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Abstract The feasibility of Fourier transform near-infrared re-
flectance spectroscopy (FT-NIRS) for determining gross energy
content in different food legumes has been investigated. Eighty
food-grade legume sampleswere obtained fromdifferent retailers
and local markets in Hungary and they included 42 common
beans (Phaseolus vulgaris L.), 20 peas (Pisum sativum L.), 10
lentils (Lens culinaris L.), and 8 soya beans (Glycine max L.)
both as full fat food and defatted. The samples were analyzed by
an adiabatic bomb calorimeter and then scanned in a Bruker
MPA FT-NIR Analyzer (800–2,500 nm). Two algorithms for
spectral selection of calibration and validation samples, which
represent variability encountered in the full population, were
tested. Partial least squares regression were developed for the
prediction of gross energy using four different spectral prepro-
cessingmethods (first and second derivative alone and combined
with standard normal variation and multiplicative scatter correc-
tion). The results show that first derivative produced the most
accurate results with very high coefficient of determinations in
validation (<93 %) and with very low standard errors of valida-
tion (<0.025 kcal/g) as compared to the standard error of the
reference method (0.204 kcal/g).
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Introduction

The energy content of foods can be determined in different
ways. One of the methods is the gross energy content
determination using an adiabatic bomb calorimeter (Cohen
and Schilken 1994; Santos 2010). It is well known that the
human body cannot completely digest proteins and fibers of
foods consumed. Therefore, the adjustments in gross energy
values are required to reflect food energy content that can be
utilized by humans (Kays and Barton 2002). In practical
terms, whatever energy method is used, energy food label-
ing still depends on wet chemistry analysis. There is little
prior research to guide key decision makers to provide food
processing industries with rapid and affordable analytical
methods to determine the energy of every package food put
into circulation in the market.

Over the past 30 years, a plethora of papers showed how
near-infrared spectroscopy (NIRS) applications in agricul-
ture and food industry have outstripped all other techniques
in terms of diversity, while maintaining an excellent reputa-
tion for accuracy and reproducibility in the agro-food sector
from grains, forages, trees, shrubs, feeds, product of animal
origin (milk, meat, eggs, protein, and fat animal byprod-
ucts), fruits and vegetables, baking products, snacks, bev-
erages and liquors, coffee, chocolate, tea, tobacco, sugar
cane, potatoes, sauces, medicinal and aromatic plants, to
non-food such as soils, slurries, water, timbers, wood, paper,
and a still incomplete and never ending list. From the
extensive research done, it can be concluded that NIRS is
ideal for quality and safety control in many industries and
farms (Osborne 2006; Roberts et al. 2004).

NIRS is based on the absorption of electromagnetic radi-
ation at wavelengths in the range 780–2,500 nm. NIR ab-
sorption bands are produced when NIR radiation at specific
frequencies (wavelengths) resonates at the same frequency
as a molecular bond in the test sample. This allows associ-
ation of a specific wavelength with a specific chemical bond
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vibration (C–H stretch, C–C and C–O–C stretch) generating
a specific spectra that in turn is related to concentration of a
specific feed component (Shenk and Westerhaus 1995).
However, for most food samples, the spectrum is not only
due to the chemical information but also to other physical
properties such as the particle size of powders. This means
that to extract relevant chemical information from the spec-
tra NIRS is used as a secondary method requiring calibration
against a reference method for the constituent of interest.

NIRS has many advantages as compared to traditional
wet chemistry methods (i.e., nondestructive, minimal or no
sample preparation, instantaneous measurement, no use of
reagents or chemical wastes, simultaneous analysis of sev-
eral parameters, etc). However, it also has some limitations
such as the moderately large upfront cost for the instrumen-
tation needed, and the need to calibrate the instrument for
each component of each type of sample to be analyzed. The
calibration process can be resource-intensive. NIRS has
been successfully applied to the determination of gross
chemical composition of many small grains including pulses
(Norris and Williams 2004). Furthermore, several studies
have been published within the topic of the determination of
energy content on cereal food products (Kays and Barton
2002) and homogenized meals (Kim et al. 2007). However,
the ability of NIRS to predict gross energy has not been
reported in food-grade legumes. The main goal of the pres-
ent study is to demonstrate the feasibility of Fourier-
transform NIRS and multivariate methods to predict gross
energy content in a variety of food-grade legumes.

Materials and Methods

Samples

A total of 80 food-grade legume samples were used in the
study. The samples were obtained from different retailers
and local markets in Hungary and they included 42 common
bean samples (Phaseolus vulgaris L.), 20 pea samples
(Pisum sativum L.), 10 lentil samples (Lens culinaris L.),
and 8 soya bean samples (Glycine max L.) both as full fat
food and defatted.

The samples were dried with aMemmert drying oven (Mem-
mert, Germany) at 80±2 °C during 16 h. Afterwards, the sam-
ples were ground in a laboratory mill, sieved through a 315 μm
mesh size metal sieve and kept in airtight bags before analyses.

Reference Analysis

Milled samples were analyzed in duplicate by an adia-
batic bomb calorimeter (IKA Werke, Germany) using
benzoic acid as the standard, according to the manufac-
turer’ recommendations.

The standard error of the reference method (SEL) value
was calculated according to the formula:

SEL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Yi1�Yi2ð Þ2

2N

q
; where N is the number of

samples, Yi1 is the first laboratory data for sample i, and
Yi2 is the second laboratory data for sample i.

Spectroscopic Analysis

Milled samples were scanned with a Bruker MPA FT-NIR
Analyzer (Bruker Optics, Ettlingen, Germany). The instru-
ment scans the 800–2,500 nm wavelength range and it is
equipped with a PbS detector. Petri dishes (internal diame-
ter093 mm, depth014 mm) were used as sample holders to
record the spectra collected in diffuse reflectance mode with
the sphere microsample measurement channel with 8 cm−1

spectral resolution. Each spectrum was recorded as the
average of 32 subsequent scans.

Population Structuring and Detection of Spectral Outliers

Principal component analysis (PCA) was performed on the
full set of samples (N080) in order to decompose and com-
press the data matrix. Before carrying out PCA, the spectra
were pretreated by the standard normal variate (SNV) plus
detrending algorithms (Barnes et al. 1989) in order to remove
the multiplicative interferences of scatter, and finally, the first
derivative was calculated (1,10,5,1); where the first digit is the
order of the derivative, the second is the gap over which the
derivative is calculated, the third is the number of data points
in a running average or smoothing and the fourth is the second
smoothing (ISI 2000). After PCA analysis, the center of the
spectral population was determined in order to detect outlier
samples. The Mahalanobis distance (GH) was calculated be-
tween each sample and the mean spectrum. Samples with a
GH value higher than 3 were considered outliers (Shenk and
Westerhaus 1996).

Selection of Calibration and Validation Sets

After elimination of outlier spectra, calibration and valida-
tion samples were selected solely on the basis of spectral
data. Two different calibration and validation sets (CAL1,
VAL1 and CAL2, VAL2) were evaluated with the same
number of initial samples. The two calibration and valida-
tion sets were selected using two different algorithms, dif-
fering in the procedure of sample selection based on spectral
information. Therefore, they obviously arrive at different
combination of samples. The main reason for doing that was
to investigate optimal methods for sample selection, based on
spectral information only and not in chemical information. We
tested two strategies: a well-known first one that has been used
by many researchers, based on the patented algorithm of Shenk
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and Westerhaus (1991a, b) and the second one that was based
on the possibilities supported by the softwareOPUS 6.5 (Bruker
Optics, Ettlingen, Germany), an option definitely associated to
the software of the Bruker instrument used in this work.

The first group was selected using the CENTER algorithm
included in theWinISI II (Infrasoft International, PortMatilda,
PA, USA). The algorithm performs a PCA, thus reducing the
original spectral information (log(1/R) values) to a small num-
ber of linearly independent variables to facilitate the calcula-
tion of spectral distances. These new variables were used to
calculate the center of the spectral population and the distance
(expressed as theMahalanobis “GH” distance) of each sample
in the calibration set from the center (Shenk and Westerhaus
1991a; b). After ordering the sample set by spectral distances
(from the smallest to the greatest distance to the center), a total
of 52 samples were selected.

The second group of samples used for calibrationwas selected
with the option “automatic selection of subset” available in
OPUS. Sixty-six percent of the samples were selected in this
case (OPUS 2007). This selection method selects the samples
based on the scores for the two first PCs. The closer the samples
are in the scores plot, the more similar they are with respect to
PC1 and PC2. Conversely, samples far away from each other are
different from each other. The “automatic selection subset” pro-
cedure selects the samples by removing redundant samples while
preserving the variability existing in the original population.

Calibration Development

Multivariate analysis was used for quantitative analysis. Par-
tial least squares (PLS) algorithm provided by the OPUS 6.5
and Bruker Quant 2 software packs was used in the present
study. One of the main advantages of PLS is that the resulting
spectral vectors are directly related to the constituents of
interest. Moreover PLS also offers reliable results when ana-
lyzing systems with widely varied constituent concentrations.
In the PLS regression, the spectral and concentration data are
first encoded in matrix form, then reduced to few factors and
finally, the optimum number of factors is determined by lowest
root mean square error of cross-validation (RMSECV) values.
Four different spectral preprocessing methods were used to
develop calibration models: first and second derivatives, first
derivative combined with SNV, and first derivative combined
with MSC. The first derivative calculates the first derivative of
the spectrum. This method emphasizes steep edges of a peak. It
is used to emphasize pronounced, but small features over a
broad background. Spectral noise is also enhanced. Second
derivative is similar to the first derivative, but with a more
drastic result.

SNV normalizes a spectrum by first calculating the aver-
age intensity value and subsequent subtraction of this value
from the spectrum, then the sum of the squared intensities is
calculated and the spectrum is divided by the square root of

this sum. This method is used to account for, e.g., different
sample thickness values.

MSC performs a linear transformation of each spectrum to
best fit the mean spectrum of the whole set. This method is
often used for spectra measured in diffuse reflection (OPUS
2007). The performance of the final PLS model was evaluated
in terms of RMSECV for cross-validation and the coefficient
of determination (R2). For RMSECV, a leave-one-out cross-
validation is performed: the spectrum of one sample of the
calibration set is deleted from this set and a PLSmodel is built
with the remaining spectra of the calibration set. The left-out
sample is predicted with this model and the procedure is
repeated with leaving out each of the samples of the calibra-
tion set. The number of PLS vectors used is defined in the
OPUS software by the size of the “RANK”. The optimum
PLS factors are arranged in the correct sequence, according to
their relevance to predict the component values. The first
factor explains the most drastic changes of the spectrum.

The residual (Res) is the difference between the true and
the fitted value. The sum of squared errors (SSE) is of the
quadratic summation of the Res values.

SSE ¼
X

Re sið Þ2

The determination coefficient, R2 gives the percentage of
variance present in the true component values, which is
reproduced in the regression. R2 approaches 100 % as the
fitted concentration values approach the true values.

R2 ¼ 1� SSEP
yi � ymð Þ2

 !
� 100;

where yi is the reference value and ym is the mean of the
reference results for all samples.

In case of cross-validation, the RMSECV is calculated
using the following formula:

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � yið Þ2
n

s
;

where n is the number of samples in the training set, yi is the
reference measurement result for the sample i and yi is the
estimated result for sample i when the model is constructed
with the sample i removed. The number of PLS factors
included in the model is chosen according to the lowest
RMSECV. This procedure is repeated for each of the pre-
processed spectra.

SEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � byi � BIASð Þ2
n� 1

s
;

where, n is the number of samples in the test set, yi the
reference measurement result for test set sample i and byi is
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the estimated result of the model for test sample i. SEP is
corrected by BIAS.

For the test set, the root mean square error of prediction
(RMSEP) is calculated as follows

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � byið Þ2
n

s
;

where, n is the number of samples in the test set, yi the reference
measurement result for test set sample i, andbyi is the estimated
result of the model for test sample i (OPUS 2007).

In addition to the statistics implemented in OPUS 6.5,
other statistics used were the RPD (SD/RMSECV, RMSEP);
RER0range/ RMSECV or RMSEP and CV0(RMSECV or
RMSEP /Mean)×100 (Williams 2001).

Results and Discussion

Spectral Features and Population Structure

Figure 1 shows the spectra of (a) soybean, (b) lentil, (c)
common bean, and (d) pea samples. The spectral pattern of
the mean of the four legumes is similar with a clear exception
of the shape of the curve for the mean soybean spectrum (C)
in the region compressed between 2,000 and 2,200 nm. The
peaks at 2,054 and 2,172 and 2,094 have been associated
with a strong absorption of protein and starch, respectively
(Williams 2001). The differences observed in the soybean
spectrum in relation to the others legumes spectra may be
attributed to the changes in physicochemical composition
(decrease in the content of free amino acids, Maillard reaction
between protein and starch, etc.) caused by the technological
processing of the raw soy beans into the so-called new
generation soy foods (Boge et al. 2009).

Detection of spectral outliers is critical in any calibration
development process. Therefore, the full set of spectral data
was examined using PCA to find patterns in the group of
spectra that contribute the most to the variation among the
spectra. During the PCA analysis two samples were detected
as spectral outliers. A detailed analysis of the spectra of
these two samples as compared to the mean of the other
78 spectra (Fig. 2 clearly) shows that the outliers have well
defined peaks in the regions around 1,700 and 2,300 nm. In
a review paper, Garrido-Varo et al. confirmed that the peaks
at 1,734, 1,765, 2,310, and 2,345 nm are due to absorption
of fatty acids (Garrido-Varo et al. 2004). Available data of
the fat content of the full set used in this paper, determined
by wet chemistry (data not shown) confirmed that the outlier
samples contained much more fat than rest of legume sam-
ples (Fig. 2).

These results confirm the suitability of NIRS technology
to develop calibration equations to predict the chemical
composition of food-grade legumes. Also, the results indi-
cate that the spectra alone contain a considerable amount of
information that can help the soya food processing industry
to control the production process by online monitoring in
specific wavelengths regions if well managed with an ap-
propriate multivariate data treatment.

At the time of the calibration development for gross
energy prediction, a decision should be made on whether
to keep the two outliers samples in the calibration file or to
remove them. It may be noted that despite that NIRS liter-
ature declares samples with high Mahalanobis’ distance
values as outliers, we should consider them extremely im-
portant in the long run to build a robust NIRS calibration.
However, as these samples are unique ones, it was decided
to remove them from the calibration set and to wait until
more samples of these characteristics can be added to the
spectral library file.

Fig. 1 Typical average FT-NIR
spectra of the four legumes: A
soybean, B lentil, C common
bean, D pea
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Determination of Gross Energy by an Adiabatic Bomb
Calorimeter

The next step in the process of calibration development is to
analyze samples by a precise reference method, and after-
wards, to select appropriate calibration and validation sets.
Table 1 shows the mean, range, and standard deviation
values of the gross energy determined by the reference
method for the full set and for the two calibrations and
validation sets obtained using different strategies.

The range of gross energy measured by the adiabatic
bomb calorimetric method was 4.149–5.511 kcal/g with a
standard deviation of the method of 0.204 kcal/g and with
the SEL value of 0.015 kcal/g. It is recommended (Mark and
Campbell 2008) that the ratio of the calibration range and
the standard deviation of the reference method should be at
least 10, with the larger value the better. In our study, this
ratio reaches a value as high as 20.1. This preliminary
information confirms that the highly accurate determination
of the gross energy values determined by an adiabatic bomb
calorimeter together with a proper methodology for selec-
tion of the calibration and validation sets could ensure
highly accurate equations.

Selection of Calibration and Validation Sets

One of the key issues in NIRS calibration development is
the sample selection for calibration, validation, and further

enlargement. The OPUS software provides a routine proto-
col that can automatically select a subset of samples based
on the scores for the two first PCs. However, the CENTER
algorithm implemented in WinISI uses PCA followed by the
calculation of the Mahalanobis distance. When both algo-
rithms were applied to the full population of N078 samples,
they produced very similar results considering the statistics
(mean, range, and SD) of gross energy (GE) values
(Table 1). Furthermore, the calibration and validation sets
are almost identical to the full set showing that the two
methods based on spectral selections are useful to obtain
subsets of samples representative of the variation encoun-
tered in the full population.

Calibration Development

The development of calibrations for the measurement of
gross energy was done by the OPUS 6.5 software applying
PLS regression. Every calibration sets has a total of 52
samples. For calibration the 800–2,500 nm wavelength
range was used. However, during the calibration process
using the OPUS software, the regions 1,110.3–1,337.1 and
1,638.8.2–2,175.5 nm regions were selected as the most
important for GE.

In the application of the PLS algorithm, it is generally
known that the spectral preprocessing methods and the
number of PLS factors are critical parameters. The optimum
number of factors is determined by the lowest RMSECVand

Fig. 2 Spectra of the two
outlier samples and average
spectrum of the full set

Table 1 Gross energy values
(kcal/g) statistics for the full set
(N078) and for the three cali-
bration and validation sets
studied

Full set Cal 1 Val 1 Cal 2 Val 2
N078

Mean (kcal/g) 4.249 4.241 4.266 4.240 4.267

Range (kcal/g) 4.149–4.511 4.149–4.510 4.174–4.511 4.149–4.511 4.164–4.510

SD 0.097 0.091 0.107 0.092 0.105
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highest value for R2
CV. Table 2 shows the cross-validation

results obtained with the two datasets evaluated.
The results of cross-validation for the CAL1 set show that

the first derivative alone or combined with MSC or SNV can
produce better results than those obtained with the second
derivative. The calibrations explain between 91.01 and
95.68% of the variation encountered in GE and they produced
RMSECV values very low as compared to the SEL. However,
when using CAL2, the second derivative preprocessing tech-
nique gave the highest R2 (0.98) and lowest RMSEC (0.0123);
but these results were not confirmed in the cross-validation
(R2cv093.68% and RMSECV00.0217), where the best mod-
el was obtained by using the first derivative. The comparison
of the RMSECV values to the SEL value for the reference
method (adiabatic bomb calorimeter) for the best two models
obtained with CAL1 and CAL 2 demonstrates that the NIRS
prediction errors for gross energy were of 1.2 (CAL1)- and
1.28 (CAL2)-fold higher than the accuracy of the reference
method (0.015), which is considered as a rather high accuracy
for analytical purposes (Williams 2001).

Kays and Barton (2002) using MSC plus second deriva-
tive for the prediction of gross energy reported a standard
error of cross-validation of 0.053 kcal/for a range of values
of 4.05−5.49 kcal/g. To compare the results obtained in
cereal foods by Kays et al., we calculated the RPD (5.02),
RER (19.61), and CV (0.43 %) values for gross energy for
the best calibration model (CAL1) reported in Table 2. Kays
et al. reported values of 7.35 for RPD, 25.71 for RER, and
1.08 % for CV. The highest RPD and RER values found by
Kays et al. are clear consequences of the highest SD and
range values of the calibration set used by those authors.
However, the lowest CV obtained in the actual study for
food legumes could be explained by the very low value of
the SECV. Williams (2001) reported that CV for NIRS
chemical predicted values between 0.6 and 1.0 should be
considered as exceptional and those between 1. 1 and 2.0 %
as excellent. That is, the low CV obtained in our work
confirm that NIR spectroscopy can show an extremely high

accuracy for the prediction of gross energy in food-grade
legumes.

Validation

Once the equations were obtained, the predictive capa-
bilities of calibrations were also evaluated using the 26
samples comprising the two validation sets. The statis-
tics for the prediction using first derivatives are shown
in Table 3.

The GE laboratory and NIRS-predicted values for the
validation sets were highly correlated (r2096.6 and 93.72
for VAL1 and VAL2, respectively). These values suggest
accurate predictability. For all the pretreatments evaluated,
the equations developed with CAL1 show the lowest SEP
and the highest R2 values compared to those obtained with
VAL2.

The model developed with VAL1 and using a first deriv-
ative plus SNV, had the best overall performance statistics.
The SEP value (0.0253) was quite comparable to the bench-
mark standard error of the reference laboratory test (0.015)
resulting in a RPDRMSEP value of 4.2 and an exceptional CV
of 0.58 %.

Table 2 Cross-validation results for the two Cal sets

Calibration set Cal 1. Calibration set Cal 2.

First
derivative

Second
derivative

First
derivative
+MSC

First
derivative
+SNV

First
derivative

Second
derivative

First
derivative
+MSC

First
derivative
+SNV

Calibration R2 98.32 95.67 97.63 98.16 96.70 98.26 95.82 96.02

RMSEC 0.0124 0.0195 0.0147 0.0128 0.0156 0.0123 0.0201 0.0184

RPD 7.7 4.8 6.5 7.4 5.5 7.6 4.9 5.0

Cross-validation R2
CV 95.44 91.01 94.69 95.68 94.24 93.68 94.03 92.48

RMSECV 0.0187 0.0263 0.0201 0.0182 0.0192 0.0217 0.0226 0.0235

RPD 4.7 3.3 4.3 4.8 4.2 4.0 4.1 3.7

Number of PLS factors 7 5 7 6 5 6 5 6

Table 3 Validation
results for the two Val
sets

Validation
set Val 1.

Validation
set Val 2.

First
derivative

First
derivative

r2 96.6 93.72

SEP 0.0253 0.0264

RMSEP 0.0248 0.0259

RPD 4.2 4.0

RPDc 4.9 2.8

RER 16.69 13.72

CV 0.58 0.61
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Conclusions

It can be concluded that the FT-NIRS supported with mul-
tivariate analyses has high potential to estimate the gross
energy of food-grade legumes in a nondestructive way and
with high degree of accuracy. On the basis of the positive
results obtained on this feasibility study, further research
using a more comprehensive calibration with larger set of
samples is justified and can be required to be suitable for
industrial or commercial applications. The algorithm based
on PCA and Mahalanobis distance seems to be a better
procedure that the one based only on the two first PCA for
selecting representative samples for enlarging the calibration
set.
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