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Abstract
Hydrothermal liquefaction (HTL) of lignocellulosic biomass has gained attention as a promising technology for the pro-
duction of biofuels and other value-added products. HTL process optimization is complex and involves various parameters 
such as reaction time, temperature, and pressure. In recent years, machine learning (ML) approaches have been adopted as 
a tool to optimize and predict the HTL process performance. The purposes of this study were to investigate the ML-based 
prediction of bio-crude yield (BCY) and their higher heating values (HHVs) from HTL of lignocellulosic biomass and to 
elucidate the relationship of features affecting the output of interest. Pre-processing and normalization were applied to a 
dataset of 215 data points with 17 input features. Feature selection using the Shapley value method identified key predictors. 
ML models including multilayer perceptron, kernel ridge regression, random forest, and extreme gradient boosting (XGB) 
were trained and evaluated. XGB algorithm shows superior performance in predicting the yields and their calorific values 
to within 5–8% of experimental values. Temperature was the most influential feature for both BCY and HHV prediction 
accounting for about 30%, followed by other feedstock and operational characteristics. In addition, a user interface was 
presented for ease of use in the ML modeling.
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Introduction

Global warming, the gradual increase in the Earth’s sur-
face temperature due to the emission of greenhouse gases, 
has become one of the most pressing issues facing human-
ity [1, 2]. In recent years, scientists have been exploring 
various methods to reduce greenhouse gas emissions and 
slow down the pace of global warming [3–5]. One prom-
ising area of research is the use of biomass hydrothermal 
liquefaction (HTL) as a means of converting organic matter 

into a renewable energy source [6, 7]. Biomass HTL is a 
process that involves subjecting biomass, such as agricul-
tural and forestry residues, to high temperatures and pressure 
in the presence of water [8, 9]. The process results in the 
conversion of the biomass into a liquid bio-oil, which can 
be used as a substitute for fossil fuels. Biomass HTL has 
several advantages over other forms of bioenergy produc-
tion, including its ability to produce a high-quality fuel that 
is compatible with existing infrastructure [10].

Current research on biomass HTL is focused on improv-
ing the efficiency of the process, increasing the yield of bio-
oil, and optimizing the quality of the final product. Research-
ers are also exploring the potential of using different types 
of biomass and developing new catalysts to enhance the 
reaction. Additionally, there is a growing interest in the use 
of biomass HTL as a means of reducing greenhouse gas 
emissions from various industries, such as agriculture and 
forestry. The use of biomass HTL shows great promise as 
a sustainable and renewable energy source that could help 
mitigate the effects of global warming. As research in this 
area continues, it is hoped that the technology will become 
increasingly efficient and economically viable, paving the 
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way for a cleaner, more sustainable future [11, 12]. HTL is 
a promising technology for converting biomass into liquid 
fuels and chemicals. However, the complex and non-linear 
nature of the HTL process makes it challenging to model and 
optimize using traditional methods.

Machine learning (ML) has emerged as a powerful tool 
for modeling and optimization of complex processes, and 
recent research has shown that machine learning can be 
applied to HTL to improve its efficiency and sustainability 
[13]. ML models can learn from large datasets of HTL pro-
cess variables and performance metrics to accurately predict 
process behavior and optimize operating conditions [14, 15]. 
Current research in ML for HTL is focused on developing 
models that can accurately predict HTL process performance 
and optimize process parameters, such as temperature, pres-
sure, and residence time. This involves developing ML algo-
rithms that can handle the large and complex datasets gener-
ated during HTL experiments and simulations and that can 
account for the non-linear behavior of the HTL process. In 
addition, ML models can be used to predict the chemical 
and physical properties of HTL products, which can be used 
to optimize downstream processing and identify potential 
applications for the resulting fuels and chemicals. ML can 
also be used to predict the environmental impacts of the 
HTL process and to identify strategies for reducing its car-
bon footprint. The application of ML to HTL modeling is an 
active area of research and has the potential to significantly 
improve the efficiency and sustainability of the process. As 
the technology matures, it is likely that ML will play an 
increasingly important role in the development and optimi-
zation of HTL and other biomass conversion technologies.

Previous studies have been conducted by various 
researchers on the application of ML in the HTL process. 
For example, Zhang [16] studied ML prediction and opti-
mization of bio-oil production from HTL of algae. Shafiza-
deh [17] adopted ML to predict and optimize the HTL of 
biomass. Katongtung et al. [18] predicted bio-crude yields 
and higher heating values of products from HTL of wet bio-
mass and wastes. The aforementioned studies share com-
mon feature inputs but differ in the number and type of data 
sets utilized. These studies demonstrate that ML models 
exhibit high predictive accuracy and can effectively capture 
the complex relationships among the variables. Moreover, 
the models can identify various factors that mutually affect 
each other.

Hence, the objective of this study is to investigate the 
effectiveness of ML in predicting the bio-crude yield and 
calorific value of the high-throughput screening process, 
utilizing unique biological property input features rarely 
previously utilized in other studies. Specifically, the input 
features in this study consist of cellulose, hemicellulose, and 
lignin, and their impact on the output is analyzed using the 
Shapley value method.

Materials and Methods

Data Collection and Pre‑processing

The process of data collection and pre-processing involved 
several stages. Initially, raw data was collected from the 
HTL process, and the relevant input features, such as 
cellulose, hemicellulose, and lignin, were identified and 
extracted. Subsequently, the data underwent pre-process-
ing procedures to identify and eliminate any inconsisten-
cies, outliers, or missing values. The pre-processed data 
was then normalized and split into training and testing sets 
to ensure model accuracy and prevent overfitting. Finally, 
feature selection techniques were employed to identify the 
most significant input features, using the Shapley value 
method, for predicting the bio-crude yield and calorific 
value.

The dataset utilized in this study consists of lignocel-
lulosic biomass, with a total of 215 data points, compris-
ing both dependent variables (bio-crude yield and calorific 
value) and their corresponding independent features. The 
data was collected from existing publications and is further 
detailed in supplementary material Table S1. Table 1 pre-
sents a comprehensive list of 17 input features, derived from 
feedstock characteristics with dry basis and operating con-
ditions. The table provides the name of each feature, along 
with its associated numerical and statistical values.

Machine learning (ML) algorithms often require input 
data to be standardized and normally distributed for opti-
mal performance. To address this issue in the present study, 
standardization of all 17 input features was conducted using 
Yeo-Johnson’s transformation [19], as shown in Eq. 1:

Here, x̂ represents the transformed data obtained from 
the original data ∼x for a particular feature g, with � being 
the transformation factor derived from maximum likelihood 
estimation. The subscript f ranges from 1 to N, representing 
the individual data points for each feature. Following this 
transformation, the standardized data was further normal-
ized using Eq. 2:

Here, x represents the normalized data obtained from x̂ , 
while 

−
x and σ represent the mean and standard deviation 

values of each input feature j, respectively [20].
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The definition of bio-crude may vary in the literature, lead-
ing to different methods of calculating bio-crude yields. In this 
study, bio-crude is defined as the organic fraction extracted/
separated from the aqueous-phase (water-soluble) fraction 
using organic solvents, such as acetone or dichloromethane. To 
ensure consistency in calculations, the bio-crude yield ( ̃yBCY ) 
was recalculated using Eq. 3:

Here, mBCY represents the mass of bio-crude, while M 
represents the initial mass of feedstock on a dry basis. Addi-
tionally, the higher heating value (HHV) of the bio-crude was 
recalculated using Eq. 4 [18]:

The variables C, H, and O represent the carbon, hydrogen, 
and oxygen contents of the bio-crude (in w/w). Subsequently, 
the 2-target output, y ̃, was scaled and normalized using their 
respective maximum values, denoted as y ́.

(3)ỹBCY = mBCY∕M

(4)HHV = 0.338C + 1.428(H − O∕8)

(5)yt,h = ỹt,h∕
�

yh

Here, y represents the normalized data of an output h, 
which refers to the bio-crude yield (BCY) and higher heating 
value (HHV) of the bio-crude.

ML Model Development

This study utilized advanced ML algorithms, including 
multilayer perceptron (MLP), kernel ridge regression 
(KRR), random forest (RF), and extreme gradient boost-
ing (XGB), which were implemented using the scikit-learn 
libraries [21] in the Python environment. The XGB library 
was obtained from open-source code developed by Chen 
and Guestrin [22]. All codes were run on a computer with 
a MacBook processor running at 1.1 GHz Dual-Core Intel 
Core m3. To evaluate the performance of these algorithms 
on a dataset consisting of 17 input features and 2 target 
outputs, the k-fold cross-validation method was employed. 
This involved randomly dividing the entire dataset into k 
groups or folds, where each fold was used as a test data-
set, while the remaining k-1 folds were used as a training 
dataset. This process was repeated k times to ensure that 
each fold was used as a test dataset once. In this study, 10 
folds (i.e., k = 10) were used to ensure that each fold was 

Table 1   Set of input features or 
variables

Variable Abbreviations used 
in modeling

Value Mean Standard 
deviation

Input feature
  Feedstock characteristic (on dry basis)
  Biological property
    Cellulose (% w/w) Cel 6.4–73.6 28.9 15.3
    Hemicellulose (% w/w) Hemi_Cel 4.6–37.5 19.4 8.9
    Lignin (% w/w) lig 6.1–38.1 23.1 9.6
    Elemental property
    Carbon content (% w/w) C 35.3–50.7 44.1 3.5
    Hydrogen content (% w/w) H 4–7.5 5.4 1.2
    Nitrogen content (% w/w) N 0–5.9 2.2 2.2
    Oxygen content (% w/w) O 24–59 44 8.2
    H-to-C atomic ratio (-) H/C 1–2.3 1.5 0.4
    O-to-C atomic ratio (-) O/C 0.4–1.3 0.8 0.1
    Ash (% w/w) Ash 0.17–27.9 14.3 8.9
  Operating condition
    Residence time (min) Time 0–240 59.8 53
    Temperature (°C) T 200–420 317.7 45.8
    (Initial) pressure (MPa) P 0.1–20 1.1 3.6
     Reactor size (mL) RS 8.8–2000 235.4 345.3
     Biomass loading (g) BL 0.88–50 13.3 14.1
    Water (mL) W 7.9–700 88.4 114.1
    Solvent-to-BL ratio (-) S/BL 2.3–20 7.8 2.9

Output target
 Bio-crude yield (% w/w) BCY 7.8–45.4 25.2 8.5
 Higher heating value (MJ/kg) HHV 15.7–40.9 32.5 5.4
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large enough to represent the statistical properties of the 
entire dataset [23]. By using the k-fold cross-validation 
method, the prediction accuracy of each algorithm was 
obtained in an unbiased manner since the entire dataset 
was used for training and testing. This allowed for a fair 
comparison of the performance of the algorithms, and the 
results obtained were used to identify the algorithm that 
performed best on the given dataset. This study employed 
advanced ML algorithms implemented using the scikit-
learn and XGB libraries in Python. The k-fold cross-val-
idation method was used to evaluate the performance of 
these algorithms on a dataset with 17 input features and 
2 target outputs. The results obtained were unbiased and 
were used to identify the best-performing algorithm for 
this particular dataset.

To evaluate the accuracy of the model’s predictions, 
two metrics were used: the coefficient of determination 
(R2) and the root-mean-square error (RMSE). R2 is a sta-
tistical measure used in regression models to determine the 
proportion of variance in the output parameters that can 
be explained by the input parameters [24]. On the other 
hand, RMSE is a measure of the differences between the 
real values and their corresponding predicted values. In 
general, a higher R2 and a lower RMSE indicate better 
predictive performance [25, 26].

The equations for calculating R2 and RMSE are provided 
below as Eqs. (6) and (7), respectively, following the work 
of [19]:

where y is the observed value, f(x) is the predicted value, 
ȳ is the mean of the observed values, and N is the number 
of observations in the dataset. In addition to R2 and RMSE, 
the normalized root-mean-square error (NRMSE) was also 
calculated in this study to account for any differences in 
the scale of the test datasets used in each fold. NRMSE 
is defined as the ratio of RMSE to the mean value of the 
observed data, and it is calculated using Eq. 8:

where ȳ is the mean value of the observed data. The use of 
NRMSE allows for a more accurate comparison of the per-
formance of the different models, as it takes into account the 
variability in the scale of the test datasets.

The equation for calculating NRMSE was derived from 
the work of [19] and was used in this study as an additional 
metric for assessing the performance of the models.
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Selected ML Algorithm

In this study, four advanced ML algorithms, namely, MLP, 
KRR, RF, and XGB, were used to analyze the HTL data-
sets. Each algorithm has its own mathematical principles 
and parameters, which were optimized using a full-factor 
grid search technique in combination with a nested 10-fold 
cross-validation method [27, 28]. The optimized hyperpa-
rameters of all the algorithms are summarized in supplemen-
tary material Table S2.

An MLP is a type of fully connected, feedforward artifi-
cial neural network (ANN) that has found widespread use 
in various applications due to its ability to learn complex 
relationships between input and output data. While the term 
MLP is sometimes used interchangeably with the more gen-
eral term feedforward ANN, it more strictly refers to ANNs 
composed of multiple layers of perceptrons with threshold 
activation. The MLP architecture consists of at least three 
layers of nodes, including an input layer, one or more hidden 
layers, and an output layer. The nodes in each layer, except 
for the input layer, are modeled as neurons that use a non-
linear activation function. The multiple layers and non-linear 
activation functions employed by MLPs enable them to learn 
complex and non-linear relationships in data, making them 
more powerful than linear perceptrons in handling data that 
is not linearly separable [29].

The backpropagation algorithm is a supervised learning 
technique that is commonly used to train MLPs. During 
training, the algorithm adjusts the weights between nodes 
in the network by iteratively computing the gradient of the 
loss function with respect to the weights and then updating 
the weights in the opposite direction of the gradient. This 
process is repeated until the network converges to a satisfac-
tory solution. MLP is a powerful and widely used class of 
ANN that utilizes multiple layers and non-linear activation 
functions to enable the learning of complex relationships in 
data. Their ability to handle non-linearly separable data has 
made them particularly useful in various applications, and 
the backpropagation algorithm is commonly used to train 
them [30].

KRR is a machine learning algorithm that combines the 
principles of ridge regression and classification with the ker-
nel trick. Specifically, KRR performs linear least squares 
with L2 norm regularization in the space induced by a given 
kernel and the input data. The kernel trick allows KRR to 
implicitly transform the input data into a higher-dimensional 
feature space, where a linear function can be used to model 
the relationship between the input features and the output 
variable. This is achieved by using a kernel function to 
compute the similarity between pairs of data points in the 
input space and then projecting these similarities into the 
higher-dimensional feature space. By using a non-linear ker-
nel function, KRR is able to model non-linear relationships 
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between the input features and output variables. This cor-
responds to a non-linear function in the original input space. 
The regularization parameter in KRR controls the balance 
between model complexity and generalization performance 
and can be tuned to optimize the model for a specific dataset. 
KRR is a powerful machine learning algorithm that com-
bines the strengths of ridge regression, classification, and 
the kernel trick to learn a non-linear function that can model 
complex relationships between the input features and output 
variables. The choice of kernel function and regularization 
parameter can significantly impact the performance of the 
model and must be carefully tuned to optimize performance 
on a given dataset [31, 32].

RF regression is a widely used supervised learning algo-
rithm that leverages an ensemble learning method for regres-
sion tasks. Ensemble learning is a powerful technique that 
involves combining the predictions of multiple machine 
learning algorithms to improve the accuracy and generali-
zation performance of the resulting model. RF algorithm 
constructs a collection of decision trees, where each tree is 
built using a random subset of the input data and a random 
subset of the input features. During prediction, the algo-
rithm generates predictions from each decision tree and then 
aggregates them to produce a final prediction that is more 
accurate and less prone to overfitting than a single decision 
tree. The benefits of the RF algorithm include its ability to 
handle high-dimensional and complex data, its resilience to 
overfitting, and its ability to provide information on feature 
importance, making it an effective tool for feature selection. 
Moreover, the RF algorithm can handle both regression and 
classification tasks [33].

RF is a powerful machine learning algorithm that utilizes 
an ensemble learning method to combine the predictions 
of multiple decision trees, enabling it to model complex 
relationships between input features and output variables 
with high accuracy and robustness. The algorithm’s ability 
to handle high-dimensional data, its resilience to overfitting, 
and its ability to provide information on feature importance 
make it a valuable tool for a wide range of regression tasks 
[34].

XGB is a popular supervised learning algorithm that 
uses an ensemble learning method to improve the accuracy 
of predictions. XGB is an extension of the gradient boost-
ing algorithm, which iteratively trains a sequence of weak 
models and combines their predictions to make a final pre-
diction. The XGB algorithm incorporates several advanced 
techniques to improve performance and scalability. It uses 
a technique called gradient boosting to iteratively add weak 
models to the ensemble and a loss function to optimize the 
model during training. The algorithm also employs regu-
larization techniques, such as L1 and L2 regularization, to 
prevent overfitting. One key feature of XGB is its ability to 
handle missing data and categorical variables by encoding 

them in a unique way. This allows the algorithm to handle a 
wide range of data types and to extract meaningful features 
from complex datasets [35].

XGB has been used successfully in a variety of applica-
tions, including natural language processing, image recogni-
tion, and time series forecasting. It is also highly scalable, 
making it well suited for large-scale datasets. XGB is a 
powerful machine learning algorithm that uses an ensemble 
learning method to improve the accuracy of predictions. The 
algorithm incorporates several advanced techniques, includ-
ing gradient boosting, regularization, and unique encoding 
of missing and categorical data. XGB has shown strong per-
formance across a range of applications and is highly scal-
able, making it a valuable tool for a wide range of machine 
learning tasks [36].

Feature Evaluation and Interpretation

The ML models were optimized by tuning their hyperpa-
rameters using a full grid search methodology in conjunc-
tion with 10-fold cross-validation. To determine the relative 
importance of features in predicting the HHV and BCY, a 
built-in function of each algorithm was utilized to extract 
the relevant features. These features were subsequently 
ranked based on their significance in accurately predicting 
the desired outcomes. The Shapley method was employed 
to investigate the impact of input features on the output. 
In the context of machine learning, it is used to measure 
the relative importance of input features in predicting the 
output. The Shapley value for each feature represents the 
average marginal contribution of that feature across all 
possible feature combinations, encapsulating its relative 
importance within the model’s decision-making process. 
By meticulously analyzing the Shapley values attributed to 
each input feature, researchers and practitioners can glean 
valuable insights into the nuanced impact and significance of 
individual features on shaping the final output of a machine 
learning model. This comprehensive understanding enables 
informed feature selection, model refinement, and deeper 
interpretability, thereby facilitating enhanced performance 
and transparency in machine learning systems [37]. There-
fore, in this study, the Shapley method was employed as a 
tool for exploring and understanding the impact of input 
features on the output [38].

Results and Discussion

Model Selection and Accuracy

Table  2 presents the predictive accuracy results of the 
XGB, RF, MLP, and KRR models, each optimized using 
their respective best hyperparameters. The accuracy of each 
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model was evaluated using appropriate performance met-
rics, such as NRMSE, RMSE, and R2. The presented results 
provide insights into the performance of these models in 
predicting the desired outcome and can help in selecting the 
best model for a given application.

The XGB model exhibited the best overall performance, 
with an R2 value of 0.8861 for BCY and approximately 
0.8286 for HHV. The RMSE was 1.9936 for BCY and 
1.6586 for HHV. In contrast, the RF model achieved an 
R2 value of 0.8103 for BCY and 0.7049 for HHV, with an 
RMSE of 2.3986 for BCY and 2.2456 for HHV. The MLP 
model yielded an R2 value of 0.8103 for BCY and 0.7681 
for HHV, with an RMSE of 2.7617 for BCY and 2.4247 for 
HHV. Furthermore, the KRR model exhibited the lowest 
accuracy among the models tested in this study, with an R2 

value of 0.7887 for BCY and 0.7681 for HHV. The RMSE 
was 3.0816 for BCY and 2.0068 for HHV. It should be noted 
that the XGB model demonstrated the highest level of accu-
racy and the lowest error rate in this study.

To provide further insight into the prediction performance 
of the XGB model, Fig. 1 illustrates the scatter plots of pre-
dicted values versus actual (test) values for both BCY and 
HHV in both the training and testing phases. The black trend 
line indicates the positions where the predicted values are 
equivalent to the test values. Meanwhile, the green band 
represents a 10% error range, and the blue band denotes a 
20% error range. This visualization enables a comparison 
of the performance of each model in accurately predicting 
both BCY and HHV of bio-crude. This figure allows for 
a visual comparison of the predicted values to the actual 

Table 2   Prediction accuracy in terms of R2, RMSE, and NRMSE from 10-fold cross-validation of XGB, RF, MLP, and KRR algorithms for all 
three cases of input features

Note: The values reported herein were obtained by averaging the results obtained from a ten-fold cross-validation analysis. The number pre-
sented in parentheses corresponds to the standard deviation of the calculated values

Model BCY HHV

R2 RMSE NRMSE R2 RMSE NRMSE

XGB 0.8861 (0.0662) 1.9936 (0.5606) 0.0822 (0.0313) 0.8286 (0.1581) 1.6586 (0.8304) 0.0565 (0.0250)
RF 0.8306 (0.1136) 2.3986 (0.7545) 0.0985 (0.0393) 0.7049 (0.2877) 2.2456 (1.2261) 0.0768 (0.0376)
MLP 0.8103 (0.1449) 2.7617 (1.1743) 0.1115 (0.0446) 0.7681 (0.1573) 2.4247 (1.0241) 0.0840 (0.0331)
KRR 0.7887 (0.2421) 3.0816 (1.6608) 0.1261 (0.0694) 0.8014 (0.2461) 2.0068 (1.4818) 0.0684 (0.0465)

Fig. 1   depicts the distribution of prediction data against the test data-
set in ten-fold cross-validation of both BCY and HHV using four 
different machine learning models, namely, XGB (a, e), random for-

est (RF) (b, f), multilayer perceptron (MLP) (c, g), and kernel ridge 
regression (KRR) (d, h)



BioEnergy Research	

values, providing a more intuitive understanding of the mod-
el’s performance. It is evident that the prediction accuracy 
of the model was higher in the training phase compared to 
the testing phase. For BCY, the training case had R2 values 
within 0.98–0.99 and NRMSE between 0.03 and 0.09, while 
the test case provided an R2 at 0.78–0.88 and an NRMSE of 
0.08–0.12. For HHV, the training case offered an R2 within 
0.97–0.99 and an NRMSE between 0.00 and 0.05. The test 
case had an R2 of 0.70–0.82 and an NRMSE of 0.05–0.08. 
The XGB algorithm demonstrates promising effectiveness 
in facilitating the development of predictive models for the 
yield and HHV of bio-crudes obtained from HTL of ligno-
cellulosic biomass, utilizing input variables derived from 
feedstock characteristics, such as biological and elemental 
properties, as well as operating conditions. The level of pre-
cision achieved by the XGB model in predicting the yield 
and HHV of bio-crudes from HTL of lignocellulosic bio-
mass is comparable to that of models specifically developed 
for certain biomass types or other ML models applied to dif-
ferent biomass conversion techniques. Therefore, the XGB 
algorithm is a valuable tool for facilitating model develop-
ment and optimizing the conversion of lignocellulosic bio-
mass into bio-crude.

SHAP Summary Plot

SHAP summary plot is a function in the SHAP (SHapley 
Additive exPlanations) library used for visualizing the sum-
mary of Shapley values for a set of features in a machine 
learning model. The plot displays the importance and impact 
of each feature in the model predictions and how they con-
tribute to the final outcome. The function generates a bee 
swarm where features are ranked based on their importance, 
and the magnitude and direction of the Shapley values are 

shown using colored points. Positive Shapley values indi-
cate that the corresponding feature increases the prediction, 
while negative values imply the opposite. The plot can help 
identify the most relevant features and understand the rela-
tionship between them and the model’s output.

Figure 2 illustrates the sequence of the impact of input 
variables on outcomes. Specifically, Fig. 2a displays the 
order of effect of input variables on BCY, highlighting that 
the input feature with the most significant impact on BCY is 
T, followed by H, N, Lig, and W. This order of effect is pri-
marily attributed to the characteristics of the feedstock. On 
the other hand, Fig. 2b exhibits the order of effect of input 
variables on HHV. In this case, the feature with the greatest 
influence on HHV is T, followed by ash, time, Hemi_cel, and 
Cel. These variables are primarily affected by the operating 
conditions. The importance of the five features that have 
the greatest impact on both BY and HHV can be described 
as follows, while other less important features are shown in 
Supplementary Material Table S3.

Temperature

Temperature is one of the most important variables that 
affect the BCY and HHV in the HTL process of lignocel-
lulosic biomass. The effects of temperature on the HTL pro-
cess can be summarized as follows:

Bio-crude yield (BCY): The BCY increases with increas-
ing temperature. This is because the higher temperatures 
promote the breakdown of complex biomass molecules into 
simpler compounds, which increases the bio-crude yield. 
However, excessive heating can also cause degradation 
of the bio-crude, resulting in a lower yield. Generally, the 
optimal temperature range for maximum bio-crude yield is 
between 250 and 350 °C.

Fig. 2   Feature importance by 
SHAP value for a BCY and 
b HHV
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Higher heating value (HHV): The HHV of the bio-crude 
also increases with increasing temperature. This is because 
the higher temperatures lead to the production of more sta-
ble and energy-dense compounds, such as aromatics, which 
increases the HHV. However, excessive heating can also 
cause the formation of less stable compounds, resulting in 
a lower HHV. Generally, the optimal temperature range for 
maximum HHV is between 300 and 400 °C.

The temperature variables are therefore crucial in the 
HTL process as they can impact the bio-crude yield and 
HHV, which are important factors for the economic viability 
of the process. Proper control of temperature variables can 
also improve the quality of the bio-crude, making it more 
suitable for use in a variety of applications, including fuel 
and chemical production [39–41].

Ash Content

Ash content is an important variable to consider in the HTL 
process of lignocellulosic biomass as it can affect the BCY 
and HHV in several ways. The effects of ash variables on the 
HTL process can be summarized as follows:

BCY: The presence of ash in the biomass feedstock can 
reduce the BCY by interfering with the thermal decomposi-
tion of biomass compounds. This is because ash can act as a 
heat sink, which reduces the temperature in the reaction zone 
and inhibits the formation of bio-crude. In addition, ash can 
catalyze unwanted reactions that lead to the formation of tars 
and other undesirable compounds, further reducing the BCY.

HHV: The presence of ash in the bio-crude can reduce its 
HHV by diluting the energy content of the bio-crude. This is 
because ash is mostly composed of inorganic materials that 
do not contribute to the energy content of the bio-crude. In 
addition, ash can also cause fouling and corrosion of equip-
ment, which can increase maintenance costs and reduce the 
overall efficiency of the HTL process.

Therefore, it is important to minimize the ash content in 
the biomass feedstock to maximize the bio-crude yield and 
HHV in the HTL process. This can be achieved by using 
clean biomass feedstocks with low ash content or by pre-
treating the biomass to remove or reduce the ash content 
before HTL. Proper monitoring and control of ash variables 
can also improve the overall efficiency and economic viabil-
ity of the HTL process [42].

Time

Reaction time is a significant consideration when undertak-
ing the HTL process of lignocellulosic biomass as it can 
affect the BCY and HHV in several ways. The effects of time 
variables on the HTL process can be summarized as follows:

BCY: The BCY increases with increasing reaction time 
up to a certain point, beyond which it starts to plateau or 

decrease. This is because the longer reaction time allows for 
a more complete breakdown of the complex biomass mol-
ecules into simpler compounds, which increases the BCY. 
However, excessive reaction time can also cause degrada-
tion of the bio-crude, resulting in a lower yield. Generally, 
the optimal reaction time for maximum BCY is between 30 
and 60 min.

HHV: The HHV of the bio-crude also increases with 
increasing reaction time up to a certain point beyond which 
it starts to plateau or decrease. This is because the longer 
reaction time allows for a more complete conversion of the 
biomass into energy-dense compounds, such as aromat-
ics, which increases the HHV. However, excessive reaction 
time can also cause the formation of less stable compounds, 
resulting in a lower HHV. Generally, the optimal reaction 
time for maximum HHV is between 30 and 60 min.

The time variables are therefore crucial in the HTL pro-
cess as they can impact the bio-crude yield and HHV, which 
are important factors for the economic viability of the pro-
cess. Proper control of time variables can also improve the 
quality of the bio-crude, making it more suitable for use in a 
variety of applications, including fuel and chemical produc-
tion. In addition, shorter reaction times can also increase the 
overall efficiency of the HTL process, reducing the capital 
and operating costs associated with longer reaction times 
[43].

Hydrogen Content

The variable of hydrogen content is an important consid-
eration in the HTL process of lignocellulosic biomass as it 
can affect the BCY and HHV in several ways. The effects 
of hydrogen content variables on the HTL process can be 
summarized as follows:

BCY: The BCY increases with increasing hydrogen con-
tent up to a certain point, beyond which it starts to plateau or 
decrease. This is because the higher hydrogen content pro-
motes the hydrogenation of the biomass compounds, which 
increases the BCY. However, excessive hydrogenation can 
also cause degradation of the bio-crude, resulting in a lower 
yield. Generally, the optimal hydrogen content for maximum 
BCY is between 10 and 20 wt%.

HHV: The HHV of the bio-crude also increases with 
increasing hydrogen content up to a certain point beyond 
which it starts to plateau or decrease. This is because the 
higher hydrogen content leads to the production of more sta-
ble and energy-dense compounds, such as aromatics, which 
increases the HHV. However, excessive hydrogenation can 
also cause the formation of less stable compounds, resulting 
in a lower HHV. Generally, the optimal hydrogen content for 
maximum HHV is between 10 and 20 wt%.

The hydrogen content variables are therefore crucial in 
the HTL process as they can impact the bio-crude yield and 
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HHV, which are important factors for the economic viabil-
ity of the process. Proper control of hydrogen content vari-
ables can also improve the quality of the bio-crude, making 
it more suitable for use in a variety of applications, including 
fuel and chemical production. In addition, hydrogenation 
can also increase the overall efficiency of the HTL process, 
reducing the capital and operating costs associated with 
longer reaction times or higher temperatures [44].

Nitrogen Content

The variable of nitrogen content is important to assess in 
the HTL process of lignocellulosic biomass, as it can affect 
BCY and HHV in various ways. The effects of nitrogen con-
tent variables on the HTL process can be summarized as 
follows:

BCY: The BCY decreases with increasing nitrogen con-
tent. This is because nitrogen compounds are less reactive 
than other biomass components and can act as catalyst poi-
sons, reducing the effectiveness of the HTL process. Addi-
tionally, nitrogen can also lead to the formation of tar-like 
substances, which can clog the reactor and decrease BCY. 
Therefore, proper control of nitrogen content is important 
for maximizing BCY.

HHV: The HHV of the bio-crude decreases with increas-
ing nitrogen content. This is because nitrogen-containing 
compounds have a lower HHV than other biomass compo-
nents, such as lignin and cellulose. Therefore, higher nitro-
gen content in the bio-crude can decrease its overall energy 
density and decrease its usefulness as a fuel. However, the 
effect of nitrogen content on HHV can be mitigated by sepa-
rating nitrogen-rich compounds from the bio-crude.

The nitrogen content variables are therefore crucial in the 
HTL process as they can impact the BCY and HHV, which 
are important factors for the economic viability of the pro-
cess. Proper control of nitrogen content variables can also 
improve the quality of the bio-crude, making it more suitable 
for use in a variety of applications, including fuel and chemi-
cal production. In addition, minimizing nitrogen content can 
increase the overall efficiency of the HTL process, reducing 
the capital and operating costs associated with longer reac-
tion times or higher temperatures [44, 45].

Water

The amount of water used plays a pivotal role in the HTL 
process of lignocellulosic biomass, and it can have a sub-
stantial impact on both BCY and HHV in various ways. The 
effects of water variables on the HTL process can be sum-
marized as follows:

BCY: The BCY generally increases with increasing S/
BL up to a certain point, beyond which the yield may begin 
to decrease. This is because water acts as a solvent and 

catalyst in the HTL process, facilitating the liquefaction of 
biomass and promoting the formation of bio-crude. How-
ever, excessive water can also lead to reduced reaction rates 
and increased energy consumption, as well as dilution of the 
bio-crude, which can reduce its yield. Therefore, the optimal 
S/BL ratio is important for maximizing bio-crude yield.

HHV: The HHV of the bio-crude generally decreases 
with increasing the S/BL ratio. This is because increasing 
the water content can lead to more extensive degradation of 
the bio-crude, resulting in lower energy density. Addition-
ally, higher S/BL ratios can also increase the concentration 
of inorganic elements in the bio-crude, which can reduce its 
HHV. Therefore, smaller S/BL ratios may be advantageous 
in maintaining the quality of the bio-crude and maximizing 
its energy density.

The water variables are therefore crucial in the HTL pro-
cess as they can impact the BCY and HHV, which are impor-
tant factors for the economic viability of the process. Proper 
control of water variables can also improve the quality of 
the bio-crude, making it more suitable for use in a variety 
of applications, including fuel and chemical production. In 
addition, an optimal S/BL ratio can lead to higher produc-
tivity and lower operating costs, making the process more 
competitive. However, the optimal S/BL ratio may vary 
depending on the specific biomass feedstock and process 
conditions and should be determined through experimental 
optimization [43, 46].

Cellulose

Cellulose is a major component of lignocellulosic biomass 
and plays a significant role in determining the BCY and 
HHV in the HTL process. The effects and importance of 
cellulose variables on BCY and HHV can be summarized 
as follows:

BCY: The presence and amount of cellulose in the bio-
mass feedstock can significantly affect the bio-crude yield 
in the HTL process. Cellulose is a complex polysaccharide 
that requires hydrolysis and solubilization to be liquefied 
into bio-crude. Therefore, biomass with a higher cellulose 
content is expected to have a higher bio-crude yield. How-
ever, excessive cellulose content can lead to the formation 
of solid residues, reducing the yield of bio-crude. There-
fore, the optimal cellulose content in the biomass feedstock 
should be determined experimentally to maximize BCY.

HHV: The heating value of the bio-crude is also influ-
enced by the cellulose content of the biomass feedstock. 
Cellulose is a high-energy component of biomass, and its 
presence can increase the energy density of the bio-crude. 
However, the degree of cellulose degradation and solubiliza-
tion during the HTL process can also impact the HHV of the 
bio-crude. Excessive degradation of cellulose can lead to the 
formation of low-energy compounds, reducing the HHV of 
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the bio-crude. Therefore, the optimal cellulose content and 
processing conditions should be determined to maximize the 
HHV of the bio-crude.

In summary, cellulose content is an important variable 
that can significantly impact the BCY and HHV in the HTL 
process. Higher cellulose content can increase the BCY and 
energy density, but excessive cellulose can lead to the for-
mation of solid residues and low-energy compounds. There-
fore, the optimal cellulose content and processing conditions 
should be determined experimentally for each biomass feed-
stock to achieve the best results [47, 48].

Hemicellulose

Hemicellulose is another major component of lignocellu-
losic biomass and plays an important role in determining 
the BCY and HHV in the HTL process. The effects and 
importance of hemicellulose variables on BCY and HHV 
can be summarized as follows:

BCY: Hemicellulose is a complex polysaccharide that 
can be easily hydrolyzed and solubilized during the HTL 
process, making it an important contributor to BCY. Bio-
mass with a higher hemicellulose content is expected to have 
a higher BCY due to its ease of solubilization. However, 
excessive hemicellulose content can lead to the formation 
of solid residues, reducing the yield of bio-crude. Therefore, 
the optimal hemicellulose content in the biomass feedstock 
should be determined experimentally to maximize BCY.

HHV: The heating value of the bio-crude is also influ-
enced by the hemicellulose content of the biomass feedstock. 
Hemicellulose is a high-energy component of biomass, and 
its presence can increase the energy density of the bio-crude. 
However, the degree of hemicellulose degradation and solu-
bilization during the HTL process can also impact the HHV 
of the bio-crude. Excessive degradation of hemicellulose can 
lead to the formation of low-energy compounds, reducing 
the HHV of the bio-crude. Therefore, the optimal hemicellu-
lose content and processing conditions should be determined 
to maximize the HHV of the bio-crude.

In summary, hemicellulose content is an important vari-
able that can significantly impact the bio-crude yield and 
HHV in the HTL process. Higher hemicellulose content can 
increase the BCY and energy density, but excessive hemi-
cellulose can lead to the formation of solid residues and 
low-energy compounds. Therefore, the optimal hemicellu-
lose content and processing conditions should be determined 
experimentally for each biomass feedstock to achieve the 
best results [48].

Lignin

Lignin is a major component of lignocellulosic biomass 
and plays an important role in determining the BCY and 

HHV in the HTL process. The effects and importance of 
lignin variables on BCY and HHV can be summarized as 
follows:

BCY: Lignin is a complex polymer that is relatively 
resistant to hydrolysis and solubilization during the HTL 
process. As a result, lignin content in the biomass feed-
stock has a negative impact on bio-crude yield. A higher 
lignin content can lead to the formation of solid residues, 
reducing the yield of bio-crude. Therefore, it is important 
to consider the lignin content of the biomass feedstock 
when selecting the feedstock for HTL process.

HHV: The heating value of the bio-crude is also influ-
enced by the lignin content of the biomass feedstock. 
Lignin is a high-energy component of biomass, and its 
presence can increase the energy density of the bio-crude. 
However, the degree of lignin degradation and solubiliza-
tion during the HTL process can also impact the HHV of 
the bio-crude. Excessive degradation of lignin can lead 
to the formation of low-energy compounds, reducing the 
HHV of the bio-crude. Therefore, the optimal lignin con-
tent and processing conditions should be determined to 
maximize the HHV of the bio-crude.

In summary, lignin content is an important variable that 
can significantly impact the bio-crude yield and HHV in 
the HTL process. Higher lignin content can reduce the bio-
crude yield but increase the energy density, while exces-
sive degradation of lignin can lead to low-energy com-
pounds and reduced HHV. Therefore, the optimal lignin 
content and processing conditions should be determined 
experimentally for each biomass feedstock to achieve the 
best results [48].

User Interface

The user interface (UI) serves as the bridge between the user 
and the product, facilitating interaction. It primarily empha-
sizes appearance, design, and user-friendliness, aiming to 
ensure ease of use and avoid complexity. In this research, 
UI plays a crucial role in enhancing user convenience when 
utilizing the researcher’s developed ML model. Users are 
not required to possess programming knowledge for effec-
tive model utilization. Figure 3 displays the UI screen for 
predicting bio-crude oil yield and higher heating value in 
the HTL process, which can incorporate biomass data for 
value prediction.

Figure 3 illustrates that in order to predict the values of 
bio-crude oil yield or higher heating value, it is necessary 
to input complete data for both operating conditions and 
elemental properties. For the biological properties, users 
have the option to enter values selectively within the cel-
lulose, hemicellulose, and lignin groups or input all values 
for comprehensive predictions.
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Limitations of this Study

A limitation of this study is the relatively small number of 
datasets utilized in the model, which may result in lower 
accuracy compared to previous research by Djandja et al. 
[49] who investigated machine learning prediction of bio-
oil yield during solvothermal liquefaction of lignocellulosic 
biowaste. However, in machine learning, varying input fea-
tures can yield different results, such as the number and 
novelty of input features. Additionally, considerations such 
as data management and the ratio of training to testing data 
are crucial in machine learning tasks. Consequently, despite 
addressing similar topics, many machine learning tasks 
exhibit differences.

Another limitation of this study is that the authors 
describe the variables influencing the output solely in one 
dimension through the SHAP summary plot. While this 
method effectively reveals the importance and positive or 
negative effects of different variables on the output, the 
author recognizes the significance of elucidating the rela-
tionships among various variables influencing the output. 
This could be achieved by employing the partial dependence 
plot analysis or SHAP dependence plot in future studies to 
comprehensively explain the relationships among the vari-
ables affecting the output.

Conclusions

This study aimed to predict the resulting bio-crude oil yields 
and their calorific values from HTL of lignocellulosic bio-
mass using a machine learning approach. Feature selection, 
employing the Shapley value method, identified significant 
input features from a dataset comprising 215 data points, 
17 input features, and 2 target outputs. An extreme gradient 
boosting algorithm was demonstrated to provide the best 
performance, followed by random forest and multilayer 
perceptron. Conversely, kernel ridge regression exhibited 

lower accuracy. For the bio-crude yield, the temperature 
was found to have the most significant impact, followed by 
hydrogen, nitrogen, lignin contents, and the amount of water 
used. Meanwhile, for the calorific value, temperature also 
emerged as the most influential feature on model predictions, 
followed by ash content, reaction time, hemicellulose, and 
cellulose. The analysis of feature effects and interactions 
proved significant in the understanding of the HTL system.
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