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ecosystems [1]. Particularly, CO2 emissions cause ocean 
acidification, affecting marine life and fisheries [2]. Sev-
eral physical, chemical, and biological methods for carbon 
sequestration have been evaluated, not only in terms of cap-
ture efficiency, but also in cost and potential co-products 
added to the capture. The use of microalgae to capture CO2 
is one of the most promising biological ways, because cap-
ture is associated with the production of valuable biomass, 
rich in various metabolites, e.g., lipids, carbohydrates, pro-
tein, and other compounds of high commercial value [1, 
3]. Nevertheless, CO2 transfer in microalgae cultivation is 
a key process in photobioreactor performance [4, 5], that 
can be divided into three distinct stages: (i) CO2 dissolution 
(transfer from gas to liquid), (ii) CO2 diffusion to micro-
algae cells and, (iii) CO2 capture by photosynthetic reac-
tions. The combination of all these steps together is defined 
as the overall gas-liquid mass transfer coefficient (kLa) [6]. 
This coefficient describes the CO2 mass transfer capacity 
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Abstract
Carbon dioxide (CO2) transfer in the intensive cultivation of microalgae is a crucial process in photobioreactor perfor-
mance. This study evaluated three operating conditions (bubble size, aeration rate, and CO2 concentration) to improve 
the growth performance of the microalga Tetradesmus obliquus in a laboratory–scale photobioreactor. Two types of air 
diffusers were used (glass pipette and a sintered glass diffuser), three aerations rates (0.125, 0.25 and 0.5 vvm), and four 
CO2–enriched air concentrations (0.04, 0.5, 1.0 and 2.0%) were investigated during the Tetradesmus obliquus cultivations. 
The results showed that the overall gas-liquid mass transfer coefficient (kLa) CO2 can be raised by increasing the aeration 
rate and using a sintered glass diffuser; however, CO2 capture efficiency was lower when the highest aeration rates were 
applied. When the glass diffuser was used at an aeration rate of 0.25 vvm, a kLa CO2 of 11.98 ± 0.6 1/h was provided, 
in comparison to 4.90 ± 0.19 1/h for the use of pipette at 0.5 vvm (maximum value reached). Similarly, the highest CO2 
capture efficiency rate (67.94 ± 3.56%) was found applying an aeration rate of 0.25 vvm. At a CO2 concentration of 1 or 
2% the T. obliquus biomass reached approximately 4.3 g/L, values significantly higher (p < 0.05) than the values reported 
for supplementation of 0.5% (~ 3.9 g/L) and 0.04% (~ 1.5 g/L). In summary, to avoid losses of CO2 to the atmosphere, 
an addition of 1% CO2 at an aeration rate of 0.25 vvm using a sintered glass diffuser were the optimal conditions to be 
applied in cylindrical laboratory–scale photobioreactor for T. obliquus growth.
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in a particular system as a function of operating conditions, 
more precisely the reactor hydrodynamics [7]. In addition, 
parameters such as aeration and agitation rate, and the type 
of air diffuser can be adjusted to increase the kLa in photo-
bioreactors [8].

Due to the low partial CO2 pressure in the atmosphere 
(0.04% v/v), its transfer from gas to liquid usually cannot 
maintain the demand required for inorganic carbon assimi-
lation during intensive microalgae production, which might 
limit growth and increase in pH culture medium. The injec-
tion of CO2-enriched atmospheric air can prevent this short-
age and can boost the CO2 transfer capacity [1]. Despite 
advances in methods that increase CO2 transport capacity in 
microalgae cultivation, the direct injection method through 
CO2-enriched air bubbling is the most widely used strategy, 
particularly on a laboratory scale. In addition to being a rela-
tively inexpensive way to implement the process in most 
reactor models, this method is often chosen because it pro-
motes other benefits such as: culture medium mixing – pre-
venting sedimentation and promoting higher cell exposure 
to the light source; pH control by CO2 dissolution; and O2 
excess removal [4, 8].

Furthermore, the critical CO2 concentration to be injected 
in a microalgae culture should be sufficient to balance the 
amount of carbon required for optimal growth, limiting CO2 
waste, and any additional economic impact [8]. Goldman et 
al. [10] suggested that when trying to optimize the inorganic 
carbon supply in photobioreactors, basic gas-liquid mass 
transport aspects, such as reactor geometry, bubble size, 
aeration rate and CO2 partial pressure (PCO2) or CO2 con-
centration, should be assessed as a way to understand the 
physiological responses to the various combinations of these 
parameters. Implementing these adjustments can effectively 
lower the production costs associated with microalgae cul-
tures, thereby enhancing the economic competitiveness and 
sustainability of the products [11, 12].

Although these parameters are well known, the dynamics 
of CO2 transfer correlated to microalgal growth and sensi-
bility to shear-forces, are underexplored in intensive micro-
algae cultures. Much research has focused on investigating 
the impact of CO2 concentration on microalgae growth. 
However, comparatively less attention has been given to 
studying the influence of flow rate and bubble sizes on the 
rate of mass transfer and CO2 sequestration by microalgae. 
In view of this, the present study demonstrated the effects of 
different air flow rates, CO2 concentrations, and bubble size 
on the growth performance of the green microalga Tetrades-
mus obliquus cultured in laboratory–scale photobioreactors.

Materials and Methods

CO2 Transfer Evaluation in the Reactor

The influence of different aeration rates and bubble sizes 
on CO2 transfer in the photobioreactor was evaluated. To 
achieve different bubble sizes, two autoclavable materi-
als were employd: a diffuser constructed of sintered glass 
with unknown porosity, 1 cm wide and 2.7 cm tall, and a 
glass pipette with an internal diameter of 0.3 mm. The aver-
age bubble sizes and retention time were measured using 
digital camera images (Sony, Cyber-shot 16.1, Brazil). The 
obtained images were subsequently analyzed using ImageJ 
software. Different aeration flows (0.5, 1 and 2 L/min) 
were applied to each diffuser providing the aeration rates of 
0.125, 0.25 and 0.5 vvm.

The overall gas-liquid mass transfer coefficient for oxy-
gen (kLa O2) was determined by the dynamic method. Only 
culture medium was used in the kLa assays disregarding 
the effect of the presence of microalgae on kLa values as 
already demonstrated by Contreras et al. [13] and Langley 
et al. [8]. Dissolved oxygen (OD) concentration in the cul-
ture medium was measured using an oximeter (YSI, YSI 
Pro ODO, USA). Initially, nitrogen gas was bubbled until 
the oxygen concentration reached less than 5% (v/v) satura-
tion. Equation (1) was used to estimate kLa values in the 
proposed conditions.

dC
dt

= kLa
(
C* − C

)
 (Eq. 1)

Where:
dC/dt = O2 transfer velocity (mg O2/L/h).
C

*
 = Concentration of O2 saturation, in balance with pg , 

according to Henry’s law (mg O2/L).
C = O2 concentration in liquid (mg O2/L).
pg  = O2 partial pressure in gas bubble (atm).
As proposed by Talbot et al. [14], kLa O2 was precisely 

converted to kLa CO2 as shown on Eq. (2). DCO2 and DO2 
are diffusivity values of CO2 and O2 in the culture medium, 
respectively.

kLa (CO2) = kLa (O2)

[
DCO2

DO2

]0.5
 (Eq. 2)

CO2 Capture Efficiency (ECO2)

The CO2 capture efficiency (ECO2) was determined in kLa 
essays. It was considered, according to Talbot et al. [15] and 
Ying et al. [16], that ECO2 can be described as the amount of 
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CO2 being transferred to the liquid, divided by the amount 
of CO2 being injected into the liquid, according to Eq. (3).

ECO2 =
CO2 mass transfer/time
CO2massinjected/time

100% (Eq. 3)

For each condition tested, it was considered that the maxi-
mum CO2 transfer capacity is equal to the product, kLa C*, 
since after a few minutes the CO2 concentration approaches 
saturation. Therefore, to calculate the amount of CO2 trans-
ferred to the system, the Eq. (4) was used.

CO2masstransferred = kLa (CO2) · C* · VL  (Eq. 4)

Where, V
L
 is the liquid volume.

Tetradesmus obliquus Cultivation

Microalgal Strain and Culture Medium

The freshwater microalga T. obliquus strain was isolated 
and maintained in the Culture Collection of the Labora-
tory of Algae Cultivation (LCA-UFSC) in an LCA-AD 
Medium [17], in 2 L photobioreactors with controlled air 
at 24 ± 1 °C, under constant agitation by bubbling with 
atmospheric air with an addition of 0.5% of CO2 (v/v) with 
an aeration flow of 0.5 L/min. The final concentrations 
(mg/L) of LCA-AD in the nutrient medium were as follows: 
NaNO3 1,000; CaCl2.2H2O 25; MgSO4.7H2O 75; K2HPO4 
25; KH2PO4 58.3; NaCl 25; Na2EDTA.2H2O 50; KOH 31; 
FeSO4.7H2O 4.98; ZnSO4.7H2O 0.00882; MnCl2.4H2O 
0.00144; (NH4)6MoO7O24.H2O 0.00661; CuSO4.5H2O 
0.00157; Co(NO3)2.6H2O 0.0004.

Culture Conditions

Cultures were grown in 5 L borosilicate photobioreactors, 
with a useful volume of 4.5 L, and dimensions of 16.5 cm 
diameter per 20.5 cm height. The cultures temperature was 
kept constant at 24 ± 1 °C and monitored daily. For cul-
ture illumination, 80 W daylight tubular fluorescent lamps 
were employed, positioned at a distance of 1 cm on both 
sides of the reactors, providing an irradiance of 618 µmol 
photons/m/s.

The different CO2 concentrations were achieved by mix-
ing atmospheric air and pure CO2, controlled by rotameters 
(Aalborg, model P, Canada) (Fig. 1). Before reaching the 
photobioreactors, the mixture was passed through a mixer to 
ensure homogeneity of the gases and then through a poros-
ity filter (0.22 μm) to prevent bacterial contamination. The 
proportions 0.04, 0.5, 1.0 and 2.0% (v/v) were regulated by 
rotameter control and verified daily with a CO2 measuring 
instrument (Geotech, G100, UK). To control aeration rate, 
rotameters were used, with a continuous flow of 1 L/min 
and by setting an aeration rate of 0.25 vvm. The cultures 
were acclimated for 7 days to keep the cells in exponential 
growth phase. They were then concentrated by centrifuga-
tion (1.160 x g for 15 min), washed with sterile water and 
the supernatant discarded to remove nutrient debris. Experi-
mental units (in triplicate) were inoculated with biomass 
corresponding to the initial concentration of approximately 
0.25 g/L.

Physical and Chemical Parameters

A radiometer (LI-COR, LI-250 A, USA) was used to mea-
sure light intensity outside and inside the photobioreactor 
studied. To characterize the light regimen during cultiva-
tion, an attenuation curve was elaborated considering posi-
tion A (Center) and position B (Lateral) as shown in Fig. 1.

Fig. 1 Scheme representing the 
CO2 supply system, with the 
following equipment: (1) open/
close valves; (2,6) rotameters 
with regulators; (3) gas mixer; (4) 
0.22 μm air filter; (5) gas mea-
surer; (7) diffuser; (8) sampler; 
(9) cap screw with gas inlet and 
outlet; (10) light source
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The CO2 fixation efficiency represents the ratio of CO2 
fixed by the microalgae culture to the amount of CO2 
injected into the system, as described in Eq. (11). The rate 
of CO2 injected into the culture (VCO2) was calculated using 
the ideal gas law.

CO2 fixationefficiency = CCP (MCO2MC)VCO2100 (Eq. 11)

Where:
V

CO2
 = CO2 injected rate into the culture (g/L/h).

Statistical Analysis

Data are presented as the mean ± standard deviation (n = 3). 
Data from kLa CO2, CO2 dissolution efficiency, Bmax, P, and 
RCO2 max were tested for variance homogeneity (Levene’s 
test) and normality (Shapiro-Wilk test) using the Statistica 
7.0 software. An ANOVA test was applied, followed by 
Tukey’s post-hoc test, when necessary, using the Graph-
Pad Prism 7.0 software, to evaluate significance difference 
between the means. For all analysis, a significant level of 
5% was adopted.

Results and Discussion

CO2 Transfer Study

The overall gas-liquid mass transfer coefficient (kLa) was 
determined to compare the use of a sintered glass diffuser 
(smaller bubbles) with a glass pipette (larger bubbles) at 
three aeration rates (0.125, 0.25 and 0.5 vvm). As shown in 
Fig. 2a, a significant increase (p < 0.05) in the aeration rate 
led to higher values of kLa CO2, when using either the dif-
fuser or pipette. The diffuser promoted higher values of kLa 
CO2 than the pipette for all aeration rates tested, reaching a 
maximum value of 16.45 ± 0.36 1/h at the highest applied 
aeration rate, while the maximum value of kLa CO2 for the 
pipette was 4.90 ± 0.19 1/h at the aeration rate of 0.5 vvm. 
According to Langley et al. [8], the values of kLa for pho-
tobioreactors using air bubbling stay in the range of 5 to 
100 1/h. The short retention time of bubbles in the water 
column, due to the small column in the photobioreactor, cre-
ated limitations in the mass transfer of CO2 in the system 
studied. Thus, to achieve satisfactory gas-liquid mass trans-
fer capability, even with a lower aeration rates, the use of 
smaller bubbles was more suitable.

The kLa is composed of the mass transfer coefficient of 
the liquid phase (kL), which mainly depends on the prop-
erties of the liquid (density, viscosity, diffusivity, tempera-
ture, etc.) and the interfacial area, which is a function of 
gas holdup and bubble sizes [20]. Generally, to improve 

The dissolved inorganic carbon (DIC) was considered as 
the sum of CO2/H2CO3, HCO3

− and CO3
2− in the aqueous 

solution, which can be calculated by Eq. (5) according to 
Lee et al. [18].

[DIC] =

(
TA +

[
H+

]
− (KW/[H+ ])

([H+]/K2) + 2

)(
1 +

[
H+

]

K2
+

[H+]2

K1K2

)

 (Eq. 5)

Where:
TA = total alkalinity (mEq/L – measure via titration); 

[H+] = hydrogen ionic activity (i.e., 10− pH) where the pH 
of the culture was measured with a digital pHmeter (YSI, 
pH100, USA); KW, K1 and K2 are dependent of the tempera-
ture (T) and are dissociation constants as shown in Eqs. (6), 
(7) and (8), respectively:

KW = e(148.9802(13847.29/T)−23.6521lnT) (Eq. 6)

K1 = 10−((6320.80/T)−126.3405+19.568lnT) (Eq. 7)

K2 = 10−((5143.69/T)−90.1833+14.613lnT) (Eq. 8)

Growth Evaluation

Biomass was estimated indirectly using absorbance read-
ings at 700 nm in a UV-Vis spectrophotometer (Genesis 
10 S, Thermo, USA), according to the Eq. (9):

Biomass(gL−1) = ABS700 × 0.0019(r2 = 0.98) (Eq. 9)

Biomass data were used to determine the maximum achieved 
biomass (Bmax) and total productivity (Ptotal).

Carbon Fixation Evaluation

To determine the maximum CO2 fixation rate (RCO2 max), 
maximum yield values were determined by linear regres-
sion applied in the exponential growth phase for each evalu-
ated growth curve. The carbon content in biomass (C c) was 
considered to be 50% for application in Eq. (10), according 
to Tang et al. [19].

QCO2
= CCPmax

(
MCO2

MC

)
 (Eq. 10)

Where:
C

C
 = carbon content in algal biomass (% weight/weight);

Pmax  = maximum productivity achieved (g/L/h);
M

CO2
 = 44 g/mol;

M
C

 = 12 g/mol
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the pipette significantly increased (p < 0.05) the efficiency 
values when the same aeration rates were applied.

Both effects are similar to other studies as reported by 
Ying et al. [16], where the authors emphasize that reducing 
bubble size is considered more promising than increasing 
aeration flow because it has a positive effect on both CO2 
transfer rate and CO2 capture efficiency. Thus, in addition 
to improving the growth performance of microalgae, it also 
leads to lower losses of CO2 to the atmosphere. By using the 
glass diffuser and applying an aeration rate of 0.25 vvm it 
was possible to achieve a kLa CO2 value of 11.98 ± 0.6 1/h 
and a CO2 capture efficiency of 67.94 ± 3.56%. Raising aera-
tion flow decreases CO2 capture efficiency to 46.62 ± 1.02%, 
while increasing gas-liquid transfer capacity.

CO2 Concentrations Effect on T. obliquus Cultivation

Tetradesmus obliquus was grown for 360 h (15 days) under 
different CO2 concentrations, as observed in the growth 
curves (Fig. 3a). After a short acclimation phase in the first 
12 h (lag phase), the CO2 supplemented cultures began 
exponential growth and reached maximum yields in the 
period from 80 to 100 h. After this point, growth became 
linear, which might be caused by the reduction of light pas-
sage in the photobioreactor, possibly by self-shading from 
cells in the culture, as can be seen in Fig. 3b. Between the 
biomass concentration of 0.2 g/L and 1.4 g/L, the cultures 
of T. obliquus were under a light regimen without shading in 
the middle of the reactor. Therefore, the availability of CO2 
to the system during this period was considered the limiting 
factor for cell growth, since other nutrients were in excess 
in the medium. Nitrate (NO3

−) and phosphate (PO4
3−) 

assimilated in the culture medium, for example, were fully 
consumed only on day 7 (data not shown). The maximum 
productivity (P max) data obtained in this period were used to 
calculate the maximum CO2 fixation rates (RCO2 max).

The treatment using only atmospheric air (0.04% CO2) 
had low growth values and after 350 h an average B max of 
1.45 ± 0.10 mg/L and a P total of 3.75 ± 0.31 mg/L/h. Dis-
solved inorganic carbon (DIC) in the culture medium repre-
sents the carbon source for algal growth, being composed of 
CO2, HCO3

− and CO3
2−. As a result, low concentrations of 

CO2 in the atmosphere and the lack of efficiency in transfer-
ing the CO2 led to inferior concentrations of DIC in the cul-
ture medium, as can be seen in Fig. 3c. More photosynthetic 
activity in the culture accelerates the removal of carbon 
dioxide and nitrate consumption, which may lead to a high 
increase of pH in the medium. The combination of these 
factors may have made CO2 scarce in the liquid, limiting 
cell growth.

As observed in Fig. 3c, during the first 60 h, on approxi-
mately the third day of cultivation (period of maximum 

mass transfer capacity, the design and operating conditions 
of photobioreactors are studied to maximize the interfacial 
area [21]. Talbot et al. [15] demonstrated that the interfa-
cial area “a ” is strongly dependent on the average diam-
eter of the bubbles produced and the aeration flow applied. 
In the present study, the comparison of the two dispersers 
determined that the average diameter of bubbles in the dif-
fuser was 15 times smaller, which expanded the interfacial 
area and explains the significantly higher values of kLa. The 
increment in aeration rate under the same bubble size con-
ditions increased the kLa, probably generated by a higher 
gas holdup, indicating a gain in the volume of the gas frac-
tion in the photobioreactor, a behavior that has been widely 
observed in bubble column reactors [8, 22]. However, a 
higher aeration rate also tends to increase the flow veloc-
ity of the bubbles, causing greater CO2 losses to the atmo-
sphere, thereby reducing the CO2 capture efficiency [14] 
and, depending on the species cultivated, may cause cellular 
damage from intensive shear-forces [23].

The CO2 capture efficiency is an important parameter to 
be evaluated to support efforts to reduce the amount of CO2 
lost to the atmosphere as can be observed in the Fig. 2b. The 
increase in aeration rates led to a reduction in CO2 capture 
efficiency in both bubble sizes produced. However, decreas-
ing the average bubble size by using the diffuser instead of 

Fig. 2 kLa CO2 (a) and CO2 dissolution efficiency (b) as a function of 
aeration rates for pipette (�) and diffuser (• ). All values are presented 
as the mean (n = 3) ± standard deviation. Different letters indicate sig-
nificant differences by the Tukey test’s (p < 0.05) between aeration 
rate, while * indicates significant difference (p < 0.05) between the two 
types of diffuser
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However, some studies suggest that Scenedesmus sp. 
chooses to absorb CO2 rather than bicarbonate in a more sat-
urated CO2 medium, probably because it is a lower energy 
expenditure option for cells. Yang and Gao [27] demon-
strated that by decreasing culture pH, thereby increas-
ing CO2 in the medium (3, 21 and 186 µM CO2) and at a 
constant DIC concentration (1.68 mM), it was possible to 
boost the specific growth rate of T. obliquus. Azov [28] also 
cultivated T. obliquus adapted to high CO2 concentrations 
by providing DIC at a controlled concentration with pH 
between 8.1 and 9.3 (0.2 increase between treatments) and 
obtained a constant specific CO2 fixation rate for all treat-
ments applied at this pH range. The results obtained in this 
study for pH are in agreement with the data demonstrated by 
these experiments, so the physiological effect of pH prob-
ably had no effect on T. obliquus growth in treatments with 
CO2-enriched air.

The increase in CO2 concentrations led to better condi-
tions for microalgae growth in terms of biomass gain, reach-
ing a maximum biomass (Bmax) with mean values ranging 
from 3.93 to 4.35 g/L and total productivity (Ptotal) with mean 
values of 10.99 to 12.39 mg/L/h at concentrations of 0.5% 
and 2%, respectively (Table 1). Although growth curves fol-
lowed similar trends in biomass gain among the treatments 
where the cultures received CO2-enriched air, applying 
1 and 2% CO2 promoted the highest values (p < 0.05) for 
both B max and P total in comparison to 0.5%, while no sig-
nificant difference (p > 0.05) between 1 and 2% treatments. 
Typically, P total values for T. obliquus have been reported in 
the literature between a range of 5.83 to 35.17 mg/L/h over 
high CO2 concentrations and applying irradiance with val-
ues from 35 to 420 µmol photons/m2/s [29–32]. Overall, the 

yield), higher CO2 concentrations (0.04–2% v/v) raised the 
DIC concentrations in the culture medium from 13.47 to 
91.35 mg/L while the pH decreased from 10.42 to 7.93. At 
this point of cultivation, 0.5% CO2 promoted significantly 
lower DIC values (p < 0.05) than 1% and 2% CO2. How-
ever, between 150 and 350 h DIC concentrations stabilized, 
reaching a possible DIC saturation for all treatments where 
CO2 was supplemented. In this period, a no significant dif-
ference (p > 0.05) was observed between the mean values 
of 143.7 ± 0.97 to 149.65 ± 1.16 at concentrations of 0.5% 
and 2% respectively. DIC accumulation was therefore faster 
in the early hours for 1% and 2% CO2 conditions, different 
from the 0.5% concentration.

The different treatments had distinct pH responses in the 
culture medium as observed in Fig. 3d. During the first 40 h, 
the pH increased rapidly in all treatments due to the expo-
nential growth period, where the CO2 fixation rate by the 
culture was probably higher than the gas dissolution rate. 
After approximately 84 h the pH values remained constant 
for the treatments using CO2-enriched air, ranging from 7.8 
to 8.7.

pH is recognized to be a controlling factor in the reac-
tions that regulates the appearance of different forms of DIC 
in the culture, influencing the CO2 mass transfer in the sys-
tem [24]. For T. obliquus, besides absorbing CO2 passively, 
there is strong evidence that HCO3

− is directly absorbed by 
algae through a bicarbonate pump that is activated by the 
consumption of ATP [25, 26]. For this reason, this micro-
alga is likely to be capable of maintaining photosynthetic 
activity at high pH, between 8 and 9, where HCO 3− is still 
available in water under standard temperature and salinity 
conditions.

Fig. 3 Biomass accumulation (a), 
ligh attenuation (b), dissolved 
inorganic carbon (c). and pH val-
ues (d) of Tetradesmus obliquus 
cultures conducted under differ-
ent CO2 concentrations: 0.04% 
(▲); 0.5% (�); 1% (�); 2% (•). All values are presented as the 
mean (n = 3) ± standard deviation
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determine a critical concentration of CO2 to be applied for 
a particular species.

The CO2 fixation rate and efficiency were evaluated on 
the effect of increasing CO2 concentrations on T. obliquus 
cultivation in a 4.5 L photobioreactor applying an aeration 
rate of 0.25 vvm, which provided a kLa CO2 of 11.89 ± 0.4 
1/h. Higher fixation rates were obtained with increased CO2 
concentration, as opposed to lower fixation efficiency as 
more CO2 was supplied. This inverse relationship between 
CO2 fixation rate and efficiency can be seen in Fig. 3. Zhang 
et al. [38] evaluated increasing aeration rates using 5% 
and 10% of CO2 on Synechocystis aquatilis algae growth, 
and defined two stages where increasing the aeration rate 
had different effects on culture productivity and CO2 fixa-
tion efficiency. By doubling the aeration rate (from 0.0025 
to 0.005 vvm) the algae had a 70% productivity gain. 
But, from this point forward, when the aeration flow was 
enhanced 20 times (from 0.005 to 0.1 vvm) the productiv-
ity gain was only 50%. The authors affirmed that a point of 
intersection between these two situations should be deter-
mined to increase culture productivity and the efficiency of 
carbon fixation.

In this study, increasing CO2 concentrations from 0.04 
to 1% led to a productivity gain of 72.3%. When higher 
CO2 concentrations were applied (between 1% and 2%), the 
increase in culture yield was only 2.3%, while CO2 fixation 
efficiency decreased from 10.21 to 5.28%. When CO2 was 
used at concentrations below 1%, the mass transfer of this 
gas was a limiting factor for culture growth in this study and 
lower values for this parameter were obtained. The probable 
limitation on CO2 transfer also matches the data presented 
for DIC in the medium as shown previously. The stabiliza-
tion of the CO2 fixation rate (above 1%) in this case may 
have occurred due to DIC saturation in the culture. From 
this point on, the boost in CO2 concentration had little effect 
on the fixation rate, and only led to increased CO2 losses to 
the atmosphere, which might cause an increase in biomass 
production costs.

Considering both the highest yield and the highest CO2 
fixation efficiency, 1% supplementation was considered the 
most effective concentration, defined as the critical CO2 

focus of these studies had been to demonstrate the ability of 
T. obliquus to tolerate high CO2 concentrations (5–50%) on 
the premise of using gaseous effluents from industrial pro-
cesses. Tang et al. [19] for example, cultivated T. obliquus in 
a 1 L photobioreactor at an aeration rate of 0.25 vvm using 
different concentrations (0.03, 5, 10, 20, 30 and 50%) and 
obtained better results using 10% of CO2 with mean values 
for Bmax of 1.84 ± 0.01 g/L and Pmax of 6.58 ± 0.17 mg/L/h. 
Ho et al. [33] also obtained better results by cultivating T. 
obliquus with 10% CO2 reaching B max values of 3.51 g/L 
and P total of 12.17 mg/L/h in a 1 L photobioreactor. Like-
wise, the results obtained by these authors demonstrate that 
concentrations above 10% negatively affect microalgae 
growth. An excess of CO2 in the culture may cause lower 
pH values and consequently intracellular acidification lead-
ing to an inhibition of the carbon anhydrase enzyme [34]. 
Chiu et al. [35] reported complete growth inhibition of 
Chlorella sp. when using 5%, 10% and 15% of CO2, and 
better results were achieved by applying 2% of CO2, which 
allowed reaching B max of 1.2 g/L. However, tolerance to 
high CO2 concentrations may vary from species to species 
[36].

Values expressed as mean (n = 3) ± standard deviation. 
Different letters on the same column indicate statistical 
differences (p < 0.05). The values obtained for P max were 
calculated by linear regression of growth curves during the 
exponential growth phase.

It should be noted that the CO2 concentrations applied 
are not related to the performance of the cultivation system 
in these cases, but are rather an indication of the species’ 
tolerance to pH and the applied CO2 values. However, when 
air is enriched with CO2 and injected into a microalgae 
culture, the total flow of transferred CO2 is related to aera-
tion rate, concentration or PCO2 and CO2 transfer capacity. 
Märkl [37], studying the effect of light intensity as a func-
tion of CO2 concentration applied to microalgae cultivation, 
reported that the critical value of CO2 injected into photo-
bioreactor is dependent on the specific light regime and CO2 
transfer coefficient of each system. Thus, since there are no 
established photobioreactor standards, it is not possible to 

Table 1 Maximum biomass (Bmax ), total productivity (P
total

), maximum productivity (Pmax ) determined from linear regression of the growth 
curve and maximum fixation rate (RCO2 max) for Tetradesmus obliquus under different CO2 concentrations
CO2 concentrations B max P total P max RCO2 max

(%) (g/L) (mg/L/h) (mg/L/h) R2 (mg/L/h)
0.04 1.45± 0.10c 3.75± 0.31c 4.89±  0.41 c 0.9145 7.66 ±  2.00 c

0.5 3.93± 0.09b 10.99± 0.18b 12.96 ±  0.67 b 0.9733 23.58 ±  
1.30 b

1 4.22± 0.02a 12.00± 0.07a 15.29 ±  1.00 a 0.9587 28.00 ±  
1.33 a

2 4.35± 0.06a 12.39± 0.19a 15.51 ±  0.84 a 0.9718 28.61 ±  
1.01 a
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Conclusions

In this study, the use of the sintered glass diffuser caused a 
gain in gas-liquid mass transfer capacity by decreasing the 
mean bubble diameter and increasing the interfacial area 
from kLa CO2. Raising the aeration flow in the reactor led to 
an increase in kLa CO2 values and a parallel increase in CO2 
losses to the atmosphere. Thus, to obtain optimum growth in 
terms of biomass production and optimize the use of CO2, it 
is concluded that the use of a 1% CO2 concentration is the 
best conditions to be applied in the studied system.
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