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Abstract
Salt stress on green microalgae increases lipid production at the cost of cellular homeostasis. Rapid optimization of growth 
conditions for high lipid productivity and biomass yield is crucial for translation to industrial-scale biodiesel production. To 
achieve this, the present study has developed a spectroscopic non-invasive analysis of lipid molecules produced by Chla-
mydomonas reinhardtii in two-stage salt stress, wherein 100 mM NaCl was added at two different time points: day 2 (D2 100) 
and day 4 (D4 100) of growth. Two-stage stress resulted in cell morphology like the photoautotrophic control grown in normal 
conditions, with negligible palmelloid formation in contrast to single-stage. Raman spectra acquired from ~ 30 individual 
cells in each culture revealed heterogeneities in lipid composition. Discrete wavelet transform decomposition of the Raman 
signal was used to enhance the signal-to-noise ratio and accuracy of Raman peak center estimation. An overall increase in 
heterogeneity indices for fatty acid degree of unsaturation was observed under two-stage salt stress: fourfold for D2 100 
and ninefold for D4 100, especially at the stationary growth phase. The ratio of the  CH2/CH3 scissoring mode (1440  cm−1) 
and the C = O stretching mode (1750  cm−1) reveals the shortening of fatty acid chain length in D4 100. Although Raman 
bands of lipids formed in all growth conditions are on average like Triolein (18:1), analyses of the degree of unsaturation 
(1656/1440  cm−1) clarify the increased content of bi and tri-unsaturation only in D4 100. This non-invasive lipid profiling 
reveals that D4 100 is likely a non-ideal condition to obtain high-quality biodiesel-producing lipids. A comparative analysis 
of single-cell fluorescence microscopy of lipid droplets and Raman intensity of lipids shows the sensitivity of Raman intensity 
in deciphering the relative response of the cells to salt stress.
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Introduction

Through efficient light-harvesting and carbon dioxide fixa-
tion mechanisms, microalgae have evolved as a promising 
source of energy feedstock, including biofuels, nutraceuti-
cals, and other high-value products [1]. In the microalgal 
biofuel industry, the quantity and quality of the product are 
among the important factors that pose challenges in present 
times [2]. This concern exists despite numerous techno-
logical and genetic modification approaches for increasing 
the microalgal biomass yield and lipid productivity [3, 4]. 
Microalgae are known to produce higher amounts of biofuel-
related compounds under environmental stress conditions 
such as limitation of nutrients including phosphorus and 
nitrogen, supra-optimal conditions of temperature, light, 
carbon dioxide, and salinity [5]. The current study is focused 
on reviewing the effects of salt stress on Chlamydomonas 
reinhardtii. Salt stress results in the loss of lipid productivity 
due to cell death and poor biomass [6]; hence, it demands 
a balanced trade-off to achieve maximum lipid production 
with good biomass yield. Several innovative strategies have 
been employed to maximize biomass and lipid (triacyl-
glycerol) yields under stress conditions [7], for instance, 
changing the mode of cultivation from continuous to batch 
culture in Acutodesmus obliquus under nitrogen starvation 
led to higher triacylglycerol yields [8]. Recently, two-stage 

cultivation results in biomass accumulation in the first stage, 
followed by exposure to stress elements in the second stage. 
This benefits the net lipid content in microalgae [9]. Two-
stage salt stress in Chlamydomonas sp. JSC4 increases the 
biomass accumulation and lipid content by nearly four times 
compared to single-stage [10].

Most of the studies use bulk measurement techniques 
like gas chromatography-based detection tools (GC-FID 
or GC–MS) for quantifying the lipid content and deter-
mining the lipid composition. Despite the usefulness of 
GC in lipid profiling, resource-extensive sample prepa-
ration steps involving efficient harvesting of microalgae 
and lipid extraction procedures render GC difficult to use 
for multivariable screening. Detailed lipid composition is 
essential to learning the biofuel potential of the micro-
algal lipids, which is primarily dictated by the degree of 
unsaturation, the basis of all the biofuel quality param-
eters [11]. Raman spectroscopy (RS) offers rapid, high-
throughput, multivariate, and non-invasive analysis of 
lipid composition [12]. Raman spectroscopy when used 
in the confocal geometry (micro-RS) further permits the 
acquisition of high-resolution Raman scattering with just a 
few microliters of culture volume. Analysis of microalgal 
lipids obtained using RS as well as micro-RS has also been 
validated well by correlating the quantifications obtained 
from GC–MS [13, 14]. In the field of metabolomics, fast, 
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non-invasive metabolite fingerprinting has been possible 
using RS [15]. Micro-RS permits a label-free approach 
to simultaneously study multiple cellular metabolites and 
biomolecules such as starch, polysaccharides, proteins, 
lipids, carbohydrates, and carotenoids [14, 16, 17]. In 
the past decade, micro-RS has emerged as a rapid lipid 
profiling tool in microalgal research, especially at the 
single-cell level [18–20]. It even mitigates the problem 
of weak Raman signal, thus resulting in accurate localiza-
tion and sensitive signal detection [21]. This approach of 
single-cell measurement allows tracking of the single-cell 
phenotypic variability to reveal useful information lost in 
bulk measurements, which observe the mean of a vari-
able. For example, effects due to a bimodal distribution, a 
broad distribution, or the presence of significant states in 
the tails of a probability distribution get ignored in bulk 
measurements [22]. This distribution analysis has revealed 
the presence of antibiotic-resistant persister cells in the 
bacterial population which aids in biofilm formation [23]. 
Although heterogeneity is inherent in cells due to noise 
in gene expression levels [24], it holds the key to a better 
understanding of the response of an organism to changing 
environmental conditions. However, despite the industrial 
importance, there are very few studies that focus on char-
acterizing heterogeneity and understanding the underlying 
distribution as a function of the stress in microalgae.

The objective of this study was to critically analyze 
the feasibility of using micro-Raman data to identify 
population-scale lipid compositional heterogeneities in 
Chlamydomonas reinhardtii cells when exposed to single-
stage and two-stage salt stress and to predict the biofuel 
potential of lipids produced. The measurements were per-
formed at different stages of microalgal growth to under-
stand the impact of stress along with the life stages on the 
lipid profile of microalgae. This study likely serves to be 
the first of its kind to deliver such a detailed insight into 
the microalgal lipid heterogeneities as a function of salt 
stress and growth. The effect of stress on cellular stasis 
was also explored from the inter-relations of biomolecules. 
Some drawbacks of using micro-Raman spectroscopy, due 
to limited spectral resolution, low intensity, and non-uni-
form spatial distribution of biomolecules within a single 
cell, are also discussed in this paper. Nile red fluorescence 
measurements were used to analyze fluctuations in single-
cell lipid accumulation in response to salinity stress. This 
is coupled with multivariate analysis of single-cell Raman 
data for improved discrimination of signal due to chemical 
composition differences. The present studies show that if 
suitable care is taken, micro-RS can successfully allow 
simultaneous, non-invasive, multivariate studies of cel-
lular homeostasis, lipid production, leading to detection 
of population-scale heterogeneities in lipid composition, 
otherwise averaged out in bulk lipidomics.

Experimental Section

Microalgal Strain and Growth Conditions

Chlamydomonas reinhardtii CC-125 was procured from 
Chlamydomonas Resource Centre, Minnesota. Cells were 
cultivated in the standard medium called Tris–acetate-phos-
phate (TAP), at neutral pH 7.0 and a constant temperature 
of 25 °C. The microalgal culture was grown under constant 
shaking at 200 rpm, with a 12 h:12 h light to dark cycle 
using white light of ~ 50 μmol photons  m−2  s−1 intensity in 
the presence of minimal antibiotic concentration of 40 μg/
ml ampicillin to avoid any bacterial contamination (adapted 
from previous studies [25, 26]). The growth of the culture 
was monitored at 680 nm  (OD680) using a UV–visible spec-
trophotometer (UV-1800, Shimadzu). Cell density was 
determined from three independently grown cultures using 
the following equation:

This equation was derived from the cell count using a 
hematocytometer at different cell concentrations (Fig. S1) 
of C. reinhardtii.

Cultivation of C. reinhardtii Under Salt Stress

Salt stress was provided to the microalgal culture using a 
final concentration of 100 mM sodium chloride, NaCl, as 
described in the previous study [27]. This concentration was 
selected based on the adverse effects of osmotic shock on 
the cells when a NaCl concentration higher than 100 mM 
was used (data not shown). The salt stress was provided in 
two ways: single-stage and two-stage as shown in Fig. 1. 
Briefly, the single-stage cultures had 100 mM NaCl added at 
the beginning of culturing (SS 100). The two-stage cultures 
had 100 mM NaCl added in the early-log phase on the 2nd 
day of the culture (D2 100) and in the mid-log phase on the 
4th day of the culture (D4 100). The C. reinhardtii cells were 
harvested on the 6th day (D6) and 10th day (D10), at the 
end-log and stationary phase, respectively. The autotrophi-
cally grown C. reinhardtii under the optimum environmental 
conditions without any stress serves as the negative control 
in all the experiments.

Single‑Cell Micro‑Raman Spectroscopy 
Measurements

For visualizing C. reinhardtii CC-125 cells under a 
microscope conjugated with Raman spectroscopy, 1 ml 
of the culture was centrifuged at 8000 g for 5 min and 

(1)Cells

(

×
106

ml

)

= 0.015 + 3.64 × OD680
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concentrated into a wet paste, spotted on a clean glass 
slide, and dried in the air, as described by He et. al in 
2017 [14]. Raman scattering experiments were carried 
out with a micro-Raman spectrometer (STR 300 series, 
AIRIX Corp., Japan) having an upright confocal geometry, 
as described previously [27]. The incident beam of 50 mW 
power, attenuated by 5% with a neutral density filter from a 
532 nm diode-pumped solid-state laser (Laser Quantum), 
was passed through a × 50 objective lens (N.A. 0.6), and 
the back-scattered Raman signal was collected through this 
same objective. This geometry yielded a diffraction-lim-
ited focal spot of about 500 nm, resulting in a small focal 
volume. After elimination of the elastic Rayleigh scattered 

light with a holographic filter, the Stokes scattered light 
was passed through a grating having a resolution of about 
2.4  cm−1 in the fingerprint region, detected by an Andor 
iDus EMCCD, cooled to − 70 °C. The acquisition time 
was optimized to 2 s to collect the scattered light from 
individual cells, maintaining near single-cell conditions. 
Two signals of 2 s duration each were then averaged, and 
the instrumental background was subtracted to yield the 
final signal. A total of ~ 30 Raman spectra were captured 
from a single preparation of a culture. The spectrometer 
was calibrated using naphthalene as the standard before 
data acquisition.

Fig. 1  Methods of cultivation of C. reinhardtii under single-stage and 
two-stage salt stress and their effect on growth and morphology. A C. 
reinhardtii cells grown in normal TAP media without salt stress are 
referred to as control D6 and control D10, depending on the day of 
sampling, i.e., day 6 (D6) and day 10 (D10), respectively. Similarly, 
single-stage with 100 mM NaCl culture is referred to as SS 100 D6 
and SS 100 D10; early-log phase salt stress cultures are D2 100 D6 
and D2 100 D10; mid-log salt stress cultures are referred to as D4 

100 D6 and D4 100 D10. B Growth curve depicting the change in the 
cell density of C. reinhardtii with time (in days). Data points repre-
sent the average for three independent experiments. C C. reinhardtii 
cells stained with Nile red dye were observed with epifluorescence 
microscopy (objective of × 100, 1.4 N.A., scale bar = 10  µm). The 
green-colored pigments in the bright field images are the photosyn-
thetic pigments, chlorophyll, and carotenoids. The Nile red fluores-
cence in the lower panel depicts the lipid droplet accumulation
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Signal Processing of Raman Spectra

Each Raman spectrum was first background subtracted and 
de-trended by subtracting a polynomial best representing the 
background by a non-linear least-square fitting algorithm. 
The Raman spectrum was first normalized to correct for 
the incident intensity fluctuations arising from the scatter-
ing or absorption of the incident light. The resultant data 
obtained after this pre-treatment had the same baselines and 
maximum peak intensity permitting a direct comparison of 
microalgal cells grown under different conditions. This pre-
signal processing of the data was done using custom-made 
codes in MATLAB. The pre-treated data was then processed 
using the discrete wavelet transform (DWT) algorithm.

The DWT algorithm is a fast-hierarchical scheme that 
passes a signal with length L =  2n data points through a 
series of consecutive low-pass and high-pass filters, which 
decompose the signal into different levels or frequency 
bands. Symlet 4 wavelet was used with a level 2 decompo-
sition, which regulates the low-pass and high-pass filters. 
The low-pass filter outputs are referred to as approximation 
coefficients and the high-pass filter outputs are referred to 
as detail coefficients. The data was decimated after this fil-
ter step by a factor of two per the Nyquist theorem. Typical 
approximation coefficients from one of the Raman signals 
along with the two detail coefficients (non-decimated) as an 
outcome of this 2-level decomposition are shown in Fig. S2. 
To decompose a signal with an optimal decomposition crite-
rion, a signal of length L =  2n can be expanded in α different 
ways, where α ≥  2n/2 is the number of binary subtrees of a 
complete binary tree of depth L. Since α is a large num-
ber, entropy-based (additive-type property) criterion, the 
classical Shannon entropy (non-normalized squared value 
of the logarithm of each signal sample) was found to be 
appropriate. The best wavelet decomposition tree was com-
puted, and an appropriate threshold was selected for signal 
reconstruction. To obtain peak parameters, deconvolution 
was performed for the overlapping peaks both before and 
after DWT treatment from the Raman data and observed to 
yield better estimates of peak center values.

Single‑Cell Quantification of Neutral Lipids 
by Epifluorescence Microscopy of C. reinhardtii Cells

Nile red staining of the neutral lipids, triacylglycerols 
(TAGs), in C. reinhardtii cells, was carried out by incubat-
ing the microalgal cells with the final concentration of 1 µg/
ml Nile red in DMSO (Sigma-Aldrich) for 10 min at 25 ℃ 
in the dark [28, 29]. The stained neutral lipid droplets were 
observed with an Olympus BX53F2 upright optical micro-
scope in epifluorescence mode, using a 130 W U-HGLGPS 
excitation source, TRITC filter, and × 100 (1.4 NA) Olympus 
oil-immersion objective. For each growth condition, about 

100 cells were imaged with an Olympus DP74 camera. 
Using an image processing software, Fiji (ImageJ), each cell 
was selected individually with a custom-made program, and 
the raw fluorescence intensity of the Nile red-stained lipid 
droplets was measured for the selected cells.

Data Analysis

Multivariate Analysis of Micro‑RS Data

Principal component analysis (PCA), statistical and ratio-
metric analysis of Raman peak intensities for lipid C–C, 
C = C, and C = O stretching and  CH2/CH3 scissoring modes 
were performed using MATLAB R2015a. MATLAB was 
also used to generate normalized histograms of peak intensi-
ties to obtain the probability distribution of these quantities. 
Pearson’s correlation coefficient was calculated among the 
cellular components starch, protein, carotenoid, chlorophyll, 
and saturated and unsaturated lipids and the correlation 
matrix was constructed using the customized Python codes. 
The coefficients were calculated for Raman spectra obtained 
from ~ 30 individual cells.

To analyze heterogeneity in Raman peak centers and 
intensity across a population, the odds ratio (OR) was cal-
culated using Eq. 2 for different stress conditions on day 6 
and day 10 relative to the control culture on day 6.

In the above equation, OR is calculated for a particu-
lar Raman mode, with fc = the fraction of population of the 
control culture at day 6 with Raman peak center same as the 
median peak center, (1 − fc) = the fraction of population of 
the control culture at day 6 with Raman peak centers differ-
ent from the median value of the population, fs = fraction 
of population in a particular stress condition with Raman 
peak centers same as the population-scale median value, 
(1 − fs) = fraction of population in a particular stress condi-
tion with Raman peak centers different from the population-
scale median value. Since OR quantifies heterogeneities 
relative to a control, this is referred to as the heterogeneity 
index (HI).

Fatty Acid Analysis for Predicting Biofuel Properties

The degree of unsaturation (DU) present in the fatty acid 
(FA) content of the cell was calculated as the ratio of Raman 
peak intensity of ν(C = C) and α(CH2/CH3) Raman modes 
(Iα = Iν(C=C)/Iα(CH2/CH3)). Biofuel parameters like cetane num-
ber (CN) [30], iodine value (IV, mg I2 absorbed per 100 g of 
oil), and higher heating value (HHV, MJ  kg−1) were also cal-
culated from the degree of unsaturation [31]. Additionally, 

(2)OR =
fc∕(1 − fc)

fs∕(1 − fs)
=

fc(1 − fs)

fs(1 − fc)
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the fraction of SFA (saturated fatty acid) and UFA (unsatu-
rated fatty acid) was also determined [32]. These calcula-
tions were run on three independent biological replicates. 
Error bars represent the standard deviation. The equations 
are as below:

Glyceryl trioleate was procured from Sigma-Y0001113 
(referred to in the text as Triolein) and was used as a stand-
ard without further purification. Biofuel extracted from 
Chlorella variabilis (ATCC-PTA 12198) [33, 34] which 
has already been tested and found to efficiently run vehicles 
(referred to as MA Oil) was used for comparison with the 
biofuel properties of lipids tested in C. reinhardtii.

Results

Impact of Two‑Stage Salt Stress on Growth 
and Cellular Morphology

In the line of experiments, the first focus was to check the 
effect of single-stage and two-stage salt stress on growth 
of C. reinhardtii. The growth curve of single-stage salt 
stress and two-stage salt stress is same as that of the con-
trol (Fig. 1B). It was observed that single-stage salt stress 
results in the palmelloid formation (Fig. 1C) wherein the 
cells gather in the group of 4 or more, surrounded by the 
extracellular matrix to combat against the stressful environ-
ment. Interestingly, this kind of morphological change was 
not observed in case of two-stage stress. Both D2 100 and 
D4 100 show no palmelloid development, when observed 
in the microscope. These results combinedly show that 
100 mM NaCl induces the harmful effects of salt stress to 
only a limited extent and causes no significant change to the 
growth profile of C. reinhardtii cultures.

Assignment of Raman Modes to Cellular 
Biomolecules

To study the effect of salt stress on microalgal growth 
and lipid composition and heterogeneity, micro-Raman 
spectra were acquired from ~ 30 individual cells belong-
ing to each of the culture conditions as mentioned in the 
“Experimental Section.” Raman signal collected from a 
single microalgal cell with a short acquisition time is usu-
ally very weak, due to scattering and absorption of the 
incident beam by the cytoplasmic matrix, extracellular 

(3)Cetane number (CN) = 62.32 − 6.13 × DU

(4)Iodine value (IV) = 12.71 + 74.37 × DU

(5)Higher heating value (HHV) = 38.53 + 1.76 × DU

media, pigments, or components of the cell wall. Moreo-
ver, cellular auto-fluorescence can result in a large non-
uniform background too [16]. As a result of these fac-
tors, the Raman scattered signal obtained from the cells is 
noisy, with a large, variable background. After appropriate 
background subtraction and normalization (“Experimental 
Section”), a discrete wavelet transform (DWT) approach 
to denoise the noisy pre-treated data acquired for 2 s was 
found to yield reproducible peak positions and centers. 
This was cross-verified with Raman signals from each of 
the microalgal samples grown at different conditions and 
with the Raman data collected with 50 s accumulation 
time (data not shown). At this large accumulation time, 
even though noise is minimized due to signal averaging 
and whole-cell spectra can be obtained, long exposure to 
high laser power can alter the cellular dynamics result-
ing in erroneous results. Nevertheless, it gives a good 
estimate of the actual peaks present, which are deconvo-
luted with a Voigt function and peak centers accurately 
obtained. A drawback of this DWT denoising algorithm 
is that the data are down sampled, but this did not obscure 
the signal integrity and accuracy of the main Raman peaks 
considered in this study (Fig. S3). The DWT processed 
data were normalized for the strongest Raman peak (at 
around 1523  cm−1 corresponding to carotenoids) for each 
Raman data of the biological replicates for control (no 
stress), SS 100 (single-stage, 100 mM NaCl stress), D2 
100 (two-stage, 100 mM NaCl added on the 2nd day of 
growth), and D4 100 (two-stage, 100 mM NaCl added on 
the 4th day), all acquired on the 6th day (end-log phase) 
(Fig. 2A). Raman signal acquired with 2 s acquisition time 
and subsequently DWT treated illustrated enhanced accu-
racy in the peak center estimates after the DWT treatment 
(Fig. S4). The normalized Raman signal was then used to 
analyze the fingerprint region in the wavenumber range 
of 850–1800  cm−1, which revealed resolved contributions 
from various cellular constituents, such as photosynthetic 
pigments (chlorophyll and carotenoids), starch, proteins, 
and lipids. These peaks were deconvoluted with Voigt 
functions to obtain peak centers of the Raman bands cho-
sen for study (Fig. 2B–F). The peaks identified after the 
transformation of Raman spectra with the DWT denois-
ing algorithm accurately match previous estimates of 
Raman peaks observed for the biomolecules under study 
[35–37] as well as for Chlamydomonas sp. [14] (Table 1). 
The highest intensity peaks were assigned to carotenoids, 
specifically β-carotene (the in-plane ν(C–C) stretch at 
1156  cm−1 and ν(C = C) stretching mode at 1523  cm−1), 
followed by chlorophyll peak at 1288  cm−1, starch peak 
at 864  cm−1, lipid peaks at 1063, 1086, 1440, 1656, and 
1750  cm−1, and proteins at 1349  cm−1. In the following 
sections, Raman modes around these wavenumbers are 
further explored across individual cells.
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Fig. 2  Deconvolution of the Raman spectra of C. reinhardtii cells 
yields distinct Raman peaks. A Overlay of DWT-treated Raman 
spectra across three biological replicates each of control (no NaCl), 
SS 100 (100  mM NaCl added on day 0), D2 100 (100  mM NaCl 
added on day 2), and D4 100 (100 mM NaCl added on day 4 of cul-
ture) captured on day 6 of growth. The Raman spectra obtained for 

day 10 samples were similar to those of day 6 and hence not shown 
here to avoid repetition. Deconvolution and fitting of the smoothened 
Raman spectra using the Voigt function reveal distinct peaks used in 
the following study, viz., 866   cm−1 and 1064   cm−1 (B), 1156   cm−1 
(C), 1288, 1350 and 1440   cm−1 (D), 1523   cm−1 (E), and 1664 and 
1753 cm.−1 (F)

Table 1  Raman peak assignments of starch, protein, chlorophyll, carotenoid, and lipids for C. reinhardtii 

Wavenumber 
 (cm−1)

Component Peak assignment Reference

 ~ 864 Starch C–O–C stretching and ring breathing modes in amylopectin and amylose units of starch [14, 36]
1350 Protein C–Cα–H bending and Cα–C stretching in α-helix or amide I and III regions of tryptophan [37]
 ~ 1156 Photosynthetic 

pigments
In-plane stretching of C–C and deformation of C–H bonds in β-carotene [50]

 ~ 1288 Deformation of C–H and in-plane stretching of N–C bond in chlorophyll a
 ~ 1523 In-plane stretching of C–C bond in β-carotene
 ~ 1064 Lipids C–C stretching [14, 35]
 ~ 1440 Scissoring of  CH2/CH3 bond
 ~ 1656 C = C stretching
 ~ 1750 C = O stretching
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Validation and Analysis of Raman Bands of Different 
Biomolecules in C. reinhardtii Cells Under Salt Stress

Raman laser spot size under the current experimental con-
ditions is ~ 500 nm, which is 1/20th part of the cell (Chla-
mydomonas is ~ 10 µm in diameter), rendering it a non-ideal 
representative of the absolute concentration of cellular bio-
components. For this reason, the observed Raman intensities 
can only be used for relative measurements. Raman band at 
1063  cm−1 (C–C stretch of lipids) is first chosen to analyze 
lipids because the peak center of this band shows minimum 
fluctuations across different growth conditions (Fig. S5). 
This is compared to the absolute neutral lipid concentration 
in C. reinhardtii obtained from Nile red fluorescence inten-
sity measurements by epifluorescence imaging of stained 
lipid droplets in about 100 cells and the fluorescence inten-
sity per area of the cell estimated using Fiji software. The 
Raman intensity at 1063  cm−1 is observed to be normally 
distributed for all growth conditions, like the single-cell Nile 
red fluorescence intensity distributions which fit to either 
normal or log-normal distributions (Fig. 3). Since the mean 
fluorescence intensity is a good measure of the lipid content 
of a cell, it is evident from Fig. 3B that lipid concentration 
increases in the presence of salt stress. The mean Raman 
intensities too show an increase in the different stress con-
ditions compared to the control (Fig. 3A). In addition, the 
standard deviations, represented by the pink shaded region 
in each graph, also increase under stress as compared to con-
trol for both the Raman and Nile red fluorescence intensity 
distributions. Thus, in both cases, the distributions become 
more heterogeneous under salt stress. In both Raman and 
Nile red measurements, the distributions have similar kur-
tosis for control to start with, but show large deviations from 
the control culture distributions, especially in two-stage. 
Thus, even though Raman intensity is a poor indicator of the 
absolute biomolecule concentration, single-cell distributions 
can always be studied to shed light on the relative cellular 
changes imposed under stress.

Pearson’s correlation matrix among cellular biocompo-
nents, viz., starch, chlorophyll, carotenoids, and proteins 
along with lipids, was calculated using Raman intensities 
observed at wavenumbers mentioned in Table 1 and used 
in the previous analysis (Fig. 3C). Salt stress often imposes 
osmotic imbalance on the cell. The observations signify that 
100 mM NaCl added to the cultures is still below the thresh-
old for such osmotic damage (Fig. 1B). Under such circum-
stances, it becomes essential to study the impact of salt stress 
on these cellular components. The correlation matrices show 
the overall negative correlations on day 10 in contrast to 
day 6. The correlation coefficients for the control culture 
remain unchanged over the growth cycle of the organism. 
Single-stage salt stress exhibits more negative correlations 
in comparison to two-stage cultures. Deteriorating correla-
tion values on day 10 suggest poor growth in the station-
ary phase. There is a strong negative correlation between 
carotenoids-starch and carotenoids-lipid observed under all 
conditions. Chlorophyll-starch and chlorophyll-lipids are the 
correlations that become more negative under salt stress on 
day 10. This is also accompanied by hampered protein-lipid 
and starch-lipid inter-relations, the former being more pro-
nounced in the single-stage while the latter in the two-stage. 
Noting that these correlation coefficients are mere indicators 
of a possible juggle between these biomarkers at a small 
fraction of the cell, these results denote how the bio-inter-
play is disturbed under salt stress and varies as a function of 
the mode of salt stress application. Thus, the results strongly 
demonstrate that Raman intensity correlations are sensitive 
to the age and salt stress condition of the culture and can be 
a rapid assay to determine the physiological state of cells 
under stress relative to an appropriate control.

Biofuel Quality from Lipids Produced by C. 
reinhardtii Under Salt Stress

In the biofuel industry, increasing lipid productivity and 
producing biofuel of commercial quality are among the 
most essential requirements for maximizing profit. Bio-
fuel quality is determined by the length of the carbon chain 
and degree of unsaturation (DU) of FAs, which decide the 
cetane number (CN). The average DU values for different 
culture conditions were calculated with ratiometric analy-
sis, as the ratio of Raman peak intensity at C = C stretch-
ing (Iν(C=C), around 1656  cm−1) to that of the αCH2/CH3 
scissoring mode (I(CH2/CH3), around 1440  cm−1). Using the 
micro-Raman signal in these lipid modes, the biofuel quality 
parameters of lipids produced by C. reinhardtii under salt 
stress were calculated using the formulae described in the 
experimental section. This analysis was performed on an 
ensemble of ~ 30 cells and the population average values are 
shown in Fig. 4. Triolein (18:1C) and microalgal oil (MA 
Oil) extracted from CSMCRI’s Chlorella variabilis were 

Fig. 3  Validation and analysis of Raman bands of different biomol-
ecules in C. reinhardtii cells under salt stress. A Distribution of lipid 
chain length measured by Raman spectroscopy at 1063   cm−1 repre-
senting ν(C–C)1 vibration for ~ 30 cells. B Probability distribution of 
Nile red fluorescence depicting neutral lipid droplets per area of the 
cell (µm.2) measured for ~ 100 cells. The red curve represents the fit-
ted distribution. Gray-colored dashed line is the data average spanned 
on each side by the experimental standard deviation (highlighted with 
pink background). Ku is the kurtosis. C Pearson’s correlation coef-
ficients were calculated for cellular components—starch, protein, 
carotenoids, chlorophyll, saturated lipid, and unsaturated lipid for ~ 30 
cells each from the different cultivation conditions labeled at the top 
of each panel using the nomenclature mentioned in the text. Color 
scale ranges from yellow (correlation coefficient = 1, highest positive 
correlation, assigned for self-correlation) to blue (correlation coeffi-
cient =  − 0.4, highest negative correlation observed)

◂
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used as standards (Raman spectra of MA Oil and Triolein 
are shown in Fig. S6). Interestingly, the average value of the 
parameters characterizing biofuel quality (Fig. 4) shows neg-
ligible variation for all the culture conditions under study. 
The average DU obtained for each condition was around 
0.6 and the corresponding cetane number (CN) was found 
to be ~ 58 (Fig. 4A and B). The higher heating value (HHV) 
was found to be around 40 MJ  kg−1 and iodine value (IV) 
in the range of 60–80 mg I2/100 g oil (Fig. 4C, D). The 
fraction of saturated FAs is higher than the unsaturated FAs 
in all the conditions (Fig. 4E). Interestingly, all the biofuel 
parameters predicted here show similarity to the standard 

Triolein, which is a mono-unsaturated 18C long-chain FA 
containing TAG.

Although the lipids produced by C. reinhardtii CC-125 
under both single-stage and two-stage salt stress conditions 
were found to yield good biofuel quality, the notable indiffer-
ence in composition demands an explanation of the impact 
of salt stress. Ideally, lipid composition can differ for differ-
ent cells within a culture, and average values do not reveal 
these hidden heterogeneities in the lipid profile caused by 
different cell types of a population. Hence, simple averages 
of cellular response to stressful environments are not suit-
able parameters to understand the overall population-level 

Fig. 4  Biofuel properties of 
lipids produced by C. rein-
hardtii under different modes of 
salt stress. Degree of unsatura-
tion (A), cetane number (B), 
higher heating value (C), and 
iodine value (D). Fraction of 
saturated (SFA) and unsaturated 
fatty acid (UFA) in the popula-
tion (E). Microalgal oil (MA 
Oil) extracted from Chlorella 
variabilis and processed for 
further use (see “Fatty Acid 
Analysis for Predicting Biofuel 
Properties”) and Triolein (TO) 
were used as standards. Values 
in plots are derived from three 
independent experiments, with 
error bars representing the 
standard deviation
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response. The significant indifference observed in the popu-
lation means values of lipid profile upon exposure to salt 
stress entails an exploration of the response of individual 
cells in a population for detection of subpopulations with 
stress response different from the average behavior. The 
presence of these subpopulations cannot be overlooked 
because any stress condition which leads to an enhancement 
in these subpopulations can cause variations in biofuel qual-
ity. The goal of the two subsequent sections is therefore to 
analyze the presence of heterogeneities in lipid composition.

Population‑Scale Heterogeneities in Fatty Acid 
Chain Length in C. reinhardtii Grown Under Salt 
Stress

Capitalizing on the fact that micro-RS is an efficient tool 
to carry out high-resolution single-cell studies, lipid com-
position was explored across individual cells of a single 
culture. Lipid molecules are characterized by the number 
of carbon atoms (chain length) present in the FAs and the 
number of double bonds (degree of unsaturation) defined 
by the presence of C–C and C = C bonds, respectively. 
TAGs or triacylglycerol have three FAs esterified to a glyc-
erol molecule, resulting in three C = O bonds and  CH2/CH3 
groups in the FA chain. By analyzing the Raman spectra of 
several FA methyl esters of different chain lengths, Beattie 

et al. have correlated the FA chain length to the ratio of the 
 CH2/CH3 scissoring mode (Iα) observed around 1440  cm−1 
and the C = O stretching mode around 1750  cm−1 [38]. To 
study this aspect in the present Raman data, normalized 
histograms were generated for the ratio of peak intensity 
at 1440  cm−1 to 1750  cm−1 (Iα(CH2/CH3)/IC=O, referred to as 
Iβ, Fig. 5) for different culture conditions at day 6 and day 
10. The histograms could be fitted by the normal distribu-
tion function, with some outliers falling at the tails. Broad 
distribution curves show the presence of cellular diversity, 
especially for D2 100 D6, D4 100 D6, and D10. Outliers 
were observed in the probability distributions of the Iβ 
ratio for the different culture conditions to get enhanced 
in salt stress conditions, demonstrating the presence of 
substantial cells that respond differently to salt stress in 
comparison to the average behavior. Overall, the diversity 
in FA chain length tends to vary under different types of 
salt stress applications. Further, the mean values obtained 
from the distribution dictate the average chain length of 
FA produced in the culture. These values (Fig. 5 caption) 
suggest an overall chain-shortening effect in D4 100, both 
at D6 and D10. Among the three types of salt stress, the 
two-stage stress D2 100 is more likely to produce long-
chain length FAs and D4 100 to produce short-chain FAs 
throughout the growth of the culture. This analysis shows 
that salt stress increases heterogeneity in the FA chain 

Fig. 5  Probability distribution of the ratio of Iα(CH2/CH3) and IC=O(Iβ), 
as a function of incubation time and mode of application of salt stress 
in C. reinhardtii. Here, P(Iβ) represents the probability of occurrence 
of the peak intensity ratio Iβ in the population. The mean values of 
the Iβ ratio obtained from the distribution fit (shown by the solid 

spline curve, blue for D6 and orange for D10) are 2.24 for control D6, 
2.04 for control D10, 2.04 for SS 100 D6, 2.47 for SS 100 D10, 2.25 
for D2 100 D6, 2.5 for D2 100 D10, 1.95 for D4 100 D6, and 1.73 for 
D4 100 D10
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length. The heterogeneity further depends on how the salt 
stress is applied to the growing microalgal culture.

Effect of Salt Stress on the Degree of Unsaturation 
of Lipids Produced by C. reinhardtii

The previously described validation analysis demonstrates 
that the unsaturation content of FAs in TAGs is an impor-
tant criterion that governs biofuel quality. Hence, apart 
from analyses of heterogeneities in the chain length of FAs 
(Fig. 5), it is necessary to analyze variation in the C. rein-
hardtii population for the unsaturation content of TAGs. The 
unsaturation content in lipids can be calculated as a ratio 
of ν(C = C) mode around 1656  cm−1, to the α(CH2/CH3) 
scissoring mode around 1440  cm−1. The Raman intensities 
at these wavenumbers show a significant peak formation 
(Fig. S7). A summary statistic of peak centers correspond-
ing to the above modes for cultures grown under different 
conditions reveals substantial variability in the peak center 
values of the α(CH2/CH3) and ν(C = C) modes (Fig. 6A–D). 
This variability is characterized by heterogeneity indices 
(HI) estimated from the OR values calculated using Eq. 2. 
Overall, heterogeneity observed in the α(CH2/CH3) scis-
soring mode is less compared to other peaks studied so 
far. Most of the cells in the population for all the culture 
conditions studied have peak center values at 1439  cm−1 or 
1440  cm−1, except D2 100 at D6 which has most cells with 
a peak center at 1442  cm−1 (Fig. 6A). For this mode, the 
HI values at D10 are very high, especially for single-stage 
SS 100, implying enhanced heterogeneity at the stationary 
growth phase (Fig. 6B).

In the case of the ν(C = C) mode distribution (Fig. 6C), 
the peak center is mostly observed at 1655   cm−1 and 
1656  cm−1 for the control culture at D6 and D10, respec-
tively. The HI values (Fig. 6D) are low in control, but there 
are outliers. These outliers cannot be neglected and result 
in broadening of the distribution when salt stress is applied, 
causing variability in the cellular stress response. Under both 
single and two-stage salt stress, the HI value increases at 
D10 (Fig. 6D). However, D4 100 has the highest heteroge-
neity both at D6 and D10, implying the production of lipids 
with a wide range of unsaturation (Fig. 6C, D). Thus, salt 
stress increases the heterogeneity in the unsaturation con-
tent, with maximum HI observed in two-stage, D4 100. This 
heterogeneity is also enhanced as the culture ages.

Further, the distribution of the degree of unsaturation 
(DU) in lipids under salt stress was characterized by carry-
ing out a ratiometric analysis of the Raman peaks at olefinic 
ν(C = C) stretch which is around 1656  cm−1 to the α(CH2/
CH3) peak around 1440  cm−1, referred to as Iα. Probabil-
ity density function (PDF), which gives the relative likeli-
hood of the occurrence of the random variable Iα, for ~ 30 
C. reinhardtii cells for each culture condition was obtained 

(Fig. 6E, F). Symmetrical Iα distributions were observed to 
be represented well by the normal distribution for all the 
D6 cultures except the stress condition D4 100 (Fig. 6E). 
At D10, the distributions become skewed and asymmetric 
with larger standard deviations (for D4 100 this is observed 
both at D6 and D10, Fig. 6F) and are better described by 
log–normal function. Overall, a large spread in the Iα values 
illustrating population-scale heterogeneity in lipid DU was 
observed. Mean Iα values calculated from these distributions 
are found to be around 0.6 in all cases (same as obtained in 
Fig. 4). The DU distribution for lipids of the D4 100 culture 
has higher unsaturation degree tails, which is observed to 
extend to a maximum value of 2, corresponding to 3 C = C 
bonds (tri-unsaturation) irrespective of the culture age [35]. 
On the other hand, SS 100 and D2 100 show the prevalence 
of cellular populations with maximum DU of 1.5–2.0 toward 
the stationary phase only same as the control, signifying 
the presence of bi-unsaturated lipids (2 C = C bonds) and 
tri-unsaturated lipids (3 C = C bonds) at D10, respectively. 
Thus, different culture conditions have cells that produce 
lipids with a reasonably wide spectrum of DU values (rang-
ing from mono to tri-unsaturation), stressing the fact that 
the average DU values of around 0.6 (corresponding to 
mono-unsaturation) do not represent the entire population. 
The inherent heterogeneity in DU present in a population 
gets more randomized with stress and time. Therefore, like 
the heterogeneity observed in the FA chain length, the DU 
distributions also demonstrate that heterogeneity increases 
with the age of the culture, and D4 100 shows maximum 
variability throughout the culture. Further, the cultivation 
conditions were grouped together and divided into differ-
ent clusters based on the degree of unsaturation obtained 
from the above analysis using principal component analysis 
(Fig. 6G, H). Three types of clusters were obtained in the 
analysis (Fig. 6H). Most of the cultivation conditions were 
clustered together except control D10 being an outlier (pur-
ple cluster, Fig. 6H) and D4 100 D6 and D10 forming the 
other cluster (red cluster, Fig. 6H). This further justifies that 
two-stage salt, D4 100, behaves differently than the other 
cultivation conditions under study and has great impact on 
the population-scale heterogeneity of the degree of unsatura-
tion of lipids.

Discussion

Raman spectroscopy-based techniques such as micro-RS and 
surface-enhanced Raman scattering (SERS) have become 
reasonably established methods for label-free, non-inva-
sive, multiplexed detection of cellular biomolecules with 
good temporal as well as spatial resolution. The focus of 
this study is to understand the single-cell heterogeneities in 
lipid composition under different modes of salt stress applied 
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Fig. 6  Effect of salt stress on the 
degree of unsaturation of lipids 
produced by C. reinhardtii. A, 
C Probability distribution of the 
α(CH2/CH3) scissoring mode 
and C = C stretching mode, 
respectively, for the differ-
ent salt stress treatments. The 
central red line in the box plots 
indicates the median, and the 
bottom and top edges of the 
box indicate the 25th and 75th 
percentiles, respectively. The 
whiskers extend to the most 
extreme data points not consid-
ered outliers, and the red “ + ” 
symbol represents outliers. B, D 
The heterogeneity index (HI) of 
the distributions of the α(CH2/
CH3) scissoring mode and C = C 
stretching mode, respectively, 
at both D6 and D10. Nomencla-
ture for the culture conditions 
remains the same as depicted 
in Fig. 1. E Probability density 
functions (PDF) of DU at D6, 
mostly fitted well by normal 
distribution except the condition 
D4 100 (SS 100 histogram is 
fitted well by both normal and 
log-normal distribution). F 
Probability density functions of 
DU for D10, represented well 
by a log-normal distribution. 
The mean of the distribution 
obtained from the fitted curves 
is shown in each figure. G A 
principal component analysis 
of the degree of unsaturation 
studied for different growth 
conditions. H Cluster analysis 
depicting three clusters of simi-
lar variability between D4 100 
D6 and D4 100 D10 (cluster 1, 
red), control D6, SS 100 D6, D2 
100 D6, SS 100 D10, and D2 
100 D10 (cluster 2, green), and 
control D10 (cluster 3, blue)
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to C. reinhardtii, using micro-Raman spectroscopy. Dis-
crete wavelet transform algorithm (DWT) was successfully 
employed to extract the spectral information in parallel to 
maintaining the essential signal integrity and accuracy with 
a good signal-to-noise ratio (Fig. 2). This method is more 
economical compared to high-resolution probes like SERS. 
In a recent study, SERS was used for single-cell lipid profil-
ing to reveal the degree of unsaturation of lipids for Scened-
esmus quadricauda grown under nutrient  (N2) deprivation 
[39]. Similarly, the heterogeneities in lipid unsaturation and 
chain length were quantified using micro-RS. When discuss-
ing heterogeneities, it is an absolute requirement to confirm 
that it is not just an artifact but a genuine representation 
of the cell’s metabolite picture. It is important to note that 
here only a small fraction (1/20th) of a C. reinhardtii cell 
was explored, and the presence of a particular biomolecule 
in the focus is detected with the help of the characteristic 
fingerprint Raman spectrum. Bright field and fluorescence 
microscopy shows that chlorophyll and lipid droplets are 
distributed in a large area of the cell (Fig. 1). Lipid droplets 
are shown to be distributed in the cytosol [40]. Starch, too, 
is either distributed in the cup-shaped chloroplast stroma or 
can be found surrounding the pyrenoids [41]. Thus, the prob-
ability of capturing the biomolecules under consideration in 
the focal point is highly likely. In this study, Raman spectros-
copy data yield only relative scale measurements of stress, 
where they reveal a disintegrating cellular stasis on day 10 
(Fig. 3), especially under salt stress. For absolute quantifica-
tion of lipids in this study, Nile red fluorescence shows an 
increase in lipid content in C. reinhardtii cells under salt 
stress (Fig. 3). It also shows that the distribution becomes 
more heterogeneous under stress, which is also a key fea-
ture of Raman intensity measurements. Although absolute 
quantification is not possible by the method presented here, 
biomolecular Raman intensities are able to detect biomol-
ecule chemical composition of a microalgal cell.

Using the Raman spectral information of the lipid mol-
ecules, salt stress was found to lead lipid production of good 
biofuel quality in C. reinhardtii (Fig. 4). The higher heating 
value (HHV) and iodine value (IV) were found to conform 
with the European standards of biofuel quality [30, 42] as 
well as the Indian diesel specifications enumerated by the 
Ministry of Road Transport and Highways (MoRTH) and 
the Ministry of Petrol and Natural Gas (MoPNG). Moreo-
ver, the average unsaturation degree values (0.6) indicate 
the predominance of mono-unsaturated TAGs making the 
oil oxidative stable [31, 42]. These properties are observed 
to be well aligned with the standard Triolein (18:1). This 
analysis renders the suitability of Raman spectroscopy for 
efficient biofuel quality determination.

The average Raman data analysis shows that both single-
stage and two-stage salt stress produce lipids with same 
biodiesel quality parameters, but single-cell heterogeneities 

(measured by the heterogeneity index) were found to be 
higher in two-stage salt stress. Both fatty acid chain length 
and the unsaturation content were studied. Ratiometric 
intensity probability distribution analysis for Iα(CH2/CH3)/IC=O 
(Fig. 5) shows that shorter chain length FAs are produced 
more in two-stage D4 100. A possible reason for chain 
shortening here could be the activation of the β-oxidation 
pathway under stress [43], where enzymatic degradation of 
lipids takes place to release energy in the form of ATP. It 
can also be due to autophagy, a hint of which is evident in 
the correlation analysis (Fig. 3) as well as from the negative 
carotenoid and starch/lipid correlation [44]. Autophagy is 
a catabolic process and is activated to counterbalance the 
effect of stress on the cell by recycling the damaged material 
to maintain the cell’s homeostasis [45]. Furthermore, ratio-
metric analysis of υ(C = C) stretching mode to CH2/CH3 
scissoring mode reveals higher proportion of subpopulation 
exhibiting bi-tri-unsaturation in their fatty acids, especially 
on day 10 of D4 100 (Fig. 6). Thus, an overall increased 
heterogeneity in D4 100 shows that this strategy of salt stress 
exerts more variable metabolic options on the population. It 
can be said that each subpopulation could undergo different 
transcriptome and proteome development to explore the best 
possible mechanism of fitness [46].

The question which arises is what is the biological impli-
cation of this heterogeneity? It has been well documented 
that heterogeneous behavior is often induced when micro-
bial cultures face environmental stress [47, 48]. Stress also 
means shortage of nutrient availability as the culture attains 
its stationary phase. Under such stressful conditions, sub-
populations present inside one main population account for 
one of the population-level strategies for adaptation and 
evolution. Distributing the workload is one such evolu-
tion strategy that gives rise to single-cell heterogeneities. 
Raman spectroscopy-oriented heterogeneity studies allow 
to understand the possible responses of individual cells in a 
population and their coherent effort in population survival. 
Although culture synchronization aims to grow cells with 
maximum homogeneity, stress can induce heterogeneities 
with longer incubation time [18, 49]. The current study lacks 
culture synchronization methods, but the heterogeneity dis-
cussed is relative to the control grown under same conditions 
except the stress. Here, major source of heterogeneity could 
be either the varying lipid composition under salt stress or 
the fact that the laser beam is focused on different regions 
of the cell. In the latter case, the heterogeneity could arise 
due to spatial modulations of composition of biomolecules 
due to proximity of different organelles. A single-cell spatial 
Raman mapping for the entire cell volume could elucidate 
the exact reason of these heterogeneities. Recent studies 
have revealed the important role played by gene expression 
changes in regulating the lipid turnover under salinity stress 
and liquid–liquid phase separation of lipid droplets in C. 
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reinhardtii cells, which in turn contributes to the heterogene-
ous response to salinity stress [50]. Heterogeneity within a 
single culture is a significant technical concern during large-
scale growth for industrial-scale biofuel production.

Conclusions

With the help of heterogeneity indices obtained for the FA 
chain length and unsaturation content in the TAGs, this 
study on single-stage and two-stage salt stress detects the 
overlooked presence of subpopulations in a culture. This 
heterogeneity is maximum under two-stage cultivation and 
at the stationary growth phase. This study underlines the 
need for rapid optimization of stress conditions and harvest 
time for good biofuel quality with non-invasive tools like 
micro-Raman spectroscopy. Cellular heterogeneity can be a 
potential bottleneck for good lipid productivity of uniform 
quality.
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