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Abstract An electronic nose-based Fuji apple storage time
prediction method is investigated in this paper. A home-made
electronic nose with eight metal oxide semiconductors gas
sensor array was used to measure the apples stored at room
temperature. Principal component analysis cannot discrimi-
nate all samples. Stochastic resonance signal-to-noise ratio
spectrum distinguishes fresh, medium, and aged apples suc-
cessfully. The prediction model is developed based on signal-
to-noise ratio maximums. In validating experiments, results
show that the predicting accuracy of this model is 84.62 %.
This method takes some advantages including fast detection,
easy operation, high accuracy, and good repeatability.
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Introduction

The fruit quality determination plays an important role in
agro-industries because it influences the choice of consumers
to a great deal. Currently, the common methods for fruit
quality evaluation include sensory and instrumental studies.
For sensory analysis, taste and aroma aspects of fruit samples
are assessed by specially trained people. The evaluation result
provides unique information about the acceptance degree of
fruit samples. This method is widely accepted in overall fruit
quality assessment. The most important problems of this

method are measurement standardization, stability, and repro-
ducibility. Sometimes, the high costs for people training and
use of sensory panels also limit the applications of this tech-
nique. Instrumental analysis methods, including gas chroma-
tography (GC), gas chromatography–mass spectrometry (GC-
MS), and high-performance liquid chromatography (HPLC),
are usually utilized for fruit quality evaluation in lab. Howev-
er, these methods are high-cost and time-consuming. More-
over, the skilled operators are required to perform the
instrumental analytical experiments.

A popular nondestructive method is the employment
of electronic nose (E-nose), an instrumentation which
consists of an array of some electronic chemical sensors
with partial specificity. Appropriate patterns or finger-
prints from known odors are employed to construct a
database and train a pattern recognition system so that
later unknown odors can subsequently be classified and
identified (Hammond et al. 2002; Gardner and Bartlett
1999; Peris and Escuder-Gilabert 2009). The E-nose
technology has been successfully employed in diverse
fields such as agriculture (Zhang and Wang 2007), pharma-
ceutics (Zhu et al. 2004), environmental controls (Ameer and
Adeloju 2005; Canhoto and Magan 2003; Lamagna et al.
2008), and clinical diagnostics (Bernabei et al. 2008; Di
Natale et al. 2003). In the past decade, E-nose technique, most
notably, has been employed in the recognition and quality
analysis of various foods and agro-products, such as bever-
ages (Ragazzo-Sanchez et al. 2008; Reinhard et al. 2008),
milk (Wang et al. 2010a), edible oil (Apetrei et al. 2010;
Lerma-Garcia et al. 2009), meat (Balasubramanian et al.
2008; Vestergaard et al. 2007), fish (El Barbri et al. 2009),
vegetables (Concina et al. 2009; Gomez et al. 2008), and fruits
(Gomez et al. 2007; Benady et al. 1995; Sarig 1998; Maul et
al. 1999; Oshita et al. 2000; Berna et al. 2004; Saevels et al.
2003; Zhang et al. 2008).
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In this paper, a home-made E-nose has been employed to
investigate the apple storage time at room temperature. Principal
component analysis (PCA) method discriminates fresh and me-
dium apples from aged apples, but it is difficult to implement the
discrimination between fresh and medium apples. Signal-to-
noise ratio (SNR) spectrum is calculated using stochastic reso-
nance (SR). SNR maximum values successfully distinguish
fresh, medium, and aged apple samples. Apple storage time
prediction model is developed using SNR maximums
(max-SNR). Predicting error of this model is less than 10 %.
This method provides a new way for fruit storage time
assessment.

Materials and Methods

Materials

Sixty “Fuji” apples (Malus domesticaBorkh.), purchased from a
fruit market in Hangzhou, are taken from the same box and
likely harvested at the same time and underwent the same
postharvest treatment. The apples approximately have the same
weight and curvature radius. Apples are placed in nonhermetic
box and stored at room temperature for the whole period of the
experiment. Thirty apples are used in E-nose measurement, and
the rest 30 apples are utilized in validating experiments. The
samples are measured on days 0, 2, 4, 6, 8, and 10.

E-nose System

E-nose system is developed by our laboratory, and its structure
is shown in Fig. 1. The diagram includes three main parts: data
acquisition, modulating, and transmitting unit (U1); sensor
array and chamber unit (U2); and power and gas supply unit
(U3). The sensor array consists of eight semiconductor gas
sensors, whose sensing species is showed in Table 1. Polyte-
trafluoroethylene material is utilized to fabricate the chamber.
Each sensor chamber is separated, which helps to eliminate
the cross-influence of the gas flow.

Methods

The whole apple was put into a 500-ml beaker at room
temperature. After 3 h, the E-nose sampling pinhead was
put into the headspace of the beaker. Gases within the
headspace were sucked into E-nose sensor chamber and
reacted with the sensors. Each experiment lasted for 40 s,
and the real-time responses to the apples were recorded for
further analysis.

Storage Time Prediction Method

SR plays an important part in signal processing (Benzi et al.
1981; Dutta et al. 2006; Wang et al. 2010b; Gammaitoni et
al. 1998). SR has three elements: a bistable system, a co-
herent input, and a noise source, which can be described as:

dx

dt
¼ � dV ðxÞ

dx
þMIðtÞ þ CxðtÞ ð1Þ

where x is the position of the Brownian particle, t is the time,
M and C are adjustable parameters, IðtÞ ¼ SðtÞ þ NðtÞ

Fig. 1 Schematic diagram of
E-nose system

Table 1 Constitution of
gas sensor array Sensor

no.
Sensor
type

Sensing species

S1 MQ-2 Propane, liquefied
petroleum gas

S2 MQ-3 Ethanol

S3 MQ-6 Butane, liquefied
petroleum gas

S4 TGS-
2201

Gasoline and diesel
exhaust gas

S5 MQ-7 Carbon monoxide

S6 MQ-8 Hydrogen

S7 TGS-
842

Hydrogen and
methane

S8 TGS-
825

Hydrogen sulfide
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denotes an input signal S(t) and intrinsic noise N(t), ξ(t) is
the external noise, and V(x) is the simplest double-well
potential with the constants a and b, characterizing the
system.

V ðxÞ ¼ � 1

2
ax2 þ 1

4
bx4 ð2Þ

Equation (1) can be written as

dx

dt
¼ ax� bx3 þMIðtÞ þ CxðtÞ ð3Þ

The minima of V (x) are located at ± xm, where xm

¼ ða=bÞ1=2 . A potential barrier separates the minima with
the height given by ΔU ¼ a2=4b. The barrier top is located
at xb00. When three elements of SR interact coherently, the
potential barrier can be reduced, and the Brownian particle
may surmount the energy barrier and enter another potential
well (Benzi et al. 1981; Gammaitoni et al. 1998). The
intensity of signals will increase, which makes it possible
that the weak signal can be detected from noise background.

Suppose the input signal is IðtÞ ¼ A sinð2pft þ ϕÞ, where
A is the signal intensity, f is the signal frequency. D is the
external noise intensity. SNR is the common quantifier for
SR and it can be approximately described as (Gammaitoni et
al. 1998):

SNR ¼
ffiffiffi

2
p

ΔUðA
D
Þ2e�AU D= ð4Þ

Noise intensity is just a parameter of SR model. SR
model is used as a data processing method in this research.
We use IðtÞ ¼ A sinð2pft þ ϕÞ þ E� noseðtÞ þ NðtÞ as in-
put matrix. It has a sinusoid signal A sinð2pft þ ϕÞ, E-nose
response data E-nose(t), and intrinsic noise N(t). Noise
intensity changes within the range (0–900). SNR between
the output and input is calculated. A graphical illustration of
SR processing is shown in Fig. 2.

Results and Discussion

E-nose Analysis Results

E-nose responses to apple samples are shown in Fig. 3a.
Most of the E-nose sensors are sensitive to apple sam-
ples. Sensors S8, S6, S5, S4, and S1 are more sensitive

to apple samples. Their responses increase obviously in
the time interval between 2.5 and 25 s, and after that,
the responses tend to be saturated. The saturated value
of sensor S8 is the maximal, and that of sensor S7 is
the minimal. The saturated values related to the average
sensor response for each kind of apple, as a function of
time, are shown in Fig. 3b. The responses of S8, S3,
S1, S2, S4, S5, and S6 fluctuate during the whole
experimental procedure, but the responses of S7 remain

Fig. 2 Graphical illustration of
E-nose data analysis method
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Fig. 3 Responses of E-nose to apple samples: (a) sensor array
responses and (b) sensor array saturated value as a function of storage
time
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Fig. 4 PCA analysis on the
experimental data with all the
sensors: (a) PC2 vs. PC1, (b)
PC3 vs. PC1, and (c) loading
plot of the first three
components (explained
variance092.07 %). The apple
samples under different storage
times are marked with color
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unchanged. The E-nose measurement results indicate
that volatile gas type and concentration released by
apple samples under different storage times vary a lot.

PCA analysis results were plotted onto the principle
components (PCs) in Fig. 4. The first two components,
PC1 and PC2, captured 84.80 % of data variance (see
Fig. 4a). The figure showed the projections of the
experimental results on a two-dimensional plane formed
by the first two PCs. Apples can be divided in three
categories. Each of three categories corresponds to
fresh, medium, and aged apples, respectively. The fresh
group corresponds to the samples having undergone up
to 2 days of storage. The medium group corresponds to
the samples from 4 to 6 days of storage. The aged
group corresponds to the samples stored over 8 days.
The quality of fresh and medium groups is acceptable
for consumers and can be grouped as acceptable group.

The aged group is possible going to bad and can be
named as bad group. The acceptable and bad groups
appear ordered along the first PC according to the
number of storage days, but the fresh and medium
groups overlap together and cannot be discriminated.
All the samples increase their scattering along PC1
and PC2. The PC3 as function of PC1 was displayed
in Fig. 4b, and these two PCs captured 69.91 % of data
variance. The samples cannot be totally discriminated.
The loading plot of the first three PCs was displayed in
Fig. 4c. Samples of days 0 and 4 are more scattered
along PC3. Samples of days 2 and 6 show more scat-
tered along PC1. Samples of days 8 and 10 show more
scattering along PC2. PCA method can successfully
discriminate acceptable (fresh and medium) and bad
samples (aged), but the distributions of fresh and medi-
um samples are overlapping, which makes it difficult to
discriminate from each other.

Quality Prediction Model

SR SNR spectrum is showed in Fig. 5a. As mentioned
in Sect. 3.2, PCA analysis cannot discriminate fresh and
medium apples. Here, we add noise to the input matrix,
passing it through the SR model to get the output and
calculate the SNR between input and output. SR is
observed at various noise intensities for different apple
samples. Max-SNR values of each sample are complete-
ly different. Figure 5b shows the individual maximum
SNR for apples of different storage times. The
maximums of SR SNR increase as the increase of the
number of storage days. We use the linear fit of the
maximums to predict the apple storage time. The linear
fitting regression results are shown as Eq. (4). After the
transform, Eq. (5) is used as an apple storage time
prediction model.

y ¼ �76:855þ 0:74111x ðR2 ¼ 0:99583Þ ð4Þ

Timeapple ¼ 76:855þMax� SNR

0:74111
ð5Þ

Twenty-six E-nose validating measurement data is ran-
domly selected and processed by SR. The max-SNR values
are calculated and used as input of Eq. (5) for storage time
prediction. The results are shown in Table 2. The predicting
accuracy of this model is 84.62 %. The results demonstrate
that this model can predict apple storage time at room
temperature successfully.

Fig. 5 Apple quality prediction model: (a) spectrum of apple samples
and (b) apple quality prediction model
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The apple quality assessment method based on linear
fitting regression presents good predicting accuracy. This
method also avoids the drawbacks of microbial measure-
ments, such as time-consuming, fussy procedure, etc. Thus,
it is promising in fruit quality evaluating applications.

Conclusions

In this paper, E-nose-based apple storage time prediction
method has been investigated. PCA method discriminates
acceptable groups (fresh and medium class) from bad group
(aged class), but it is difficult to discriminate fresh apples
from medium apples. The SNR spectrum is calculated using
stochastic resonance. The individual SNR maximum values
are used to develop the apple storage time prediction model.
Validating experiments indicates that the predicting accura-
cy of this model is 84.62 %. This method presents some
advantages including fast detecting, easy operation, high
accuracy, and repeatability. It is promising in fruit quality
evaluating applications.
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