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Abstract
As a thermochemical conversion process, biomass pyrolysis has received a lot of interest for energy recovery by generat-
ing clean fuels, valuable compounds, and advanced materials. Innovative and novel pyrolysis procedures have arisen over 
time, and these processes may be optimized to produce high-quality end products. Substantial progress has been achieved 
in the development of analytical pyrolysis systems during the last few decades. However, due to a lack of knowledge of the 
reaction process, the current mechanism of biomass pyrolysis, as well as its economic feasibility, is far from a complete and 
thorough explanation. This review systematically covers biomass pyrolysis for energy recovery, the most recent advances in 
biomass pyrolysis, and the numerous factors responsible for the end products. Furthermore, the various feedstock composi-
tions, as well as the techno-economic analyses, have also been reported. This review emphasizes discernment into future 
paths, intending to overcome existing deficiencies. This review may also be employed to get new insights into this field and 
be useful for future studies on biomass pyrolysis.
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Introduction

With the rise in human population, urbanization, and, sub-
sequently, energy need, availability of fossil fuels has been 
decreasing. Therefore, meeting the need for energy in a reli-
able alternative manner is becoming a major socioeconomic 
problem for the entire world [1]. According to reports, the 
social and economic developments of the twenty-first cen-
tury are direct outcomes of the industrial revolution of 1837, 
which caused a fast growth in the use of energy since it was 
the main input for manufacturing activities [2]. The global 
economy’s energy requirements have been shown to increase 
by 2.5% every year since 1850. Due to the exhaustion of fos-
sil fuels, rising energy consumption, industrialization, and 
pollution of the soil, air, and water, the globe is currently 
confronted with several issues regarding the need for energy 
[1, 3]. According to United Nations (UN) world population 
aspects 2022, around 7875 million people are living in the 
globe, with 4378 million of them living in urban areas, or 
55.6% of the total [4]. Asian and European countries have 

a maximum growth rate in the globe for energy consump-
tion [2]. The majority of the world’s energy comes from 
fossil fuels. Combining manufacturing, importation, sales, 
and reserves, 81% of the world’s major energy supply is 
comprised of coal, crude oil, and natural gas [5, 6]. In 2021, 
just 13.8% of the major energy source came from renewable 
energy sources like solar, wind, hydro, biomass, and other 
types of energy [2]. Especially in poor or developing coun-
tries, the demand for coal roughly doubled between 2000 
and 2022, making up about 50% of the overall growth in 
primary energy consumption [2, 7]. A sizable portion of the 
world’s power comes from coal. 39% of the power generated 
worldwide in 2021 came from coal-based sources. With a 
proportion of 62%, hydropower leads all other renewable 
sources of electricity generation, with the wind coming 
in second at 19% [7]. The third-largest renewable form of 
power generation is bioenergy [6]. The poor or developing 
countries’ economic development has benefited from coal, 
but it has also increased greenhouse gas (GHG) emissions 
and air pollution. Since 2000, the oil demand has more than 
doubled, mostly as a result of rising automobile ownership 
and the usage of roads for transportation [2]. The transporta-
tion industry utilizes about 27% of all energy used world-
wide. 92% of the energy requirements for the transportation 
industry are covered by crude oil and oil products [2, 8]. 
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Currently, the most environmentally friendly and effective 
choices for the sector are liquid biofuels and biogas. Biofuels 
have a market share of more than 3% and have grown by 
13%, which is about six times greater than the total energy 
required in the transportation sector [8]. Because the govern-
ment has subsidized and promoted liquefied petroleum gas 
(LPG) usage in culinary applications, it has also helped to 
drive up oil use.

The Asian and European country’s dependency on 
imported crude oil has steadily grown due to a lack of 
domestic resources, reaching almost 75% in 2022. In 2000, 
African and Asian countries’ major energy source was 
coal, followed by traditional biomass, which made up about 
one-fourth of the country’s main energy mix [2]. Presently, 
according to reports (our world in data), the world’s entire 
energy source depends on coal 32%, petroleum oil 30%, gas 
24.2%, and renewable energy sources, making up just 13.8% 
(Fig. 1b) [9]. Per capita energy consumed across the globe 
from fossil fuels, renewable and nuclear, and by different 
sources is shown in Fig. 1. Traditional biomass is primarily 
fuel wood, but it also includes animal waste and charcoal. 
In 2021, wood chips, wood pellets, and other conventional 
biomass sources accounted for 85% of home consumption. 
In contrast, municipality and corporate businesses account-
ing for 4%, following biogas for 4%, and liquid biofuels for 
8% [9]. Global production of wood fuel reached 1.93 billion 
m3 in 2020 [10]. The production of wood fuel was mostly 
concentrated in Africa and the Americas, contributing 36% 
and 37%, respectively. One of the bioenergy industries with 
the fastest global growth is wood pellets. Thirty-nine million 
tonnes of pellets were produced worldwide in 2021 [11]. 
Another important bioenergy industry that produces huge 
amounts of wood charcoal is this one. In 2021, Africa pro-
duced 53.1 million tonnes of wood charcoal, approximately 
65% of the world’s total production. Agriculture might ben-
efit significantly from the usage of bioenergy in the future. 
There are several opportunities to increase significant agri-
cultural yields from various regions worldwide [10, 11]. As 
a result, more food and fuel could be supplied, and the agri-
cultural industry has a major impact on the worldwide use 
of bioenergy. After woods and farming, the third feedstock 
area for energy production uses urban and industry wastes.

Even though opinions and estimates of the total amount 
of available fossil fuel resources vary greatly, it is fair to 
conclude that they will be exhausted over the next 50 to 
100 years, with a production peak occurring far in advance 
of that time. The “climatic hazard” of more carbon being 
released into the environment is a significant one, though. 
According to International Energy Projection (IEA) pro-
jections, America dominates biofuel production world-
wide. Collectively, North and South America generate 
76% of the world’s biofuels, with only 15% coming from 
Europe [12]. Millions of employment are also created by 

renewable energy technology across the whole produc-
tion chain [2]. Approximately 12.7 million people were 
engaged in the renewable energy industry in 2021, with 
bioenergy being the second-largest jobs provider, with 
approximately 3.59 million employees [13]. A thousand 
gigatons of carbon might be emitted into the environment 
if the current proportions of fossil fuels are maintained up 
to 2040 without carbon sequestration. This is particularly 
troubling because the current total cumulative emissions 
of carbon, which amount to around 500 gigatonnes, have 
already created serious problems for the global weather 
trade [14]. A major global worry closely tied to energy 
issues is the development of various wastes, which is par-
allel to the concern about the need for energy. The produc-
tion of bio-waste is the most concerning type of waste. 
Most of the bio-waste is thrown away after usage. Only 

(a) 

(b)

* US − United States, SE − Sweden, DE − Germany, FR − France, JP − Japan, 
CN − China, UK − United Kingdom,  SA − South Africa, BR −  Brazil, CA −  

Canada, IN – India, AU − Australia

Fig. 1   Per capita energy consumed across the globe a from fos-
sil fuels, renewable and nuclear, and b using different sources. *US, 
United States; SE, Sweden; DE, Germany; FR, France; JP, Japan; 
CN, China; UK, United Kingdom; SA, South Africa; BR, Brazil; CA, 
Canada; IN, India; AU, Australia
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some percentage of bio-waste has ever been converted into 
other sources, placing our capacity to handle these wastes 
at a severe disadvantage. The majority of bio-waste slowly 
degrades into smaller particles and is mixed into the soil 
giving no use. Therefore, the effective use of these bio-
wastes will lead to creating major benefits for the ecosys-
tems, the environment, the economy, and human health 
[2, 8]. So, bio-waste generation needs to be managed with 
added technology. There are different ways of waste man-
agement, which include prevention, minimization, reuse, 
energy recovery, landfills, and controlled deposit [15, 16]. 
Out of these, energy recovery could be a good solution 
for reducing waste and developing the energy sector. The 
pyrolysis of bio-waste is a good option for energy recovery 
as bio-waste is a source of energy. Global energy con-
sumption has more than doubled, but traditional biomass’s 
share of the energy mix in 2022 is just 12% [12].

The primary objective of this review is to explore pyrol-
ysis as a process for energy recovery and the potential 
of numerous waste biomasses as a feedstock to recover 
energy through extensive surveys of the literature availa-
ble. Different parameters, as well as different reactor envi-
ronment, affect the final product. So, the different pyrolys-
ers, their working, and their roles in the yield of output are 
discussed. The techno-economic aspect is one most impor-
tant parameters to look after so that the products of the 
pyrolysis process can be usable in reality. In this regard, 
the techno-economic aspects that have been reported by 
a few researchers are also reviewed. Furthermore, the use 
or application of oil from the pyrolysis process in different 
engine performance scenarios is also reported. It will help 
the potential users to further studies in choosing alter-
nate feedstock for energy recovery, input parameters that 
have a significant effect on the output, and methodologies 
that have been adopted by different researchers during the 
pyrolysis process.

Pyrolysis for Energy Recovery

The term “pyrolysis” originated from the Greek words “pyr” 
(fire) and “lysis” (breakdown), which emphasizes the disin-
tegration of substances by heating. When used more explic-
itly, pyrolysis denotes the thermal breakdown of a material’s 
molecules in the absence of air [17–19].

The pyrolysis of biomass is a popular technique for pro-
ducing solid (charcoal), condensable vapours which trans-
formed into bio-oil at ambient temperature, and non-con-
densable (permanent) gaseous products for the purpose of 
generating energy because biomass is a renewable source 
that is broadly available in the world and these outputs are of 
interest as they are potential substitute sources of energy [18, 
19]. These products have various applications in generating 
electricity and heat, making transporting fuels, chemicals, 
and blends (Fig. 2). The majority of non-condensable gases 
are made up of stable gases, including CO, CO2, and CH4 
[20]. Chemical makeup of non-condensable gases is signifi-
cantly influenced by chemical compositions of the feedstock 
being pyrolysed. Because hemicellulose has high carboxyl 
content, pyrolysis of it produces a sizable amount of CO2. 
On the other hand, cellulose’s carbonyl groups cause it to 
produce more carbon monoxide. Due to its aromatic com-
positions and methoxyl functional groups, lignin generates 
more H2 and CH4 when it undergoes pyrolysis [21].

The fundamental processes that occur during pyrolysis 
are as follows: (i) temperature inside the fuel rises due to 
heat transfer from a heat source; (ii) as a result of the temper-
ature increase, pyrolysis processes begin, releasing volatiles 
and producing char; (iii) volatiles are released, causing heat 
to pass from the heated volatiles to the colder un-pyrolysed 
fuel; (iv) tar is created when certain volatiles condense in the 
colder areas of the fuel; and (v) these interactions result in 
autocatalytic secondary pyrolysis processes [22]. The pores 
of the particle allow gases and volatiles to pass through and 

Fig. 2   Pyrolysis for energy 
recovery
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take part in the heat transfer process. The pace at which the 
pyrolysis processes take place is based on ambient tempera-
ture. Since biomass turns into gases during the pyrolysis 
process, solid’s pores increase rather than becoming more 
porous [23]. The pyrolyzing solid’s larger pores provide sev-
eral places for the volatile and gaseous pyrolysis products to 
react, which facilitates their contact with the heated solid. 
The following methods convey heat inside the pyrolyzing 
particle: (i) internal particle conductivity, (ii) the particle 
pores’ internal convection, and (iii) radiation and convection 
from the pellet’s surface [24].

The key feature of pyrolysis is the disintegration of solid 
fuel results in the dissolution of carbon-carbon bonds and 

development of carbon-oxygen bonds. Pyrolysis needs tem-
peratures between 400 and 550 °C, while it may be carried 
out at temperatures considerably higher [25–27]. The yield 
as a percentage during pyrolysis of biomass is shown in 
Fig. 3. In recent years, pyrolysis has drawn increased atten-
tion as a practical and efficient way to turn biomass into 
biofuel [6, 28, 29]. Both the combustion and gasification 
processes start with pyrolysis, which is also a part of both. 
CO, CO2, and light hydrocarbons make up the gas. Bio-
oil and char are two names given to this black liquid. The 
operating circumstances have an impact on product yields 
and quality [24]. Depending on the circumstances, multi-
ple designations are given to pyrolysis. Low temperatures 
and lengthy residence durations are used in slow pyrolysis 
or carbonization, which favours the creation of charcoal. 
Long operation durations and high temperatures encour-
age production of gases [30]. In contrast, low gas residence 
times and moderate temperatures encourage the formation 
of bio-oil. Figure 4 depicts the pyrolysis process’ chemical 
reaction.

Pyrolysis is classified into three kinds based on the work-
ing conditions: slow, medium, and fast; as illustrated in 
Table 1, process temperature, solid residence time, biomass 
particle size, and heating rate change across different cat-
egories [17].

Advantages of Pyrolysis

When compared to other viable technologies for bio-waste 
resource recovery, a pyrolysis-based process has significant 
advantages [30]. The study of pyrolysis is becoming more 
and more important since it is a precursor to gasification 
and combustion as well as a separate process. It is more 

Fig. 3   The percentage output of the final products of biomass pyroly-
sis

Fig. 4   Representation of 
the reaction routes for wood 
pyrolysis
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responsive to changes in feedstock composition than com-
peting processes and is suitable for all types of solid com-
modities. It may be executed as a batch, low-pressure pro-
cess with a negligible amount of pre-treatment of feedstock 
[31].

To some extent, sustainable use of biomass energy can 
replace nuclear and fossil fuel consumption. Biomass energy, 
which is used in village locations of developing nations, is 
used by almost half of the globe’s population. Biomass con-
tributes to worldwide efforts to minimize greenhouse gas 
emissions [29]. Because of recent technology advances and 
increased availability, biomass may now be used as a renew-
able energy resource with little environmental impact [32]. 
Many different power and chemical production processes 
have made use of high calorific value pyrolysis by-products, 
such as bio-oil, acid extract, gases, and coal fines. The prin-
cipal by-products of the pyrolysis process can be utilized 
directly or chemically transformed into high-quality fuel or 
other chemical compounds [29, 32]. Because most biomass 
feedstocks are physicochemical complex, their constituent 
elements react differently and create different end products. 
A portion of the feedstock is turned into carbon, while the 
remaining amount is oxidized and hydrolysed to produce 
sugars, phenols, aldehydes, ketones, alcohols, and carbox-
ylic acids. These compounds combine to make more com-
plex compounds like esters and polymer products [33]. The 
technique of allowing air to obtain pyrolysis is acquired by 
supplying air in an amount below stoichiometric; the heat 
created during combustion is then utilized to maintain reac-
tor’s temperature while processing the pyrolysis-related 
processes [34].

Technology of Biomass Pyrolysis 
to Value‑Added Products

Due to the existence of a significant number of carbon-
oxygen bonds, side reactions like polycondensation are 
more likely to occur in the upgrading and deoxygenation 
process of biomass pyrolysis to create liquid fuels and high-
value-added chemicals. As a result, the product’s quality 
and yield are impacted [1]. The dark brown liquid bio-oil 
can be created by condensing a part of the pyrolysis gases. 
The majority of the components of the biomass that were 
able to leave the reactor environment are found in this liquid 

product, together with moisture and oxygenated hydrocarbon 
[35]. The wet source material and subsequent interactions 
between bio-constituent oil’s parts during storage both con-
tribute to its moisture content. This moisture content causes 
the crude bio-oil to split up into two phases: high-density 
aqueous and low-density organic. To provide fuel with a 
high calorific value, the organic phase can be increased or 
combined with fuel derived from petroleum. Acetic acid, 
hydroxyl acetone, and phenol are just a few examples of 
water-soluble substances that make up the majority of the 
aqueous phase. Although this phase could not be utilized 
as fuel, it may be catalytically converted to make hydrogen 
[36].

Two pyrolysis techniques are primarily used in modern 
research and innovation. The first is to produce high-grade 
bio-oil by directly catalysing the pyrolysis of biomass, 
improving the specificity of the bio-oil constituents by 
employing suitable catalysts in the pyrolysis process [37]. 
Second, fast pyrolysis is used to create bio-oil, which is then 
refined and modified in two steps to create liquid fuel and 
high-value chemicals [35]. The conversion of these platform 
compounds into liquid fuels and high-value-added chemicals 
like gasoline and aviation kerosene through pre-aldol con-
densation and catalytic hydrogenation has been proposed by 
some researchers in recent years. This new synthetic method 
involves first catalysing the pyrolysis of biomass to produce 
ketones, furans, and other platform compounds [35].

Direct Pyrolysis of Biomass

A one-step technique for manufacturing high-quality liquid 
fuels and chemicals from biomass is direct catalytic pyroly-
sis with a catalyst to create high-grade fuel oil or high-value-
added compounds. Deoxygenation, pyrolysis, aromatization, 
ketylation, alcohol aldehyde condensation, and catalytic 
cracking are the main chemical reactions that take place dur-
ing the catalytic pyrolysis of biomass [38]. These reactions 
occur selectively depending on the type of catalyst used and 
the creation of necessary reaction conditions. By changing 
the kind of catalyst and pyrolysis settings, the lignocellulose 
structure is catalysed to directly participate in the process 
and enhance the selectivity of desired products in bio-oil 
[39]. Catalytic pyrolysis of biomass refers to improving the 
quality of pyrolysis vapour while pyrolyzing biomass by 
adding various catalysts with deep deoxygenation activity 

Table 1   Operating conditions 
and product distribution for 
various pyrolysis types [17]

Category Tempera-
ture (°C)

Residence time Particle 
size (mm)

Heating rate (°C/s) Product yield (%)

Liquid Gas Solid

Slow ~400 Hours–day 5–50 0.1–1 25–30 25–35 30–40
Medium ~500 530 s 1–50 1–10 40–50 25 25–30
Fast ~500 1–2 s < 1 10–200 60–75 13–20 12–20
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into the fast pyrolysis process, controlling various pyrolysis 
paths from the source, arbitrarily adjusting the proportion of 
components, and raising the added value of products [40]. 
The biomass catalytic pyrolysis catalyst can either be uti-
lized with the raw biomass materials or just the pyrolysis 
vapour. Based on the different ways the catalyst and biomass 
source materials interact, the process is divided into in situ 
catalytic pyrolysis and ex situ catalytic pyrolysis [6].

In Situ Catalytic Pyrolysis

The instantaneous mixing of the catalyst with the raw mate-
rials before heating and pyrolyzing in the reactor is the fun-
damental aspect of in situ catalytic pyrolysis. This method is 
simple. It is an intensive pyrolysis technique that has under-
gone substantial investigation [37]. By ensuring that the 
pyrolysis fragments come into touch with the catalyst first 
during in situ catalytic pyrolysis, the degree of pyrolysis is 
increased, and the possibility of pyrolysis products reacting 
later is reduced. Eucalyptus was subjected to in situ catalytic 
pyrolysis using a catalyst made of nickel [39]. By encourag-
ing the decarbonylation process and lowering the oxygen 
level, Ni increases the stability of bio-oil. Catalytic pyrolysis 
investigations are carried out in a fixed-bed reactor by mix-
ing HZSM-5 and chlorella residue in a certain ratio. When 
compared to oil generated by direct pyrolysis, the oxygen 
content of catalytic bio-oil decreased from 30.2 to 19.6%, 
and as a result, the calorific value increased from 24.7 to 
32.8 MJ/kg [39]. While the oil generated by direct pyrolysis 
is largely made up of long carbon chain compounds with a 
variety of end groups, the oil produced by catalytic bio-oil 
is primarily made up of aromatic hydrocarbons. The bulk 
of the bio-oil is composed of a benzene series when mix-
ing HZSM-5 and lignin at a weight ratio of 2, and catalytic 
pyrolysis performed at 400–550 °C with air pressure which 
includes benzene, naphthalene, alkylbenzene, and phenol, 
as well as other hydrocarbons or oxygenated hydrocarbon 
components. The bio-oil was then hydrogenated using a 
palladium carbon catalyst at 90 to 180 °C [39]. It was fea-
sible to get biological aviation fuel’s naphthenic blending 
component, which has an average of around 11.2 carbon 
atoms. Gopakumar et al. [41] studied the catalytic pyrolysis 
products of freshwater green algae and Chlorella. The car-
bon output of aromatic hydrocarbons rose during catalytic 
pyrolysis from 0.97 to 25.9 wt% as the amount of catalyst 
used grew from 0 to 9 times the biomass mass. In situ cata-
lytic pyrolysis has the drawback of making it more difficult 
to create and deposit charcoal and separate catalysts, which 
raises the coke concentration. According to Yildiz et al. [42], 
in situ catalytic processes perform better at boosting the 
yield of aromatic hydrocarbon products and decreasing the 
generation of coke. However, compared to ex situ catalytic 
pyrolysis, in situ catalytic pyrolysis necessitates a higher 

catalyst loading. Wang et al. [43] used a HZSM-5 molecular 
sieve in a series microreactor to research the in situ and ex 
situ catalytic pyrolysis of poplar. The in situ catalytic pyroly-
sis mode exhibited better benefits in boosting the production 
of aromatic hydrocarbons, while the ex situ catalytic mode 
greatly outperformed it in terms of olefin output. Addition-
ally, compared to employing the ex situ method, the yield 
of the pyrolytic catalytic mode (31.4%) was much greater 
(18.7%).

Ex Situ Catalytic Pyrolysis

Ex situ catalytic pyrolysis is direct combustion of biomass to 
produce main pyrolysis gas, which is subsequently brought 
into connection with a catalyst to produce components by 
secondary pyrolysis [35]. The catalyst does not come into 
touch with the basic ingredients directly. Ex situ catalytic 
pyrolysis divides the reaction procedure into separate sec-
tions, allowing each segment to be finished on its own and 
improving process control. The process is more adaptable, 
and it is simpler to get the ideal reaction conditions and a 
superior pyrolysis impact [40]. Additionally, because it is 
more readily separated, the biochar produced during bio-
mass pyrolysis has less impact on the succeeding pyrolysis’s 
volatile products’ catalytic reforming procedure. Hu et al. 
[44] catalytically pyrolysed ex-situ pine sawdust biomass on 
an HZSM-5 catalyst. The findings demonstrated that light 
compounds might be efficiently converted into aromatics and 
olefins by the shape specificity in the HZSM-5 channel. At 
the acid centre on the outside of HZSM-5, heavy compounds 
may also be aggregated and broken simultaneously, but the 
catalytic action is not very high. Gungor et al. [45] compared 
the in situ and ex situ catalytic pyrolysis of pine bark using 
ReUS-Y as a catalyst. Ex situ catalytic pyrolysis is superior 
to in situ catalytic pyrolysis in terms of increasing the gen-
eration of bio-oil and stimulating the deoxygenation of vola-
tile pyrolysis products at high reaction temperatures. Nguyen 
et al. [46] studied the in situ and ex situ catalytic pyrolysis of 
wood using octahedral zeolite as a catalyst. Deoxygenation 
of pyrolysis products may be done more effectively using 
the ex-situ catalytic pyrolysis method. This shift can be 
attributed to the catalyst going through an ex situ preheat-
ing procedure in a catalytic reactor. A significant tempera-
ture difference exists between catalyst and biomass source 
components during the in situ catalytic process. Gamliel 
et al. [47] investigated the catalytic pyrolysis of Miscanthus 
in situ and ex situ using a Py-GC/MS microreactor (HZSM-5 
molecular sieve as a catalyst). While the in situ catalytic 
reaction mode enhanced the yield of bio-oil more than ex 
situ reaction settings, the amounts of aromatic compounds 
in the bio-oil and pyrolysis gas were much greater. The yield 
of biochar under the two distinct catalytic regimes showed 
minimal change in terms of composition [47].
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Catalytic Upgrading of Bio‑oil

The preparation of high-quality liquid fuels and chem-
icals from biomass involves two steps. Fast pyroly-
sis is used to create bio-oil from biomass raw mate-
rials, which is then catalytically upgraded to create 
the desired products [48]. More than 400 different 
types of organic chemicals, mostly phenols, ketones, 
carboxylic acids, esters, aldehydes, alcohols, furans, 
anhydrous-sugars, and compounds containing nitrogen, 
are included in the complex chemical makeup of the 
liquid compounds generated from quick pyrolysis of 
biomass. The bulk of the components is oxygen-con-
taining, which results in a poor bio-oil value [45]. Due 
to the fact that it only possesses 41 to 44% of the calo-
rific content of fossil fuels like diesel, it cannot com-
pletely substitute high-quality fuels. However, there 
are also a number of possible pathways for biomass 
conversion provided by the presence of these oxygen-
ates. For instance, oxygenates derived from biomass 
can be transformed into liquid hydrocarbon fuels by 
catalytic hydrogenation, into high-value compounds 
through oxidation, or into high-quality fuels by length-
ening the carbon chain through condensation [49]. It 
is challenging to use biomass bio-oil directly as fuel 
due to several drawbacks. The crude bio-oil must be 
upgraded and refined to create high-value liquid fuel. 
Catalytic hydrogenation, esterification, cracking, and 
other processes are the most common [50].

Analytical pyrolysis systems are created with the fol-
lowing features in order to ensure quick degradation of 
the biomass macromolecules and precise product analysis. 
To quickly heat the sample to the desired temperature, 
micro-pyrolysers can generally heat it at a maximum rate 
of over 100 °C/s. Typically, the pyrolysis vapours have a 
retention duration of fewer than 1/10 s [37]. To avoid sub-
sequent reactions, pyrolysis vapours are swiftly sucked 
into connected analytical equipment. Another need for an 
analytical pyrolysis system is good repeatability. Accord-
ing to reports, an analytical pyrolysis system may provide 
programmes with a relative standard deviation of 2% or 
less [50].

Instrumentation

Numerous kinds of micro-pyrolysers are being used in 
research on biomass thermochemical conversion. Depend-
ing on the type of heating source they use, micro-pyrolys-
ers can be differentiated into a variety of groups, with the 
most common being micro-furnace, filament, and Curie-
point pyrolysers.

Micro‑furnace Pyrolyser

The initial study on a vertical-type micro-furnace pyrolyser 
was carried out in 1977. Although other designs for micro-
furnace pyrolysers have been documented, the vertical-type 
model is the most often used [19]. Samples are dispensed 
into the reaction area of the vertical-type micro-furnace 
pyrolyser using a sample cup or a liquid/gas syringe. Materi-
als such as metals, glass, or quartz are used to produce sam-
ple cups. The reaction zone is commonly heated electrically, 
and temperature sensors and mechanisms for feedback can 
be used to control the reaction zone’s temperature precisely. 
With a temperature variation range of 1 °C, the temperature 
of a vertical-type micro-furnace pyrolyser may be accurately 
controlled throughout a wide temperature range. This kind 
of pyrolyser has a reaction temperature maximum of 1050 
°C. The interface temperature can be changed as needed 
between 40 and 450 °C to restrict the vapours of pyrolysis 
from condensing as they exit the furnace [51].

In earlier experiments, quick pyrolysis of biomass was 
typically accomplished using micro-furnaces. The sample 
dropper is affixed to the furnace’s top for one run. To avoid 
sample volatilization or thermal degradation, sample cup can 
be held in carrier gas at room temperature [19]. This ena-
bles the exact pyrolysis of heat-sensitive materials without 
denaturing them. By sliding the sample cup up and down, 
the double-shot pyrolyser, a kind of micro-furnace pyrolyser, 
enables samples to go through two subsequent pyrolysis pro-
cesses under different reaction circumstances. As a result, 
heat-sensitive materials may be precisely pyrolyzed without 
becoming denaturized [19, 51].

Resistively Heated Filament Pyrolyser

The first resistively heated filament pyrolyser was used in 
1961 to pyrolyze polymers. Nowadays, the platinum-coil 
pyrolyser emerges to be the most popular commercial resis-
tively heated filament pyrolyser variant [19].

The reaction zone and sample put in reaction zone are 
typically heated simultaneously by these pyrolysers from 
the preheated temperature (200–300 °C) to required tem-
perature. In order to prevent the condensation of low volatile 
pyrolysates, which might result in denaturing the sample 
prior to pyrolysis, the chamber of pyrolysis is often warmed 
[51]. At a very rapid rate of heating, filament can achieve 
specified pyrolysis temperatures. As per the study, ribbon fil-
ament can go from ambient temperature to 1000 °C in just 7 
ms [52]. For resistively heated filament pyrolysers, a variety 
of materials, including platinum, nickel, and nichrome, are 
employed as filament material. Due to its elevated electrical 
resistance and wide working range, platinum is one of these 
materials that is frequently employed in resistively heated 
filament pyrolysers [53]. Using platinum-coil pyrolysers, 
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elevated pyrolysis temperatures of up to 1400 °C may be 
achieved. The physical condition of the sample dictates the 
two most popular filament forms, which are coil and ribbon 
[54]. Most samples are pyrolysed using a ribbon filament, 
while some samples are pyrolysed using a coil filament. In 
the pyrolyser, the sample is immediately spread out on the 
ribbon filament’s surface [55, 56].

Resistively heated filament pyrolysers have certain inher-
ent drawbacks. Since the filament resistance may change 
over the course of its lifetime, the reaction zone’s tem-
perature differential between the specified temperature and 
the real temperature will fluctuate appropriately [19]. To 
achieve the proper correlation, these two temperatures need 
to be calibrated often. Additionally, the filament’s length 
may not be heated evenly. The sample should be positioned 
the same way in every experiment to ensure precision and 
repeatability.

Curie‑Point Pyrolyser (Inductively Heated Filament 
Pyrolyser)

Ferromagnetic metals are used in Curie-point pyrolysers to 
heat samples quickly. Curie-point pyrolysers heat materials 
in between 0.2 to 0.4 s, which is substantially quicker than 
micro-furnace pyrolysers [56]. There is a 1:1 relationship 
between reaction temperature and Curie-point temperature. 
The pyrolysis temperature reproducibility in each experi-
ment is good when the foil alloy is consistent [56].

The sample that is put onto a ferromagnetic foil is heated 
inductively inside an RF coil. It is not necessary to connect 
the ferromagnetic foil to a power source. The Curie point, 
or temperature at which ferromagnetic foil turns from fer-
romagnetic to paramagnetic, is reached when ferromagnetic 
foil is heated by induction, at which point it immediately 
loses its magnetic characteristics [57]. The RF coil must 
be switched off before the temperature changes. For differ-
ent Curie-points, different foil alloys may be produced by 
combining several ferromagnetic metals. Each foil alloy 
has a single, extremely constant Curie point temperature. 
The initial study on Curie-point pyrolyser was conducted in 
1964 by taking temperatures ranging from 160 to 1040 °C. 
The advancement of Curie-point pyrolysers is constrained 
by the lack of control over reaction temperature. Curie-point 
pyrolysers do not have the option of preset heating [57, 58].

Hybrid Pyrolyser

The hybrid pyrolyser combines two different pyrolyser 
types to give two distinct modes of pyrolysis. The initial 
research on a hybrid pyrolyser was conducted in Japan in 
the year 2015 [19]. The Curie-point and microfurnace pyro-
lysers in this hybrid pyrolyser enable two pyrolysis modes. 
Depending on the goal and sample morphologies, one of 

two pyrolysis modes, Curie-point pyrolysis or microfurnace 
pyrolysis, can be utilized. The hybrid pyrolysis mode, which 
requires continuing Curie-point pyrolysis after sample ther-
mal extraction, is another option [19].

Standard and Norms

The characteristics of bio-oils may differ significantly due 
to changes in the chemical composition of biomass. Pro-
cessing conditions and the properties of the biomass both 
have an impact on the quality of the bio-oil [59]. Because 
of this, a set of laws and requirements must be put in place 
for bio-oil and bio-oil blends to be introduced and effec-
tively marketed on the market. Since bio-properties oils are 
so different from the typical liquid fuels that drive the world 
economy, standardization is even more important for it. Even 
though efforts to standardize the characteristics of bio-oils 
have been continuing since 1985, the fundamental issue with 
these efforts is that traditional testing methods for mineral 
oils cannot be instantly applied to bio-oils without the nec-
essary validation [37]. The first fast pyrolysis oil standards 
were established by ASTM. Two grades have been estab-
lished thus far. Grades D and G can only be distinguished by 
their maximum permissible ash and solids content. Table 2 
contains a list of the grades for fast pyrolysis bio-oil [59].

Pyrolysis Process Parameters

The initial research on pyrolysis was used to create tar, 
which was applied to wooden vessels to protect them from 
moisture and rot [60]. The pyrolysis of coal, wood, and 
petroleum can result in the production of tar. Tar made from 
wood was a major economic driver in Northern Europe and 
America. The Royal Navy mainly employed tar to protect 
wooden ships. The emergence of ships made of steel and 
iron decreased the demand for tar [61]. Since then, solutions 
have been created to get around the bioresources’ time-based 

Table 2   ASTM D7544 for fast pyrolysis bio-oil

Property Grade G Grade D

Ash (wt%) > 0.25 > 0.15
Density at 20 °C (kg/L) 1.1–1.3 1.1–1.3
Flash point (°C) > 45 > 45
Higher heating value (HHV) (MJ/kg) < 15 < 15
Kinematic viscosity at 40 °C (cSt) > 125 > 125
Pour point (°C) < -9 < -9
Sulphur (wt%) > 0.05 > 0.05
Solids (wt%) > 2.5 > 2.5
Water content (wt%) > 30 > 30
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application restrictions. Researchers have been working hard 
to create stable, high-quality renewable fuels that may be 
used effectively in a variety of applications without endan-
gering food security and producing less waste. The param-
eters for the product yield in plastic pyrolysis, the product 
yield in biomass pyrolysis, and their fuel qualities have been 
evaluated because pyrolysis is one of the acceptable energy 
conversion technologies [49]. Additionally, different feed-
stock has various physio-chemical properties; a few of them 
are included in Table 3 and were documented by various 
studies using ultimate and proximate analyses.

The thermo-chemical breakdown of biomass in an inert 
environment is influenced by the feedstock type, operational 
circumstances, and physicochemical properties of the bio-
mass [49]. The distribution and quality of the final product, 
as well as the biomass conversion time or pyrolysis rate, are 
influenced by these elements as well. A few of these crucial 
process variables are briefly discussed below:

Feedstock

Extractives, which are often smaller organic molecules or 
polymers, and minerals, which are inorganic substances, are 
present in diverse amounts in various biomass types, and 
these proportions have an impact on the product distribu-
tions during pyrolysis [85]. The following are some ways 
that the main biomass components influence product yields 
at pyrolysis temperatures: While lignin mostly produces 
sacharred residue, cellulose and hemicellulose components 
produce volatile pyrolysis products [86]. However, holocel-
lulose (cellulose and hemicellulose) mostly changes to liq-
uids (tars), whereas lignin breakdown is responsible for the 
production of char and gas [87]. Minerals, especially alkali 
metals, typically remain in char and have a catalytic effect 
on pyrolysis reactions, increasing char yields based on other 
conditions, in addition to effect of ash on char yield [88]. By 
simple volatilization or breakdown, extractives contribute 

Table 3   Chemical and physical characteristics of different feedstock in (wt%)

Biomass Fixed carbon (%) Ash content (%) Volatiles (%) Moisture (%) C (%) H (%) N (%) O (%) Author

Rice straw 16.2 16.0 62.1 6.61 37.71 6.50 0.71 39.11 [62]
Water hyacinth 18.23 12.66 63.99 5.12 48.06 3.78 3.19 40.65 [63]
Energy grass 14.90 16.30 61.55 7.25 38.91 5.50 2.24 38.03 [64]
Lignite 24.79 21.03 38.72 15.46 43.74 4.56 1.21 28.21 [65]
Bituminous coal 45 8 – 11 35 11 73.1 5.5 1.4 8.7 [29]
Wheat straw 21 4 59 16 48.5 5.5 0.3 3.9 [29]
Bamboo stem 37.78 3.42 58.80 − 58.43 5.10 0.34 36.13 [66]
Leucaena 24.90 1.30 73.80 − 57.20 5.50 0.80 36.50 [67]
News paper − 2.2 87.3 10.5 45.1 6.1 0.1 48.5 [68]
Cardboard − 2.6 88.8 8.6 46.5 6.1 0.1 47.1 [68]
Lemon grass 24.78 7.21 59.99 8.02 39.34 5.81 1.54 53.30 [69]
Pine sawdust 12.20 2.78 77.27 7.85 53.50 6.93 3.33 32.55 [70]
Delonix regia 15.80 2.07 75.56 7.09 51.30 6.00 2.58 40.56 [70]
Sugarcane baggage 9.60 4.40 76.00 10.00 43.20 6.20 0.40 43.20 [71]
Cotton stalk 16.60 3.50 71.00 8.90 46.80 6.40 0.30 46.80 [72]
Castor seed 23.33 4.22 65.21 7.24 48.96 5.52 2.79 42.61 [71]
Eucalyptus 36.30 1.60 60.20 1.90 60.90 5.60 0.20 33.20 [73]
Mahua seeds 5.4 2 84.0 8.6 61.24 8.4 4.12 24.89 [74]
Palm kernel shells 24.13 9.33 61.67 4.79 41.86 4.52 0.64 43.6 [75]
Pods of Prosopis juliflora (Pj) 4.23 0.21 87.67 7.89 41.77 6.55 3.58 − [76]
Pomegranate peel 20.02 4.2 68.2 7.58 49.12 6.54 1.10 43.23 [77]
Neem wood bark 15.7 4.2 69.9 10.3 41.51 7.30 5.41 45.36 [78]
Willow 10.70 1.70 87.60 2.80 49.90 6.50 0.20 39.90 [79]
Jatropha seed shell 14.13 3.42 79.80 2.67 50.52 6.15 39.4 2.32 [80]
Garlic stem 2.21 8.80 83.18 5.81 42.29 6.03 3.84 47.84 [81]
Bamboo stem 37.78 3.42 58.80 − 58.43 5.10 0.34 36.13 [6]
Oat straw 13.60 5.90 80.50 8.20 47.60 5.80 43.5 0.50 [6]
Date seed 7.55 5.29 81.13 6.02 70.92 10.4 − 18.63 [82]
Miscanthus 19.92 4.46 75.62 4.55 46.95 5.85 0.92 46.28 [83]
Fir sawdust 15.65 1.63 79.40 3.32 46.52 6.03 0.20 46.81 [84]
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to liquid and gas products. Due to numerous catalytic pro-
cesses, this elemental contribution in ash also degrades the 
pyrolysis oil’s quality, and its removal has an impact on the 
procedure by increasing the pyrolysis liquid and decreasing 
the gas products [37].

The constituents of lignocellulosic biomass include cel-
lulose (25–50 wt%), hemicellulose (15–40 wt%), lignin 
(10–40 wt%), extractives (0–15 wt%), and often a minor 
amount of inorganic mineral materials [38, 89]. The kind 
of biomass has a variety of effects on the pyrolysis proce-
dure and end products. First, the relative mass ratios of the 
organic and inorganic components change depending on the 
type of biomass, the environment in which it grows, and 
the time of harvest. Each constituent’s pyrolysis has dis-
tinct reaction routes and thermochemical properties, result-
ing in diverse products [90–93]. The output of bio-oil is 
increased by cellulose and hemicelluloses, whereas lignin 
produces a higher percentage of solid char [94]. The aver-
age molecular weight and viscosity of the bio-oils may rise 
with higher lignin content, while their water concentration 
may drop [48]. The non-structural components of lignocel-
lulosic biomass known as extractives, including fatty acids, 
simple sugars, waxes, and sterols, may be extracted using 
solvents such as water, ethanol, acetone, benzene, and tolu-
ene [95, 96]. It was reported in an experiment utilising corn 
stalk and wheat straw as the feedstocks for pyrolysis that 
the extractives might increase the bio-oil yield and decrease 
the formation of char and gas. As compared to the bio-oils 
from the original samples, those from the extracted samples 
with decreased extractives likewise had higher oxygen and 
lower alkane concentrations [38]. Another research found 
that while pyrolyzing Mongolian pine and Manchurian ash, 
extractives reduced the activation energy and yields of CO2, 
CO, and aldehydes while increasing acid production. The 
structural arrangement of the components varies from bio-
mass to biomass in general, which causes the interactions 
between components to fluctuate depending on the kind of 
biomass and consequently impacts the performance of pyrol-
ysis [92, 93]. Due to its catalytic action during bio-mass 
pyrolysis, the composition and amount of mineral matter in 
the biomass types can also be variables that affect product 
distribution and attributes.

Heating Rate and Temperature

Primary vapours must be heated and cooled quickly to 
minimize the number of secondary reactions that lower 
liquid yield and degrade its quality. Higher char yields are 
another benefit of slow heating [89]. On char yields and 
characteristics, temperature also has a considerable effect. 
In all pyrolysis processes, higher temperatures lead to lower 
char yields. The main cause of this is that at higher tem-
peratures, significant volatile material is stripped from the 

char, which lowers yields. For instance, as temperature rises 
from 638 to 879 K, the char output drops from 31 to 17% 
[97]. Lower temperatures might also be detrimental since 
they could lead to incomplete biomass breakdown, which 
would increase the amount of unpyrolysed solid in the char 
content. The composition of the char is also influenced by 
temperature, with higher temperatures producing chars with 
higher carbon levels [38]. For temperatures higher than 773 
K, the solid product char comprises more than 85% carbon 
by weight [91]. Up to a maximum temperature, typically 
between 673 and 823 K, liquid yields rise, although this 
is greatly sensitive on other operating circumstances. The 
greatest production of pyrolysis oil has been shown to be 
attained for a range of feedstock types at temperatures of 
about 673 to 823 K, with a continuous drop in char yield 
and matching rise in gas yield [89]. The condensed liquid 
yields were decreased beyond this temperature range due to 
secondary processes that cause vapour breakdown becom-
ing more prevalent [97]. Below the peak temperature (773 
K) for liquid yield, gas yields are typically modest; above 
this temperature, gas yields dramatically rise with increasing 
temperatures since gases are the primary products of vapour 
decomposition [85]. Below the peak temperature (773 K) 
for liquid yield, gas yields are typically modest; above this 
temperature, gas yields dramatically rise with increasing 
temperatures since gases are the primary products of vapour 
decomposition [89]. However, in pyrolysis, higher heating 
values of non-condensable gases are achieved at reaction 
temperatures higher than 723 K because CO and CH4 are 
produced at a higher rate than CO2 does [6].

Volatile Residence Time and Pressure

The gas flow rate through the reactor determines the resi-
dence time of volatiles, which in turn influences the con-
tact time between primary vapours and hot char, which in 
turn impacts the intensity of secondary reactions as well 
as the volatile product qualities [98, 99]. The cracking 
and polymerization reactions of vapours to gases and sol-
ids, respectively, cause lower oil yields for longer vapour 
residence times. However, it was shown that for vapour 
residence times between 1 and 5 s at temperatures of 
about 500 K, the loss of tar yield is only around 10%. 
By inducing incomplete depolymerization of lignin due 
to random bond breakage and macromolecule interaction, 
short volatile residence durations < 1 s have an impact on 
the biomass breakdown process, ultimately leading to a 
less uniform liquid product [100]. The operating pressure, 
which, when raised, results in a lower specific volume of 
volatiles and a longer intra-particle residence time that 
favours their breakdown while scaping the biomass par-
ticle, also has a substantial impact on the pyrolysis pro-
cess [101]. Additionally, this causes volatiles to be more 
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concentrated (under partial pressure), which accelerates 
the breakdown reaction rate via subsequent reactions. 
Greater pressures have been observed to result in higher 
char fractions [101]. It was also claimed that the chars pro-
duced under conditions of increased pressure led to higher 
yields of fixed carbon. This result is helpful in optimising 
biochars’ capacity for carbon sequestration [102].

Particle size, Shape, and Orientation

The pyrolysis process’s heat and mass transmission char-
acteristics are significantly influenced by particle size. The 
heat gradients are simply bigger for larger particles, and the 
fluid residence periods are long enough to promote second-
ary reactions. For external temperatures more than 800 K, 
the increasing particle size also decreases the liquid yields 
due to the activity of secondary processes, which increases 
gas yields [103]. Biomass size leads to a smaller char frac-
tion. However, experimental studies reported that there is no 
significant influence of the increase in particle size (0.7–17 
mm) on the product yields. However, it decreased the heat-
ing rate from 1000 to1.5 K/s; there was a marginal decrease 
in the liquid yields and around a 5% decrease in the gas 
yields with a corresponding increase in the char yields when 
the particle size was increased from 17 to 20 mm. Increasing 
the particle size also led to increase in the water content (40 
to 55 wt%) of pyrolysis liquid and a decrease in the carbon 
content (78.5 to 75 wt%) of the solid char product [89]. Par-
ticle shape also influences the pyrolysis process. Spherical 
particles have lesser char yield and conversion time when 
compared to slab-shaped and cylindrical particles. However, 
another study showed that spherical particles have the small-
est surface-to-volume ratio, leading to a slower rate of heat 
and mass transfer and higher conversion time in comparison 
to other spherical particles. At small particle diameters (typi-
cally less than 0.2 mm), the rate of reaction becomes domi-
nant, and the different particle shapes show nearly equal 
conversion times [103].

Grain orientation is an important parameter in biomass 
pyrolysis due to the anisotropic behaviour of biomass. The 
permeability of flow along the grains was 104 times that 
across the grain, and thermal conductivity along the grains 
was twice that across the grains [104]. The perpendicular 
grain heating decreased the tar yield with a corresponding 
increase in the char, water (dehydration reaction), and gas 
yields. They attributed this to lower thermal conductivity 
(almost one-third as compared to parallel or tangential grain 
direction) but not due to an increase in residence time owing 
to a reduction in porosity [87]. Branca and Blasi [105] pro-
posed that the secondary reactions occur to a larger extent 
for perpendicular grain heating as compared to parallel grain 
heating.

Reactor Configuration

Many reactor layouts have been investigated for the thermal 
breakdown of biomass in the absence of air. The medium 
used to transport heat from the reactor to the biomass par-
ticles during the decomposition process is the most signifi-
cant component affecting reactor choice. Heat transmission 
in the ablative kind occurs when biomass particles come 
into touch with the heated surface [100]. The pace of heat 
delivery to the reactor and the size of the biomass parti-
cles used in this process are also factors. Although the heat 
transfer gas or carrier gas is not necessary, it is difficult to 
heat biomass due to substantial heat losses. Getting extended 
residence durations for the biomass particles to enable high 
conversion, high char attrition, and high carbon carry-over 
into pyrolysis liquid products is the main problem of this 
arrangement [98]. Heat is transferred by direct contact with 
a heated surface during vacuum pyrolysis. Larger biomass 
particles and volatiles with short residence times are used in 
this procedure. However, this approach needs more sophis-
ticated equipment and has low heat and mass transmission 
rates. The circulating fluidized bed (CFB) employs a heat 
source, a fluidizing or carrier gas or solid, to heat the bio-
mass particles by convection as well as conduction. Because 
of its restrictions on heat transmission, this method cannot 
produce acceptable liquid yields with particles larger than 
roughly 3 mm [100]. The CFB configuration has some draw-
backs related to uneven biomass particle residence times, the 
need for solid recycling of partially reacted feed, the need 
for post-pyrolysis liquid treatment to reduce char content 
due to carryover, high char attrition, ash build-up in circu-
lating solids leading to the cracking of organic molecules in 
volatile products, and decreased pyrolysis oil yield [37]. The 
same method of heat transmission to biomass particles is 
used in a bubbling fluidized bed (BFB); however, convective 
and conductive heat transfer contributions vary. With a high 
concentration of desired compounds and a low carryover of 
char (micro-carbon) into the liquid product, this technique 
improves the quality of the pyrolysis oil. Additionally, there 
is a quick elution of char from the actor, lowering the likeli-
hood of volatile cracking [98].

Biomass Pre‑treatment

Before pyrolysis, the biomass feedstock often has to undergo 
some sort of pre-treatment. To improve the effectiveness of 
pyrolysis, the pre-treatment aims to alter or even destroy the 
lignocellulosic structure. Five main categories can be used 
to categorize biomass pre-treatment technologies: (1) physi-
cal (such as milling, grinding, and extrusion), (2) thermal 
(such as torrefaction, steam explosion/liquid hot water pre-
treatment, and ultrasound/microwave irradiation), (3) chemi-
cal (such as treatment with acids, bases, and ionic liquids), 
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(4) biological (such as fungal, microbial consortium, and 
enzymatic), and (5) above combined pre-treatments [106].

Physical Pre‑treatment

A common practice to simplify biomass feeding into reactors 
and enhance pyrolysis performance is milling or grinding 
the biomass into smaller particles. Given that most biomass 
is a poor conductor of heat, the biomass pyrolysis mecha-
nism will be influenced by the temperature gradient across 
the particle [107]. In general, smaller particles aid in the 
establishment of homogeneous temperature inside particles 
during pyrolysis, which increases the production of bio-oil 
by reducing the formation of char and subsequent cracking 
of vapours. The entire cost of the biomass pyrolysis process 
might be greatly raised by particle size reduction, which can 
be expensive [108]. The volumetric energy density of bio-
mass is increased, while the moisture content is decreased by 
extruding biomass under higher pressure to create biomass 
pellets, which typically have the shape of tiny cylinders. Xue 
et al. [109] found that the yields of char, gas, and char den-
sity rose with bigger particle diameters, while the yield of tar 
decreased. Additionally, mixed biomass resources could be 
utilized during pyrolysis procedures. Mixing pellets pyroly-
sis of pine (25%), fir (25%), wood and cotton (50%), or corn 
(50%) at 400–750 °C resulted in gas products with a genera-
tion of high CO and H2 and low CO2 contents and the gas 
heating value around 14–15 MJ/m3.

Chemical Pre‑treatment

The process of biomass pyrolysis is thought to be affected 
by the presence of inorganic minerals, particularly alkali 
(K, Na) and alkaline-earth (Mg, Ca) metal salts [110]. For 
instance, during the first pyrolysis of cellulose, K in the bio-
mass mineral matter catalytically promotes the synthesis of 
lower molecular weight molecules and inhibits the creation 
of levoglucosan. As catalysts, the cations cause the biomass 
monomers to fragment rather than depolymerize, favour-
ing char production and reducing bio-oil yields. The build-
up of salts on the inside walls of the reactor and pipeline 
also leads to corrosion and engineering challenges [111]. 
Additionally, the presence of ash in bio-oils impairs their 
subsequent uses and hastens the ageing process. The afore-
mentioned disadvantages can be remedied by lowering the 
ash level with water or acid washing. During the harvesting, 
transport, and storage of biomass, water washing is used to 
remove the dirt and minerals from the surface of the biomass 
particles. The biomass matrix will still include the structural 
minerals, though. Acid washing using HNO3 and HF can 
further lower the ash concentration [50]. Water washing, 
however, reduces char formation and boosts bio-oil output. 
The cellulose feedstock was pre-treated with phosphoric acid 

to increase the generation of levoglucosan and levoglucose-
none in the bio-oils. Concentrated acids, such as H2SO4, 
have occasionally been used to hydrolyse and solubilize the 
carbohydrates in biomass in order to remove the lignin, and 
alkaline solutions (e.g., NaOH) were employed to remove 
lignin, hemicellulose, and/or cellulose [106]. Ionic liquids 
are a class of recently discovered chemicals that can assume 
the form of/turn into liquids at temperatures below 100 °C 
and are mostly composed of organic cations and inorganic/
organic anions (especially at room temperature) [112]. They 
are considered green solvents having distinct physical and 
chemical properties such as low vapour pressure, high chem-
ical stability, and non-flammability [113]. Ionic liquids have 
found uses not only in catalysis, chemical synthesis, and 
engineering fluids but also in the deconstruction and dissolv-
ing of cellulose, hemicellulose, and lignin [114]. It has been 
used to pre-treat lignocellulosic biomass for the production 
of sugars from enhanced enzymatic hydrolysis of oil palm 
fronds [115]; renewable chemicals of vanillin, syringyl, and 
ally lguaiacol from eucalyptus, switchgrass, and pine respec-
tively [116]; levulinic acid from cellulose [117]; and biogas 
from improved anaerobic digestion of water hyacinth, rice 
straw, mango leaves, and spruce [118]. The thermal behav-
iour of biomass materials can also be altered once they have 
been pre-treated with ionic solutions. Zhang et al. [119] 
reported that after pre-treatment with 1-butyl-3-methylim-
idazolium acetate, the Avicel and switchgrass samples had 
greater heat resistance due to cellulose crystal modification 
and mineral removal, respectively.

Thermal Pre‑treatment

Prior to pyrolysis, biomass is dried to boost energy effi-
ciency and enhance the quality of bio-oil products. There 
are a variety of industrial dryers available for drying bio-
mass [120, 121] that are made to take the moisture out 
of the biomass while reusing the fugitive heat created 
during the heated pyrolysis process. The water content 
of the biomass is completely eliminated, and the oxy-
gen content is slightly decreased when the thermal pre-
treatment, also known as torrefaction, is carried out at 
temperatures between 200 and 300 °C [122]. Torrefied 
biomass is superior to untreated biomass in a number of 
ways. It has a greater energy density, better grind ability, 
reduced hygroscopicity when kept outdoors, reduces the 
danger of self-ignition and biological deterioration, and 
enhances feeding in the reactors [123]. Some breakdown 
processes start to occur during torrefaction, resulting in 
the formation of levoglucosan, CO, acetic acid, and CO2. 
According to Boateng et al. [124], torrefied hardwood and 
switchgrass pellets generate bio-oils with lower acidity 
and better energy density but lower liquid yield and car-
bon-to-oil conversion than oils from untreated biomass. 
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It has been found that torrefaction increases the H2 and 
CH4 concentrations of generated syngas while decreasing 
their CO2 content. In order to “explode” the biomass struc-
ture, steam explosion (SE) involves exposing biomass to 
saturated steam for a brief period of time at a temperature 
between 150 to 260 °C and a pressure of 1.5 to 5 MPa 
in a sealed vessel [125]. The physical characteristics of 
lignocellulose and the breakdown of carbohydrate bonds 
caused by SE change the behaviour of biomass pyrolysis 
and affect the qualities of the final product. In a study of 
the pyrolysis of willow chips following SE pre-treatment 
at 205 °C using thermogravimetric analysis at 10 °C/min, 
it was found that the treated material had enhanced cellu-
lose crystallinity. Hemicellulose breakdown became more 
active and migrated to a lower temperature area throughout 
this process, although cellulose and lignin saw an improve-
ment in thermal stability. In a further experiment, loblolly 
pine chips were pre-treated by SE (1.3 MPa and 173–193 
°C), and the pre-treated and untreated materials were then 
individually pyrolysed in a specialized auger reactor [124] 
[125]. The results revealed that the chips following SE pre-
treatment had higher cellulose and lignin levels while hav-
ing a lower hemicellulose content when compared to the 
untreated feedstock. A bio-oil product with viscosity (at 
40 °C) from 6.5 to 3.9 cSt, and water content from 20.8 to 
29.3%, was also produced by the SE pre-treatment. Simi-
lar to this, hot liquid water may be used to partially dis-
solve the hemicellulose in biomass feedstock, which helps 
to lower the amount of acetic acid present and stabilize 
bio-oils [124]. For pre-treating biomass, unconventional 
thermal methods, including ultrasound and microwave 
irradiation, are used. Ultrasonography’s main goal is to 
boost the production of biogas from the anaerobic diges-
tion of sludge, namely methane [126]. The lignocellulosic 
biomass has also been the subject of several investigations. 
Due to the cavitation effects, which might facilitate the 
movement of enzyme molecules and the opening up of the 
substrate’s surface, ultrasound aid can effectively speed up 
the enzymatic hydrolysis of cellulose in maize stover and 
sugar cane bagasse to produce sugars. In an investigation, 
it was shown that hemicellulose generated using ultra-
sonic aid had more linearity and less acidity than hemi-
cellulose produced by traditional KOH extraction [127]. 
Further research is required to determine how ultrasonic 
pre-treatment affects biomass pyrolysis. Nowadays, micro-
wave irradiation is a popular substitute for conventional 
heating of lignocellulosic biomass because it may produce 
“hot spots” in the biomass. Although pyrolysis of bio-mass 
with a microwave has been extensively researched [128]. 
The use of microwave irradiation to pre-treat biomass 
before pyrolysis is not well understood. Due to the inhi-
bition of secondary reactions during pyrolysis following 
biomass drying in a microwave oven, it was suggested that 

microwave drying at 600 W and for 6 min would increase 
the bio-oil and char yields. Performance demonstrated 
superior yields than standard electrical oven drying [129].

Biological Pre‑treatment

Physical and chemical pre-treatments are faster, while bio-
logical approaches have a better environmental impact and 
use less energy [130]. It has been demonstrated that pre-
treating lignocellulose with fungi before pyrolysis increases 
the performance of the reaction. To pre-treat the natural 
lignocellulose, white-rot fungus was chosen because it has 
the potential to selectively breakdown the refractory lignin 
component during pyrolysis. Three distinct white-rot fungus 
species (Pleurotus ostreatus BP2, Echinodontium taxodii 
2538, and Irpex lacteus CD2) were used in an experiment 
to biopretreat maize stover. After that, the thermal prop-
erties of the pyrolyzed corn stover were examined using a 
TGA instrument. The results demonstrated that this bio-pre-
treatment was capable of lowering the pyrolysis temperature 
by 1–35 °C and reducing the emission of hazardous SOx by 
reducing the sulphur content of the feedstock by 30–45%. 
Using ZSM-5 zeolite, Yu et al. [130] examined the rapid 
pyrolysis of maize stover that had been pre-treated with 
the white-rot fungus I. lacteus CD2. They found that the 
yields of useful aromatic products improved by 10%, and 
the deposition of unwanted coke on catalysts was reduced 
by 20%. Pre-treating lignocellulosic biomass using a micro-
bial consortium has often been employed to increase the 
generation of biogas. It uses certain bacteria that have been 
chosen from the environment’s natural resources to primarily 
destroy the cellulose and hemicellulose components [106]. 
The procedure can increase the methane output by 25% to 
about 100% and lasts for several hours to many days. Prior 
to its pyrolysis, lignin’s hydrolysis using enzymes has been 
suggested to increase the synthesis of aromatic phenols and 
hydrocarbons. The chars that were created also looked to 
have vesicles and to be quite porous [131].

Techno‑economic Assessment for Pyrolysis 
of Biomass

Few studies have looked at the techno-economic perfor-
mance of pyrolyzing biomass or petroleum waste, and even 
fewer studies have estimated the amount of energy that can 
be produced from the by-products of rapid pyrolysis or 
examined the conversion of bio-oil into transportation fuels. 
Patel et al. [132] used aspen hardwood to model a 2000-
MT/day plant in order to study the techno-economics of 
producing renewable gasoline and diesel. The second stage 
involved converting the bio-oil produced in the first stage 
into gasoline and diesel fuel using an alumina-supported 
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sulfidic nickel-molybdenum catalyst. It was determined that 
the expenses of manufacturing gasoline and diesel were 
$1.04 and $1.09 per litre, respectively. A 1-MT rice straw 
batch power plant was the subject of a comparative techno-
economic and environmental assessment. Similar to this, 
Shabazz et al. [133] modelled the techno-economic perfor-
mance of the pyrolysis of individual biomass components 
(holocellulose and lignin) and reported that the pyrolysis of 
lignin was more cost-effective and environmentally friendly, 
producing more biochar than the pyrolysis of hemicellu-
lose and cellulose components. The Iowa State University 
(ISU) reported technical and economic feasibility of the fast 
pyrolysis and hydro-processing of biomass which concluded 
that the pathway could produce cellulosic biofuels for a 
minimum fuel selling price (MFSP) of $2.11/gal [134]. The 
expanded work of this research was done by Brown et al. 
[134] by performing an updated techno-economic analysis 
of the fast pyrolysis and hydro-processing pathway. They 
have calculated the MFSP for a 2000 metric tonnes per day 
(MTPD) facility employing fast pyrolysis and hydro-pro-
cessing to convert corn stover to gasoline and diesel fuel 
to quantify the economic feasibility of the pathway. They 
reported the MFSP of gasoline and diesel fuel produced via 
fast pyrolysis and hydro processing to be $2.57/gal which 
indicates the competitiveness of the pathway with petro-
leum. Shabangu et al. [135] assessed the feasibility of the 
co-production of methanol and biochar from slow pyrolysis 
at 300 °C and 450 °C and gasification at 800 °C of pine 
to produce biochar and volatiles and the processing of the 
volatiles to produce methanol using process data for large-
scale conversions based on natural gas. They reported that 
from gasification, methanol could be generated at or below 
current prices of methanol produced from fossil fuel ($422/
tonne) from a plant size of 100 tonne/h upwards. Interest-
ingly, they did not find the pyrolysis as competitive without 
valuing the biochar as a product [135]. They found that their 
profitability is sensitive to the biochar selling price, with a 
break-even at a biochar price of about $220/tonne for the 
pyrolysis at 300 °C and about $280/tonne for pyrolysis at 
450 °C. The comparison of capital and operating cost for 
six near-term biomass-to-liquid fuel technology scenarios 
representing three conversion platforms: pyrolysis, gasifica-
tion, and biochemical were reported in which the feedstock 
is assumed to be corn stover and plant capacity was 2000 
tonne/day for each plant [134]. It was found large differences 
in the total capital investments required among the three 
platforms, and the stand-alone biomass-to-liquid fuel plants 
were expected to produce fuels with a product value in the 
range of $2.00–5.50 per gallon ($0.53–1.45 per litre) gaso-
line equivalent, with pyrolysis the lowest and bio-chemical 
the highest in which the relatively high production values 
were driven primarily by an assumed feedstock cost of $75 
per dry tonne and the cost of capital for the plants [132]. 

They have reported that by taking into account increased 
capital costs and decreased plant performance associated 
with first-of-a-kind plants, increases estimated product val-
ues to $2.00–12.00 per gallon ($0.53–3.17 per litre) gas-
oline-equivalent. Similarly, six types of commercial-scale 
pyrolysis and co-pyrolysis plants for rice straw (RS) and 
waste tire (WT), with a capacity of 20 tonne/h, have been 
modelled by Khan et al. [136] based on experimental data in 
which the capital investment of plants ranged between $17.0 
and $19.9 million with Plant A (RS only) having the lowest 
and Plant E (20% RS and 80% WT) having the highest value. 
They have found that the operating cost was the lowest for 
Plant A and highest for Plant F (100% WT) due to the pro-
curement cost of WT, and Plant E was the most economical 
alternative with the highest gross margin, highest net present 
value, and lowest payback time of 7.06%, $ 5.63 million, and 
6.23 years respectively. Jaroenkhasemmeesuk et al. [137] 
analysed the production and energy consumption of bio-oil 
production based on a small biomass pyrolysis plant (capac-
ity of 20–30 dm3 of bio-oil per day) by carrying out the 
calculation on mass and energy balance to assess the perfor-
mance and improve process design. They have found that the 
operation cost of crude bio-oil production was about 30–35 
Thai baht (THB) per dm3 which implies the excessively high 
operating cost of the fast pyrolysis units. The bio-oil produc-
tion cost was estimated to be about 30–35 THB per dm3. The 
estimated crude bio-oil price from other plants was 15–20 
THB per dm3 for the 100 kg/h plant [137]. The capacity 
of the plant affected production costs directly. Their results 
showed that when the sale of the project reaches 86.5% of 
the predicted value, the payback period of the plant is about 
7.5 years, which is much shorter than the operational life. 
Unfortunately, the sale of the bio-oil has not yet reached 
the expected point. Figure 5 shows the break-even analysis 
for the pyrolysis plant. A breakeven point is based on the 
projection proceeds of sale and expected proceeds of sale 
after upgrading. Even though the operation cost of bio-oil 
with upgrading will increase, higher proceeds of the sale will 
reduce the production capacity to 66.5% [137].

Oudenhoven et al. [138] evaluated the technical and eco-
nomic feasibility of pyrolysis of pinewood, bagasse, and straw 
by considering a plant of biomass capacity of 5 to 50 tonne/h 
in which the target products were heating oil and/or additional 
pyrolytic sugars. They have reported a very sensitive eco-
nomics approach to the plant scale, capital cost, and biomass 
price. They also found that the production of heating oil and 
sugars from bagasse at a biomass scale of 50 tonne/h is the 
most economical option. The techno-economic performance 
analysis of biofuel production and electric power generation 
from fast biomass pyrolysis and bio-oil hydro processing was 
done by Shemfe et al. [139] through process simulation by 
considering a process model of 72 MT/day pine wood fast 
pyrolysis and bio-oil hydro-processing plant. They have found 
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from the simulation results that 1 kg/s pine wood generated 
0.64 kg/s bio-oil, 0.22 kg/s gas, and 0.14 kg/s char. They also 
reported that the energy required for drying and fast pyrolysis 
operations could be provided from the combustion of pyrolysis 
by-products, mainly char and non-condensable gas, with suf-
ficient residual energy for miniature electric power generation. 
They found that about 0.24 kg/s of gasoline and diesel range 
products and 96 W of electric power can be produced from 
1 kg/s of pine wood. The effect of initial bio-mass moisture 
content on the amount of electric power generated and the 
effect of biomass feed composition on product yields was also 
reported in this study [139]. They estimated from discounted 
cash flow analysis assuming the plant operates for 20 years at 
a 10% annual discount rate, that the plant would require £16.6 
million of capital investment and product value estimated to 
be at £6.25/GGE (gasoline gallon equivalent).

Since the majority of pyrolysis plants are currently not 
operating on a commercial scale, it is crucial to evaluate 
the techno-economic viability of pyrolysis biofuel produc-
tion in comparison to conventional petroleum fuels [138]. 
Few studies have used a process simulation platform to 
undertake a techno-economic analysis of the fast pyrolysis 
process and bio-oil hydroprocessing for the manufacture 
of transportation fuels. In order to assess the production of 
hydrocarbon biofuel from a 2000-MT/day plant of hybrid 
poplar wood chips, Jones et al. [140] undertook a design 
case study in 2009. A capital expenditure of US$303 million 
with a minimum fuel selling price of US$2.04 was projected 
in their assessment. Wright et al. [141] conducted another 
techno-economic analysis on a 2000-MT/day of corn Stover 
fast pyrolysis plant and subsequent bio-oil upgrading via 
hydrotreating and hydrocracking processes to determine 

fuel product value and capital costs. In order to evaluate the 
techno-economic performance of the process, a 72-MT/day 
fast pyrolysis plant for pine wood and subsequent bio-oil 
hydro processing are modelled using rate-based chemical 
processes [139]. Fast pyrolysis (FP) and hydro processing 
were found to be the most economically feasible of the three 
cellulosic biofuel pathways. Despite the significantly higher 
capital and operating costs involved, techno-economic analy-
ses suggest that using bio-oil as a feedstock for the produc-
tion of renewable hydrocarbon fuels and chemicals is the 
most economically viable use of the substance. However, 
this is dependent on input costs and output values.

Discussions and Future Outlooks

Biomass thermochemical conversion has made considerable 
use of analytical pyrolysis. The three most popular kinds of 
micro-pyrolysers are Curie-point, filament, and micro-furnace 
models. Micro-pyrolysers may be used to analyse solid, liquid, 
and gas samples and have several analysis modes, such as 
pyrolysis mode, EGA mode, and offline mode [29]. Analytical 
pyrolysis has been used to study biomass pyrolysis, includ-
ing non-catalytic pyrolysis, in situ catalytic pyrolysis, ex situ 
catalytic pyrolysis, and hydropyrolysis. Analytical pyrolysis, 
which defines pyrolysis, is a potent tool for enhancing reac-
tion conditions. It is critical to assess the techno-economic 
viability of pyrolysis biofuel production in comparison to tra-
ditional petroleum fuels because the bulk of pyrolysis facili-
ties is not currently functioning on a commercial scale. The 
impact of the equipment’s lifetime and analytical precision 
restricts its applicability in studies of oxidative pyrolysis, 

Fig. 5   Break-even analysis. 
“Reprinted from Technical 
and Economic Analysis of A 
Biomass Pyrolysis Plant, 79, 
Chawannat Jaroenkhasem-
meesuk and Nakorn Tip-
payawong, Energy Procedia, 
950-955, 2015, with permission 
from Elsevier” [137]
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gasification, and solvent liquefaction. Given the potential for 
turning agricultural waste, wood waste, and municipal solid 
waste into clean energy, the pyrolysis of biomass deserves 
a lot of studies [132]. Based on the anticipated product out-
put, this study determined the pyrolysis technological path, 
including the choice of pyrolysis operating modes, reactor 
types, etc. (bio-oil, bio-char or syngas). However, the potential 
of the pyrolysis products may be realized with a solid grasp 
of the underlying process. The application scope of analyti-
cal pyrolysis systems may be expanded by the variable usage 
of pyrolysis modes. The temperature-programmed pyrolysis 
mode and the stepwise pyrolysis mode can be used to explore 
the impact of heat treatment conditions on the physical char-
acteristics of precious materials because only a small number 
of samples are needed. Currently, the discipline of pyroly-
sis is where analytical pyrolysis has been used the most. By 
adjusting the configuration of micro-pyrolysers, such as the 
sampling technique, the combined configuration of the cata-
lytic system and the carrier gas system, and the method of 
product collection and analysis, analytical pyrolysis can be 
applied to more fields. An analytical pyrolysis device may be 
used to examine biomass solvent liquefaction by adding the 
solvent and sample to a specifically made sample cup. Purg-
ing in the analytical pyrolysis system with an inert carrier 
gas at a high split ratio can mitigate the impact of residual 
oxygen and water in the combustion products on the column 
in biomass combustion experiments. Some micro-pyrolysers’ 
designs allow for the construction of several pyrolysis zones 
with various carrier gases, which may be used to explore how 
various atmospheric conditions affect the pyrolysis process 
[75]. The breakdown of biomass by UV and visible light is a 
significant issue that needs in-depth research. Studies examin-
ing the characteristics of material degradation by UV are use-
ful for combining analytical pyrolysis with UV pre-treatment. 
Using an analytical pyrolysis system, it is feasible to examine 
biomass solvent liquefaction by adding the solvent and sam-
ple to a sample cup that has been particularly made for the 
purpose. For investigations on biomass combustion, purging 
the analytical pyrolysis system with an inert carrier gas at a 
high split ratio can minimize the impact of any remaining 
oxygen and water in the combustion products on the column. 
One way to explore the impact of various atmospheres on the 
pyrolysis mechanism is to configure distinct pyrolysis zones 
with various carrier gases using the design of some micro-
pyrolysers. An important issue that needs in-depth research 
is the destruction of biomass by UV and visible light. Studies 
investigating the UV material degrading qualities can benefit 
from combining analytical pyrolysis with UV pre-treatment 
[19]. Torrefaction and hydrothermal pretreatment of biomass 
might be a way to improve its physicochemical properties, 
which could increase its conversion efficiency, reduce the 
creation of coke, and boost the generation of aromatic com-
pounds during the catalytic pyrolysis of biomass. For instance, 

cellulose content and physicochemical features of biomass, 
such as fewer oxygenated chemicals and high heating value, 
can be improved by torrefaction to provide bio-oil with low 
oxygenated compounds, low acidity, high energy content, 
and high monoaromatic hydrocarbons [75]. Crystalline cel-
lulose may be created by hydrothermal treatment, which also 
removes alkali and alkaline metals, particularly K and Na met-
als, which creates an ideal environment for the synthesis of 
aromatic compounds.

However, significant attempts have been undertaken to cre-
ate a viable bio-oil usage strategy. Bio-oil still has a hard time 
finding useful commercial use. The product stream is more 
intricate when compared to many other methods. Because pyro-
lytic oil cannot be used directly in IC engines, further expensive 
upgrading is required [142]. It is feasible to examine biomass 
solvent liquefaction using an analytical pyrolysis system by 
introducing the solvent and sample to a sample cup that has 
been particularly made for the purpose. Purging with an inert 
carrier gas at a high split ratio in the analytical pyrolysis sys-
tem may be used to conduct biomass combustion experiments 
without having to worry about the column being impacted by 
residual oxygen and water from the combustion products. The 
architecture of certain micro-pyrolysers allows for the forma-
tion of several pyrolysis zones with various carrier gases, which 
can be useful for researching the effects of various atmospheric 
conditions on the pyrolysis process. It is necessary to research 
in depth the phenomena of biomass breakdown by UV and 
visible light. Studies examining the characteristics of materials 
degrading under UV light can benefit from combining analyti-
cal pyrolysis with UV pre-treatment.

Conclusion

This work investigated the process of biomass pyrolysis 
for energy recovery in the form of oil, gas, and char by 
thoroughly analysing its different process parameters and 
techno-economic aspects. It also discusses the advantages 
as well limitations of the current biomass pyrolysis pro-
cess. Different feedstock has a different potential to give 
useful end products based on their physical and chemi-
cal constituents, which have been shown in Table 3. Very 
few analyses on the economy of biomass pyrolysis have 
been done to date, research on which can give a boost in 
this field in economic conversion processes. Based on the 
discussion that has just taken place, we can conclude that 
energy can be easily recovered through pyrolysis in the 
form of oil, gas, or any other valuable solid products, so 
long as the potential feedstock and input variables that are 
essential for the desired output are identified. The working 
methods are also essential for achieving this aim. We must 
consider each of these factors to get the desired outcome 
during pyrolysis.
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