
reported in Table 2. For starch and MD, the calculated CSHs
match with the predicted values on the validation set. In each
validation set, three (out of 36) samples were above the cal-
culated CSH95 and one was above the CSH99. Moreover, all

Fig. 6 Regression vectors for the
PLS models developed for
quantification of acid whey (PLS,
SNV+second derivative+mean-
centreing), starch (PCR, MSC+
second derivative+mean-
centreing) and maltodextrin
adulteration (PLS, SNV+second
derivative+mean-centreing)

Table 2 Limit of identification
(ID) for adulteration of acid whey,
starch and maltodextrin in skim
milk powders at different levels of
significance for type I and type II
errors

0.95 confidence level
for type I error

0.99 confidence level
for type I error

Acid whey

0.95 confidence level for type II error 1.89 % 2.30 %

0.99 confidence level for type II error 2.30 % 2.71 %

Starch

0.95 confidence level for type II error 1.43 % 1.70 %

0.99 confidence level for type II error 1.70 % 1.97 %

Maltodextrin

0.95 confidence level for type II error 1.52 % 1.93 %

0.99 confidence level for type II error 1.93 % 2.10 %
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the samples adulterated with 2 % starch or MD were well
above the calculated CSHs.

The comparison between Fig. 3 and Table 2 shows that the
development of adulterant-specific regressionmodels allows a
more sensitive detection of all the tested adulterants in SMP.
The results based on the analysis of whey/total protein ratio of
the sample set used in the present study suggest a significantly
higher ID (>10%, data not shown). The results reported in this
study would therefore suggest that the NIRS method would
have at least the same sensitivity as compared to methods
based on whey/total protein ratio for acid whey detection.
As for starch adulteration, NIRS would not represent an im-
provement in terms of sensitivity compared to the iodine
method but it would be applicable also for the detection of
pure amylopectin starch (waxy starches) which has the same
chemical structure of amylose but does not give a positive
reaction to the iodine test because of the absence of amylose
linear chain.

However, the prediction may be significantly biased if the
test sample is not genuine but already adulterated with sub-
stance different from those for which the regression models
have been developed. Indeed, each regression model was also
tested on SMP adulterated with each of the other two adulter-
ants. When the regression model developed for AWP was
used to predict on SMP adulterated with starch (but not with
acid whey), very negative values were obtained for most of the
samples (data not shown). Analogous results were obtained on
SMP adulterated with MD. Analogously, the regression
models developed for starch andMDpredicted negative levels
(down to −4 %) for almost all the SMP adulterated with acid
whey (but not with starch or MD). Finally, when the
regression model developed for starch is used to predict
on samples adulterated with MD, the prediction is bi-
ased but high concentration of MD can still be detected.
The same holds when the model for MD is used on
samples adulterated with starch.

The class modelling approach, on the other hand, proved
slightly less sensitive but allows general anomaly testing, i.e.
the detection of multiple adulteration at once, including situa-
tions where more than one adulterant is used in the same test
sample without the need of developing adulterant-specific
models. In principle, such class modelling approach can be
extended to the detection of whatever adulterant in SMP and,
remarkably, it can be used to detect the presence of yet un-
known adulterants. However, developing robust methods for
the non-targeted detection of adulteration in SMP based on
NIRS is complicated by the expected physical-chemical vari-
ability in SMP composition which reduces the ability of the
method to detect low amount of any adulterant. Such variabil-
ity depends more on minor constituent composition and dry-
ing conditions than on SMP proximate composition (Botros
et al. 2013). Therefore, a considerable database needs to be
built for use in practice.

As for MD detection, the NIRS method developed in this
study would represent a novel tool for the rapid screening of
MD in SMP. However, one of the complicating factors in MD
detection by NIRS is that MD with different dextrin equiva-
lents (DE, % of reducing sugars relative to glucose in a sugar
product) is in principle available for adulteration and those can
show differences in the NIRS spectra (Storz and Steffens
2004). Those differences are large enough to be used for the
prediction of the DE of the MD test sample. However, our
results suggest that the models would be applicable, at least
to a certain extent, also to MD with other DE. It is worth
mentioning, however, that addition of MD alone to genuine
milk or milk powders is not a frequent practice and that
MD are mainly added to milk or milk powders adulter-
ated with, for instance, whey protein and fat, to adjust
the density and cryoscopy of the resulting liquid milk
(Ferrão et al. 2007).

Conclusions

In the present study, the potential of NIR spectroscopy for the
detection of adulteration of SMP with AWP, starch and MD
was tested with two different chemometric approaches. The
class modelling untargeted approach has the advantage that
several adulterants can be detected with one single model,
including yet unknown adulterants. The targeted regression
approach has the advantage of a better sensitivity but indepen-
dent models have to be developed for each adulterant and the
prediction may be significantly biased if two or more adulter-
ants are simultaneously present. NIR spectroscopy analysis of
SMP proved thus suitable for a rapid and cost-efficient broad
anomaly testing as well as the targeted detection of the tested
adulterants. Regardless of the chemometric approach used,
NIRS allows the adulteration of SMP with acid whey, starch
andMD to be detected at once with acceptable sensitivity with
just one spectrum acquisition.

It is necessary to stress that the results of the present anal-
ysis have been derived from dry blended mixture of milk
powder with acid whey/starch/MD powder and might have
been different if the adulteration of fluid milk before spray
drying is considered (wet blending). Some extra validation
analyses need to be carried out to test the applicability of the
chemometric models to such situation.
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