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Abstract
With the ever-increasing environmental concerns and the rush to meet the United Nations’ sustainable development goals, 
it is an uphill task to find a single source of energy that may completely replace fossil fuels. Energy derived from biomass 
is an attractive alternative to transportation fuel along with electricity and heat generation. The bioenergy from agricultural 
biomass, food crops, forest residue, algae, and municipal waste can also allow sustainable waste management. However, 
most bioenergy conversion facilities are still in the research or pilot stage and have many technological and economical 
limitations. This critical review provides an insight into different recourses of biomass, bioenergy conversion routes, and 
other challenges to biofuel production. An attempt has been made to elucidate the novel technological advancements made 
in these processes like bio-chemical looping combustion, torrefaction, and photo- and dark fermentation. The integration of 
these systems with artificial intelligence and machine learning-based modeling and optimization is also discussed to bring 
insight to alternate advancement routes. A comparison of the conversion methods is attempted to bring insight into the 
feasibility, sustainability, and advancement of bioenergy production and its commercialization.
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Abbreviations
1G  First generation
2G  Second generation
3G  Third generation
4G  Fourth generation
AI  Artificial intelligence
ANN  Artificial neural network
ATP  Adenosine triphosphate
BIG/CC  Biomass integrated gasification with combined 

cycle
CLC  Chemical looping combustion
CLG  Chemical loop biomass gasification
CSIR  Council of Scientific & Industrial Research
EDP  Entner-Doudoroff pathway
EMP   Embden-Meyerhof pathway
FT  Fischer-Tropsch
GHG  Greenhouse gas
IEA  International Energy Agency

LFG  Landfill gas
LHV  Lowest heating value
MMT  Million metric ton
ML  Machine learning
PPP  Pentose-phosphate pathway
SCWG   Supercritical water gasification
SSCF  Simultaneous saccharification and 

co-fermentation
SSF  Simultaneous saccharification and fermentation

Introduction

Coal, natural gas, petroleum products, and petrochemicals 
have been an ingrained part of human existence for over two 
centuries, driving the industrial revolution and all other sub-
sequent technological innovations. However, concerns over 
the environment and climate changes have forced human-
kind to look for alternate energy resources. The Paris Energy 
Agreement in 2015, and the Sustainable Development Goals 
implemented by the United Nations General Assembly in 
2015, established a framework for global cooperation in 
identifying and implementing a reliable, economical, and 
sustainable renewable energy source by 2030 [1]. With this 
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framework, the uphill task is to identify energy sources to 
meet the household, industry, and transportation energy 
requirements of the world at an affordable price. Table 1 
provides a glimpse of the total primary energy supply in 
2017 globally and by the top five major energy-supplying 
countries as reported by the International Energy Agency 
(IEA) [2, 3].

It is quite interesting to note that in the current race to 
identify the most economical and efficient renewable energy 
resources, biofuels and biomass waste are one of the front-
runners, with a ~ 11% contribution, along with solar, wind, 
and hydropower as can be seen from Table 1. Also, inter-
estingly, India contributes around 21% of the total energy 
supply from biomass and waste. It is not a surprising figure 
as India generates 960 million tonnes of solid waste every 
year and 680 million people in India rely on biomass waste 
for traditional cooking [3, 4]. However, currently, a negli-
gible amount of the biomass waste produced in India con-
tributes to electricity generation or as a transportation fuel 
[3]. In China, currently, 3.7% of energy from biomass and 
waste comes from 650 million tonnes of coal equivalent of 
biomass waste being produced every year which contrib-
utes to 13% of electricity generation [5]. It is quite apparent 
that with the new energy policies and mandates in place, 
renewable energy is slowly picking up the pace; however, 
the major chunk of the total world’s energy supply (~ 81%) 
is still being provided by fossil fuel.

Biomass as a potential energy source has its major advan-
tages in its global availability and ease of storage. It can 
also contribute toward all the commercial energy require-
ments like heat, electricity, and transportation fuel [6–12]. 
Nevertheless, traditional biomass has some major challenges 
which require immediate attention for it to become commer-
cially viable. There is a lack of global standards, monitoring, 
and regulation for biofuel production with a certification 
of biomass origin and sources [8, 13, 14]. Due to multiple 
sources, there is always variability in biomass quality, com-
position, and properties, leading to variable product quality. 

The biomass (both agricultural and waste) collection, seg-
regation, and transportation are a huge problem leading to 
uneven supply [8, 15, 16]. Furthermore, most of the bioen-
ergy conversion technologies being developed are still in 
their nascent stage. Major technological interventions toward 
pre-treatment of lignocellulosic biomass, improving energy 
efficiency, and reducing the cost of production are required 
[17, 18].

Biomass to bioenergy conversion is a well-reviewed topic. 
Numerous reviews and journal articles have been published 
to elucidate the technologies and their limitations; however, 
most of these papers are specific to a type of conversion 
technologies. Also, very few review articles include more 
novel technologies like dark and photo-fermentation, bio-
CLC, and torrefaction along with the traditional methods 
and analyze their feasibilities and challenges. Furthermore, 
an attempt has been made to understand the applicability 
of AI/ML-based modeling, simulation, and optimization to 
these processes to improve process design, productivity pre-
dictions, and biomass supply chain. The paper also strives to 
understand the feasibility of these processes based on econ-
omy, ease of operation, and scale-up and provide possible 
solutions to some of the existing challenges. This review is 
an attempt to bring the entire biomass to bioenergy conver-
sion technologies, their prospects, challenges, and feasibility 
from feed to product in one framework.

Biomass as Feedstock and Classification 
of Biofuels

Biomass as a feedstock is as varied as its source. Bio-
mass derived from agriculture or plant residues is rich in 
cellulose, hemicellulose, and lignin with varying percent-
ages, whereas animal residues are mostly comprised of 
proteins, and cereals are composed of starch [19]. The bio-
mass source from plants contains primary metabolites and 
secondary metabolites. The primary metabolites are lignin 

Table 1  The total primary 
energy supply by fuel in the 
world and the top five countries 
based on total primary energy 
supply in 2017 [2, 3]

1 Mtoe, million tonne equivalent of oil
2 World Energy Balances Overview (2019)
3 India 2020 Energy Review Policy (2020) by International Energy Agency

Oil Natural 
gas

Coal Nuclear Hydropower Biofuels 
and waste

Wind/solar Total (Mtoe)1

World2 31% 22% 37% 5% 2% 11% 2% 13972
China2 18.7% 6.5% 64.0% 2.1% 3.2% 3.7% 2.3% 3063 (22%)
USA2 37.4% 32.7% 14.7% 10.2% 1.2% 5.0% 2.1% 2155 (16%)
India3 25.3% 5.8% 44.3% 1.1% 1.4% 21.2% 0.8% 882 (6%)
Russian 

 Federation2
21.0% 53.1% 15.5% 7.3% 2.2% 10.7% 0.02% 732 (5%)

Japan2 38.7% 22.5% 26.6% 3.9% 1.7% 3.3% 2.1% 432 (3%)

684



BioEnergy Research (2023) 16:683–716

1 3

and carbohydrates (cellulose, hemicellulose, starch, etc.), 
which form the base of biofuels and the secondary metabo-
lites are gums, resins, rubber, terpenoids, steroids, triglyc-
erides, etc. that can be used to produce value-added chemi-
cals like food flavors and pharmaceuticals [8, 20–23]. The 
physicochemical properties of the biomass like cellulose/
lignin ratio, ash content, moisture content, calorific value, 
fixed carbon to volatile matter ratio, alkali metal content, 
and bulk density play key roles in identifying the biomass 
feedstock to be used for a certain form of bioenergy [17, 
19, 24–26]. Each of these properties provides information 
about the quality of the fuel produced. If ash content in 
biomass is high, it means that the proportionate fuel pro-
duced will be low. A high calorific value indicates high 
heat release from fuel burning [17, 24]. High cellulose to 
lignin content indicates reduced pretreatment requirement 
for lignin removal and ease of conversion processes [24, 
27]. Low carbon to volatile matter ratio means more ease 
of burning and high alkali metal content leads to process-
ing problems [17, 24]. These properties also decide which 
technology will be employed for the conversion of biomass 
to fuel. For example, for high-moisture content, biomass 
like sugarcane is a better fit for aqueous conversion like 
fermentation into bioethanol, whereas dry biomass like 
wood is better suited for gasification or thermal conversion 
into bio-methanol. Similarly, if the cellulose to lignin ratio 
in biomass is low, then they are less suited for biochemical 
processes as the biodegradability of lignin is low com-
pared to cellulose [17, 24]. Table 2 describes the chemical 
compositions of distinct groups of biomass feedstocks.

To better understand the source, composition, and 
application of the biomass, it can be classified into distinct 
groups based on (a) source of the feedstock, (b) vegetation 
type and (c) use and application. However, Tursi in his 
paper accepted that “there is no definite way of catego-
rizing the biomass so they can be classified differently 
depending on the purpose and scope” [19]. The details 

of each of the below classifications are shown in Fig. 1a, 
b, and c.

Woody biomass is currently the most used source of 
energy (~ 30 EJ) as traditional wood burning for cooking 
and space heating is prevalent [19, 28, 30]. This mode of 
energy extraction is also leading to major environmental 
challenges globally [3, 31]. The agricultural residues are a 
reliable source of energy; however, their availability is var-
ied across regions and is not well monitored and controlled. 
Aquatic biomass like algae on the other hand is an ideal 
source of biomass for biodiesel production as their produc-
tivity is higher compared to terrestrial crops and they do not 
compete with food crops [19, 28, 32–37].

Biofuels from biomass can be categorized into primary 
and secondary biofuels. The primary biofuels are used 
unprocessed for cooking and heating like firewood, wood 
chips, and pellets [20, 38, 39]. The secondary biofuels are 
further classified into (i) first-generation biofuels (1G), 
(ii) second-generation biofuels (2G), (iii) third-generation 
biofuels (3G), and (iv) fourth-generation biofuels (4G), 
based on the type of raw materials used and the techniques 
employed for their production. The classification of biofuels 
and details can be seen in Fig. 2. The first-generation bio-
fuels are established processes, produced from starch, and 
sugar-based food crops by the process of fermentation or 
transesterification of vegetable oils, residue oils, and fats. 
However, they compete for land and water with food and 
have high production and processing cost [20, 40]. Around 
2% of the agricultural land is used for biofuel edible feed-
stock which can feed half the current population of the 
world. This competition with the source as food and biofuel 
is predicted to increase the market price of these feedstocks 
and thus the need for second-generation biomass [41–43]. 
A comparison of all four generations of secondary biofuels 
is given in Table 3.

The second-generation biofuels are lignocellulosic, which 
are derived from dry products of agricultural wastes, and 
industrial and forest residues [20, 29, 40, 47]. Annually 

Table 2  Chemical compositions 
of different biomass feedstocks 
[19, 28]

Wood and 
woody bio-
mass

Herbaceous 
biomass

Aquatic biomass Animal and 
human residue

Mixed biomass

Fixed carbon (%) 6–25 9–35 22–33 12–13 1–15
Volatile matter (%) 30–80 41–77 42–53 43–62 41–79
Moisture content (%) 5–63 4–48 8–14 3–9 3–38
Ash content (%) 1–8 1–19 11–38 23–34 3–43
Carbon (%) 49–57 42–58 27–43 56–61 45–71
Oxygen (%) 32–45 34–49 34–46 21–25 16–46
Hydrogen (%) 5–10 3–9 4–6 7–8 6–11
Sulfur (%)  < 1  < 1 1–3 1–2  < 1–2
Nitrogen (%)  < 1  < 1–3 1–3 6–12 1–6
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approximately, 5 to 8 million tons/year of lignocellulosic 
biomass get generated as forest and agricultural residue. 
Thus, their abundant availability makes them an attrac-
tive feedstock for bioenergy production [40, 59–61]. The 
USA and European Union have proposed many projects 

for lignocellulosic-based biofuels as an initiative to move 
from a fossil fuel-based economy to a more sustainable 
one [62]. The lignocellulosic biomass consists of cellu-
lose (~ 40–50%), hemicellulose (~ 25–30%), and lignin 
(~ 15–25%) [63]. Because of the presence of lignin, the 

Fig. 1  a The classification of 
biomass feedstock based on the 
source of feedstock [20, 29]. 
b Classification of biomass 
feedstock based on vegetation 
type [19]. c Classification of 
biomass feedstock based on use 
and application [8]

(a)

(b)

(c)

BIOMASS FEEDSTOCK

Vegetable/Crops

Starch sugar 
crops

Food 
grain

Sugarcane

Potato

Corn

Aquatic 
plants

Sea 
weeds

Algae;          
Phytoplankton

Oil seed 
plants

Palm; 
Rapeseeds; 
Jatropha

Wood Grass

Switch 
grass

Residues/
Wastes

Agriculture 
waste

Rice Straw/ 
Wheat straw

Bagasse

Corn 
Strove

Forest waste

Saw Dust

Pulp/ Leaves

Thinned wood

Industrial 
waste

BIOMASS FEEDSTOCK

Wood & Woody Biomass

Coniferous / 
Deciduous; Stems; 
Branches; Foliage; 
Bark; Chips/ Pellets/  
Briquettes; Sawdust 

Herbaceous 
Biomass

Grasses; 
Straws; 
Agricultural 
residue; Oil 
seeds; Crops

Aquatic Biomass

Marine/ 
Freshwater Algae; 
Macroalgae; 
Microalgae; Sea-
weed; Lake-weed

Animal & 
Human 
Waste

Bones; 
Manure

Biomass 
Mixture

BIOMASS FEEDSTOCK

Oils -
Transportation fuel

Jatropha; Palm; 
Rapeseed; Maize; 
Soybean; Cameline

Sugar & Starch -
Tansportation fuel

Sugarcane; 
Sweet sorghum; 
Maize/ Corn; 
Small grain

Lignocellulosic -
Transportation fuel & 

Heat/ Power
Perrenial grass; 
Cereal straw; 
Sugarcane bagasse; 
Short rotation crop

Waste & Residue -
Transportation fuel 

& Heat/ Power

Fluegas; 
Municipal waste; 
Forest Residue; 
Used oil

Fig. 2  Classification of biofuels 
based on the source of biomass 
and process of production [19, 
20, 29]

BIOFUELS

Primary biofuels

Fire wood

Wood 
chips

Pellets

Secondary Biofuels

First-Generation 
Biofuels (1G)

Produced 
from food, 

crops, 
sugar, 
grains, 

seeds etc.

Second-Generation 
Biofuels (2G)

Produced from 
lignocellulosic 

feedstock (cereal-
straw, sugarcane 
bagasse, forest 

residues), municipal 
solid wastes, 

grasses, energy 
crops

Third-Generation 
Biofuels (3G)

Produced from 
microscopic 
organisms 

(microalgae, 
phytoplanktons
, macro-algae) 

Fourth-Generation 
Biofuels (4G)

Produced from 
genetically 
modified 

micro/ macro 
algae
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lignocellulosic biomass requires extensive pre-treatment 
before it can be processed into biofuels [64–67]. Biochemi-
cal, thermochemical, and hybrid processes like pyrolysis, 
thermochemical liquefaction, and torrefaction are a few 
conversion technologies employed to convert the lignin-
cellulose-based biomass to biofuels [68, 69]. These meth-
odologies are also known to have a higher yield compared to 
simple fermentation but at a higher cost due to the pre-treat-
ment required for the feedstocks [49, 66]. Moreover, second-
generation biofuels also require extremely high consumption 
of energy for the entire conversion process [66, 70, 71].

The limitations of the 1G and 2G biofuels led to the 
exploration of the third-generation biofuel feedstocks like 
microalgae, macroalgae, and phytoplankton [20, 40, 72–74]. 
Algae as a fuel source have proven to be lucrative due to 
its high cultivation rate, productivity, and ability to seques-
ter carbon dioxide faster [32]. Also, they can be cultivated 
in moist land or wastewater [75]. Few microalgae species 
like Botryococcus braunii, Dunaliella salina, and Chlorella 
spp. contain 70–80% lipid (dry weight basis) which can be 
easily converted into useable biofuels using biochemical or 
thermo-chemical processes [32, 73, 74]. However, the lipid 
produced is sometimes highly volatile which affects the sta-
bility of the oil [76–78]. Also, the processing of the algal 
biomass requires a large input of energy, for drying of the 
algae as well as for the oil extraction and processing which 
leads to negative energy gain [44, 77, 79–81].

The fourth-generation biofuels concentrate on genetically 
modifying the microalgae to better sequester carbon dioxide 
and produce more lipid and oil [82, 83]. These biofuels also 
enable the integration of the algal generation process with 
wastewater treatment or flue gas utilization [84]. Both the 
3G and 4G biomass feedstocks provide a sustainable source 
for biochemicals that can be converted into high-value food 
products, biochemicals, and biofuels [85, 86]. However, sci-
entists are also skeptical regarding the environmental reper-
cussions of genetically modified algal productions [58, 84, 
87]. Table 5 provides a comparison of biofuel productivity/
yield from different generations of biomass. It is evident 
from Tables 3 and 4 that second, third-, and fourth-genera-
tion biofuels provide better possibilities of being developed 
into a sustainable source for bioenergy and other value-
added bioproducts compared to first-generation biofuels.

Energy from Biomass — Conversion 
Technologies

The process of conversion of biomass to biofuel, heat, 
chemicals, and electricity depends vastly on the origin of 
the biomass feedstock. A biorefinery is a facility that inte-
grates all these processes to produce value-added products 
from biomass feedstock and wastes [19, 20, 65, 86, 97–101]. 
The biorefineries can be three types, based on the type of 

Table 3  Prospects and shortcomings of different generations of secondary biofuels

Prospects Shortcomings

First-generation biofuels
  • The process is widely commercialized [41]
  • Contributes to about 50 billion liters of the total biofuels produc-

tion per year [44]
  • Reduced greenhouse gas (GHG) emissions by 45–65% [45]
  • Comparatively less expensive [40]

• Competition with food for land and water
• The threat to food security problems may lead to an increased market 

price [41]
• Excessive usage of fertilizers may cause land pollution [46]

Second-generation biofuels
  • No competition with food for land and water and no harmful 

effect on food security [47]
  • Waste biomass is used for bioenergy thus better waste manage-

ment
  • Reduces GHG emissions by 50–70% [48]

• High cost of the biofuel conversion process and expensive biofuel [49, 
50]

• Pre-processing of lignocellulosic biomass is expensive and difficult to 
scale up [50, 51]

• High energy consumption during processing
• Commercialization of the process is a challenge [52]

Third-generation biofuels
  • No competition with food and animal fodder for land and water 

[40]
  • Micro-/macroalgae can grow in arid land and wastewater [53]
  • Higher productivity and increased  CO2 sequestration rate [32]
  • High lipid/oil content [53, 54]

• Biomass cultivation and oil production is yet not commercialized [32]
• Standalone algal biorefinery may not be sustainable
• The processing cost of lipid extraction is high [55]
• The cost of the biofuel derived from microalgae is high [56]

Fourth-generation biofuels
  • Genetically modified algal species with improved lipid content, 

growth rate, adaptability to the poor environment, and higher 
 CO2 sequestration ability [57]

• The process is still being researched [57]
• The environmental effects of the genetical modifications in micro-/

macroalgae are yet to be understood [40]
• The cost of processing and production may be high [58]
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feedstock as well as the flexibility or ease of operation [86, 
102, 103].

1. The first kind utilizes dry grain as feedstock to produce 
bioethanol, dried distiller grain, and carbon dioxide in a 
fixed processing capacity [86, 102, 103].

2. The second type of biorefinery produces starch, high 
fructose syrup, ethanol, carbon dioxide, etc., using dry 
grain feedstock but with a much more flexible process-
ing capacity [86, 102, 103].

3. The third type of biorefinery is advanced and uses mixed 
feedstock [97, 102]. They are based on high-value low 
volume and low-value high volume output principles 
and produce various fuels and value-added products by 
using a combination of technologies [97, 98, 102]. Lig-
nocellulosic biomass refineries, algal-based biorefiner-
ies, waste biomass-based refineries, green biorefineries, 
intergraded biorefineries, etc. are a few examples of this 
type. The pre-treatment required for the processing of 
these biomasses and their conversion methodologies are 
complex and expensive but hold immense potential for 
sustainable bioenergy generation and bioeconomy [86, 
99, 102–106].

Green biorefineries use natural wet feedstocks like grass, 
green plants, or green crops [97, 102]. These refineries are 

primarily treating the first-generation biomass for bioetha-
nol production via fermentation, digestion, or esterification 
processes [97, 98, 102].

The lignocellulosic biorefineries can be developed into 
a sustainable production route for bioproducts as well as 
biofuels by process integration of various technologies [86, 
101, 107–111]. Processes like extractive distillation with 
ionic liquids, adsorption with molecular sieve and biobased 
adsorbents, nanofiltration, extractive fermentation, and vac-
uum membrane distillation are a few advanced technolo-
gies that hold huge potential for the future of lignocellulosic 
biorefineries [102, 107, 108, 110, 112]. Critical analysis of 
lignocellulosic refineries shows that though they provide 
clean energy with sustainable agricultural development, 
they require high capital investments with an equally high 
operating cost [110].

Algal biorefineries which are based on third and advanced 
fourth-generation biomass require lower land and have 
higher productivity compared to lignocellulosic biorefin-
eries [86, 89, 113–116]. However, very few biorefineries 
have been established with just algal biomass as the primary 
feedstock and are limited to extracting primary bioproducts 
[80, 86, 115, 116]. Nonetheless, research shows that more 
suitable technological developments and process integra-
tions (like with wastewater treatment) will allow sustain-
able development in algal biorefineries [34, 80, 116–120].

The waste biorefineries use non-edible biomass and bio-
genic waste as the feedstock to sustainably convert them 
into biochemical, biopolymers, and biofuels [86, 104, 121]. 
This allows recycling and reusing of the waste as well as 
better waste management which is slowly becoming a global 
problem [86, 104, 122, 123]. To allow better conversion of 
waste to value-added bioproducts, proper characterization of 
the waste is required in synergy with the process of conver-
sion [86, 124, 125]. Several types of waste like food waste, 
municipal solid waste, lignocellulosic waste, paper waste, 
and manure are being researched as a possible feedstock for 
waste refineries [64, 86, 104, 123, 126–131].

The biomass to biofuel conversion technologies employed 
for different generations of biomass and their products for 
several types of biorefineries are given in Fig. 3. The con-
version technologies require an in-depth understanding of 
chemistry, pre-processing technologies, production tech-
nologies, conversion processes, economics, scale-up, and 
environmental effects, and policies to be developed into a 
large-scale commercialized biorefinery process [97, 98, 108, 
112].

Biochemical Conversion Methods

The biochemical conversion methods are used to con-
vert sugar, starch-based, and sometimes lignocellulosic-
based biomass into grain-ethanol or bioethanol [19, 20]. 

Table 4  Biofuel/bioethanol/lipid production/yield from different gen-
eration biomass

Biomass feedstock Biofuel yield Reference(s)

First-generation biofuels
  Biofuel yield (L/kg)
    Corn 0.4–0.6 [88]
    Barley 0.41 [76]
    Rice 0.48 [40]
    Sugarcane 0.25–0.5 [88]
    Oats 0.41 [76]

Second-generation biofuels
  Bioethanol yield (L/kg dw biomass)
    Corn stove 5.85 [89]
    Barley straw 0.054 [90]
    Eucalyptus 0.612 [91]
    Rice straw 116.65 [92]
    Palm oil residue 1,09,600–1,72,100 [93]

Third-generation biofuels
  Lipid productivity (mg/L d)
    Chlorella spp. 290 [94]
    Nannochloropsis 290–321 [95]
    Ankistrodesmus 459 [94]
    Chlorella vulgaris 200–1100 [96]
    Chlorella protothecoides 1209–3701 [57]
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Fermentation, anaerobic digestion, and enzymatic hydrolysis 
are a few conventional, well-established, and cost-effective 
processes that produce bioethanol, grain-ethanol, biogas, 
bio-oil, and electricity as fuel products with other value-
added biochemicals [19, 20, 133, 135]. These processes 
allow chemical decomposition of the biomass into carbo-
hydrates which then convert into liquid fuel or biogas [19, 
136].

Fermentation

The fermentation is a chemical conversion process where 
simple sugars like hexoses (glucose/fructose) and pentoses 
(ribose) are converted into ethanol and  CO2 under anaerobic 
conditions using microorganisms like yeast (Saccharomyces 
cerevisiae), bacteria (Zymomonas mobilis), and fungi (Fusar-
ium avenaceum) [19, 102, 137–140]. The feedstock used for 
the process can be sugar or starch like corn and wheat pro-
ducing grain-ethanol and lignocellulosic substrates produc-
ing 2G bioethanol [19, 41, 139]. Sugar feedstocks are sim-
ple to ferment and convert into ethanol; however, starch is 
a complex branched glucose polymer comprising amylose 

and amylopectin [140, 141]. These macromolecules need 
to be hydrolyzed into simple fermentable sugar like hexoses 
(glucose/fructose) and pentoses (ribose) by a process called 
mashing which typically contains 15–20% starch [44, 140, 
141]. The simple sugars are then converted into ethanol using 
microorganisms under anaerobic conditions [137, 140, 141]. 
The reactions 1–3 below show the conversion stoichiometry 
for sugar to ethanol [19]. Theoretically, the conversion of sugar 
to ethanol is 51%; however, as the microorganisms utilize a 
part of the sugar for their metabolic activities, the fermenta-
tion efficiency is between 40 and 48% [19, 102]. The quality 
and productivity of the process depend upon feedstock, pH, 
agitation time, temperature, microorganism used, inoculum, 
and fermentation time [140].

(1)
Sugar → Ethanol + CO2 + by

− products (glycerol or carboxylic acids)

(2)
C
6
H

12
O

6(Glucose∕Hexose) → C
2
H

5
OH + CO

2
+ by − products

(3)
C
5
H

10
O

5(Glucose∕Pentose) → C
2
H

5
OH + CO

2
+ by − products

Fig. 3  Biomass to biofuel 
conversion technologies for 
different generations of biomass 
and their final energy products 
[19, 20, 86, 102, 132–134]
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The conversion of simple sugar to ethanol can take place 
via two different pathways depending upon the initial sub-
strate. The pentose sugar follows the pentose-phosphate-
pathway (PPP), whereas the hexose converts into ethanol 
via glycolysis or the Embden-Meyerhof pathway (EMP) [19, 
142]. Microorganisms like Saccharomyces cerevisiae follow 
the EMP pathway and produce an ethanol concentration of 
18% of the fermentation broth [137]. Few bacteria like the 
Zymomonas follow the Entner-Doudoroff pathway (EDP) as 
an additional metabolic pathway that adds more carbon to 
the fermentation process and yields half as much ATP per 
mole of glucose as the EMP [137]. The ethanol yield widely 
varies with the type of feedstock used and the fermenter 
parameters. Also, genetically modified microorganisms pro-
duce better yields compared to un-engineered species [41].

The processing of lignocellulosic biomass via fermenta-
tion is more complex compared to sugar- or starch-based 
feedstock because of the presence of carbohydrates like 
cellulose and hemicellulose, and lignin. Through the bio-
logical conversion process, the biomass is first delignified 
where the cellulose and hemicellulose bonds with lignin 
are broken. Then, the carbohydrates (cellulose and hemi-
cellulose) are broken down into simple sugars (glucose, 
xylose, etc.) by hydrolysis. In this entire pre-treatment pro-
cess, the delignification of biomass is the most complex, 
expensive, and rate-limiting in nature [137, 142–144]. 
A list of different pretreatment techniques for lignocel-
lulosic biomass is given in Table 5. Recently, micro- and 
macroalgae are also being researched as feedstock for the 

fermentation process [34]. Different algal biomass con-
sists of several types of polysaccharides (glucans) like 
green algae containing cellulose and starch and red algae 
containing cellulose and cellulose and Floridean starch. 
Along with glucans, some non-glucans are also present 
like agar, carrageenan, and alginate. For improved ethanol 
productivity, hydrolysis of both glucans and non-glucans 
is essential [34].

The fermentation process for biomass to bioethanol 
conversion follows the schematic given in Fig. 4. The size 
reduction and milling are the first unit operations where the 
biomass is ground and milled. The milling can be (i) dry 
milling and (ii) wet milling [142, 144]. Dry milling is when 
the biomass is milled into flour without separating the nutri-
tional components and sent for processing as a whole crop. 
Wet milling is when the biomass is treated with water to sep-
arate starch and fiber, and only starch is further processed. 
The advantage of wet milling is the separation of different 
value-added products from the biomass before processing 
and has a higher production capacity [44, 142, 144]. Dry 
milling produces distillers’ dried grains which is an excellent 
animal fodder rich in proteins, fats, and carbohydrates [44]. 
Once, milling is done, then the processed biomass is sent 
to the pre-treatment chamber, where, based on the biomass 
type (sugar-based, starch-based, or lignocellulose-based), it 
is processed into simple sugar by hydrolysis. The simple 
sugar or saccharine is then sent for fermentation to be con-
verted into grain/bioethanol [19, 137, 142, 144]. Typically, 
fermentation of sugar or starch-based feedstocks is done at 

Table 5  Pre-treatment methodologies for lignocellulosic biomass [19, 51, 109, 145]

Pre-treatment Mechanism/principle

Mechanical pre-treatment
  Grinding/milling/chipping Mechanical breakdown of the lignin, cellulose, and hemicellulose bonds; decrystallization of cellulose
  Screw press Mechanical breakdown by shear and pressure forces
  Thermal drying Desiccation of the biomass

Thermal pre-treatment
  Hydrothermal pre-treatment Solubilize hemicellulose at elevated temperature and pressure; increased surface area
  Steam explosion Solubilize hemicellulose; change in lignin structure

Chemical pre-treatment
  Acidic pre-treatment Dissolution of hemicellulose and removal of lignin in acids like  H2SO4 and HCl
  Alkali pre-treatment Solubilize lignin levels and eliminate acetyl groups using bases like CaO and NaOH
  AFEX Liquid ammonia at high temperature and pressure conditions decrystallizes cellulose and breaks lignin 

and hemicellulose bonds
   H2O2 Change in lignin structure and dissolution of lignin
   CO2 High-pressure  CO2 is used to break bonds
  Ionic liquids Destroy cellulose crystallinity
  Organosolv Use of organic solvents like ethanol, tetrahydrofuran, etc., at high pressure and temperature
  Organocat A two-phase water-organic solvent system with oxalic acid

Biological pre-treatment
  Fungal/microbial pre-treatment Solubilize cellulose and hemicellulose, change lignin structure
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30–40 °C with 3.7–5.5 pH and under continuous stirring of 
150–300 rpm [41].

In the case of lignocellulose-based biomass, sometimes, 
saccharification and fermentation are combined into the 
simultaneous saccharification and fermentation (SSF) pro-
cess. This is done because, when cellulose is hydrolyzed 
using cellulase enzyme, glucose inhibits its activity. SSF 
process keeps the concentration of glucose low allowing 
low inhibition and better ethanol conversion [137, 143, 147]. 
Compared to the two-staged process, SSF yields higher 
ethanol concentration (~ 40%) with a shorter fermentation 
time and less contamination [137, 147]. Also, to effectively 
increase the production of 2G ethanol using lignocellulosic 
feedstock, it is advisable to maximize the conversion of 
xylose sugar present in hemicellulose using engineered Sac-
charomyces cerevisiae. The process where saccharification 
and co-fermentation of xylose to 2G ethanol occurs is called 
the saccharification and co-fermentation process (SSCF) by 
co-culture of two recombinant yeasts [76, 148–150]. Fur-
thermore, research shows that efficient removal of lignin, 
increase in the cellulose porosity, and reduction of cellulose 
crystallinity during pre-treatment improve the efficiency of 
hydrolysis by many folds [76, 102, 151]. The fermented 
product thus obtained is sent for distillation where 90–95% 
hydrated bioethanol is obtained, which is then dehydrated to 
obtain 99.99% pure bioethanol [41, 138, 146].

Recently, the solid-state or solid substrate fermenta-
tion process is also employed on agricultural and indus-
trial waste which occurs in the absence or near absence 
of water. The process is known to enhance the production 
of various value-added products and biofuels at a lower 
cost of operation [152]. Photo-fermentation and dark fer-
mentation are the other two novel fermentation techniques 
being researched to convert biomass into bio-hydrogen. 
Dark fermentation is an anaerobic fermentation process 
occurring in the absence of light at temperatures between 
25 and 80 °C. Photo-fermentation is a catalytic conversion 
of biomass into hydrogen by nitrogenase bacteria using 

solar energy under a nitrogen-deficient medium. These 
conversion processes have several constraints like time-
consuming, expensive, and high-energy demand, which 
limits their applicability [153].

The fermentation as a process is commercially well estab-
lished and can yield high productivity with high purity when 
first-generation biomass is used (~ 450 l of grain-ethanol 
can be produced per ton of dry corn) [17]. However, pre-
treatment of lignocellulosic biomass and hydrolysis becomes 
a problem when fermentation is employed for second-gen-
eration biomass [41, 146]. The lignocellulosic biomass 
processing techniques are not well developed and still at 
the laboratory or pilot plant scale [131]. Also, fermentation 
being a biochemical process requires numerous chemical 
and biological parameters to be controlled and optimized 
to be sustainable.

Anaerobic Digestion

Anaerobic digestion is a multi-staged biochemical process 
that is commercially established for high-moisture content 
waste (~ 80–90% moisture) treatment as well as for bioen-
ergy generation [17, 102, 154]. Agricultural residue, munici-
pal solid waste, sewage sludge, etc. are a few feedstocks 
commonly used for the anaerobic digestion process. The 
process can directly convert biomass to biogas (60–70% 
methane and ~ 30%  CO2 with small quantities of other gases 
like  H2S) and digestate [155, 156]. The conversion occurs 
through a series of biochemical reactions occurring via 
metabolic pathways of bacteria under anaerobic conditions 
which breaks down the macromolecules into simpler mol-
ecules that converts into biogas [17, 19, 102, 155].

The schematic for the anaerobic digestion process is 
given in Fig. 5. The biomass feedstock is first made into 
a slurry, before feeding into a digester. In the digester, the 
biomass converts into biogas and is digested in the following 
four steps [157, 158]

Fig. 4  Schematic for the fer-
mentation process [19, 41, 137, 
138, 144, 146]

Solid Residue 
Dehydration 

Wastewater 

BIOMASS Size reduction 
and milling DistillationPre-treatment 

unit 
(Hydrolysis) 

99.99% BIO-ETHANOL 

95% Hydrated 
ethanol 

Fermentation 
chamber 

Sugar 
Solution 

691



BioEnergy Research (2023) 16:683–716 

1 3

 i. Hydrolysis: Biomass is consisting of macromolecules 
like fats, carbohydrates, and proteins. In the first 
step of conversion, these large organic polymers are 
hydrolyzed into smaller compounds like fatty acids, 
monosaccharides, amino acids, and peptides using fer-
mentative bacteria. Hydrogen and acetate are some 
by-products resulting from this rate-limiting stage. 
The hydrolysis occurs at a temperature between 30 
and 50 °C and an optimum pH of 5–7.

 ii. Acidogenesis: In the second step of anaerobic diges-
tion, the products of hydrolysis are picked up by aci-
dogenic microorganisms and converted into lighter 
volatile fatty acids,  H2,  NH3,  CO2,  H2S, carbonic 
acids, and alcohols. The more is the lighter volatile 
fatty acids formed in this stage, the more will be the 
formation of acetic acid in the next stage.

 iii. Acetogenesis: Acetogenesis is the third phase of diges-
tion, where acetogenic microorganisms catabolize 
the products from the acidogenesis stage into acetic 
acid, carbon dioxide, and  H2. This step facilitates the 
methanogenesis process to produce the final product 
as methane.

 iv. Methanogenesis: In the last step of the digestion 
process, methane is produced by hydrogenotrophic 
methanogens and acetotrophic methanogens from 
acetic acid, carbon dioxide, and  H2 via two reaction 
mechanisms, (a) acetoclastic methanogenesis and 
(b) hydrogenotrophic methanogenesis, as shown in 
reactions 4 and 5 [154]. The methanogens need to 
be maintained under anaerobic conditions with a pH 
between 6.5 and 7.5 to enable proper conversion.

(4)
Acetoclastic methanogenesis ∶ CH

3
COOH → CH

4
+ CO

2

(5)
Hydrogenotrophic methanogenesis ∶

CO
2
+ 4H

2
→ CH

4
+ 2H

2
O

After digestion, two products are formed: (a) biogas and 
(b) digestate. The biogas is sent to a collection tank, where 
it may be further distributed for electricity production or 
other household usage. The digestate is sent to a separator, 
where the wastewater is sent for treatment and the solid resi-
due may be used as compost or biofertilizers [17, 19, 102, 
159]. Feedstock composition and size, inoculum to substrate 
ratio, liquid recirculation, rate, bed compaction, and use of 
bulking agents are some of the parameters that affect the 
performance of the digester [158, 160].

Different technological advancements are being made to 
improve the anaerobic digestion process to enhance methane 
formation. Electrical treatments, biological pre-treatment 
of the substrate, thermal hydrolysis, etc. are a few meth-
odologies employed to enhance the rate-limiting hydrolysis 
process. Improved hydrolysis allows the better formation of 
micro-molecules which further enhances the acidogenesis 
and acetogenesis steps and the products [161]. For lignocel-
lulosic biomass, pre-treatment and removal of lignin again 
become important as lignin adversely affects the hydroly-
sis stage of the digestion process [162, 163]. The choice 
of enhancement and pre-treatment methodologies is influ-
enced by economic and energy efficiency analysis [145]. 
Many new reactor designs have also been proposed which 
improve the efficiency of the process. Zhang et al. have 
developed a three-staged digester with each step of diges-
tion, hydrolysis, acidification, and methanogenic, occurring 
in three independent chambers. This design improves the 
yield by 24–54% over a single-phase or two-phase single-
chamber process [164]. Digesters with high-pressure bio-
logical membrane systems also show a significant effect on 
methane yield during the methanogenesis step [157]. Inte-
gration of the fermentation process and anaerobic digestion 
of fermentation residue to produce ethanol and methane is 
also found to increase the decomposition rate of food waste 
by 27% and reduce the energy requirement by 52% [157]. 
Nowadays, a lot of research is being done to study anaerobic 

Fig. 5  Schematic for the anaero-
bic digestion process [17, 19]
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digestion with microalgal biomass as a feedstock or as a co-
substrate [143, 165].

One of the major advantages of this process is that biogas 
produced can be directly used for electricity generation with 
overall biomass to electricity conversion efficiency which 
is about 10–16%. It can also be upgraded to higher quality 
natural gas by removing carbon dioxide from the mixture 
[17]. The application of anaerobic digestion in landfills to 
process municipal solid wastes generates an equal amount of 
methane  (CH4) and carbon dioxide  (CO2). These gases along 
with trace amounts of nitrogen, oxygen, and other volatile 
organic contaminants like hydrogen sulfide  (H2S) and vinyl 
chloride  (C2H3Cl) are known as landfill gas (LFG) [157]. 
The usage of LFG for electricity generation and other appli-
cations requires efficient treatment of the LFG to remove 
the containments and carbon dioxide [166]. Lately, a lot of 
effort is being made to produce liquid fuel in the form of 
methanol instead of gaseous fuel using anaerobic digestion 
as a treatment of biogas/methane and its storage is expensive 
[157, 166]. The liquid fuel is easy to manage, store, and 
distribute. Also, it has low ash and sulfur content compared 
to biogas [166].

Enzymatic Hydrolysis

The enzymatic hydrolysis process is normally always com-
bined with fermentation for the conversion of biomass into 
bioenergy. As the name suggests, the hydrolysis stage of 
converting carbohydrates into simple sugar is facilitated by 
enzymatic activities. Enzymatic hydrolysis is very often pre-
ferred for starch-based and lignocellulosic biomass feedstock 
and has recently been researched on algal biomass hydrolysis 
[34, 167]. For starch enzymatic hydrolysis, amylase is the 
first enzyme that decomposes the starch macromolecules 
into short chains of glucose. The amylase enzyme liberates 
“maltodextrin” oligosaccharides which are then further 
hydrolyzed by enzymes like pullulanase and glucoamylase 
in a process called saccharification. During saccharification, 
all the dextrin is converted into glucose and maltose which 
are then fermented to produce ethanol using microorganisms 
[102]. In lignocellulosic biomass, the cellulose consists of 
glucose, and hemicellulose is made up of pentoses (D-xylose 
in abundance and D-arabinose) and hexoses (D-mannose, 
D-glucose, and D-galactose) [63]. Lignin is composed of 
three aromatic alcohols, p-coumaryl alcohol, coniferyl alco-
hol, and sinapyl alcohol [63]. Pre-treatment allows the cel-
lulose and the hemicellulose to be available for easy hydroly-
sis. During the enzymatic hydrolysis process, cellulolytic 
(cellulase) enzyme hydrolyzes the cellulose into glucose and 
xylanases break down hemicellulose into xylose which can 
be then co-fermented to produce 2G ethanol [63, 168].

A novel approach to improve the economic viability of 
the process is to increase the solid loading of the process 

called “high-solids” enzymatic hydrolysis. The process can 
be considered high solids when the solid content is more 
than 15% (w/w) dry matter and there is no free water present 
at the onset of the hydrolysis process. This methodology 
improves the energy conversion at lower capital and operat-
ing cost and reduces the energy input requirement [51]. As, 
with other biochemical processes, the abundance of ligno-
cellulosic biomass and its usability has made it a preferred 
feedstock choice for enzymatic hydrolysis. However, the 
scale-up of the lignocellulose pre-treatment processes and 
the cost of enzymes are the major limitations to its com-
mercial success [51]. Many new techniques for lignin pre-
treatment like benzenesulfonic acid-induced hydrotropic 
fractionation [169] and supercritical carbon dioxide pre-
treatment [170] are also employed in integration with enzy-
matic hydrolysis to improve energy yield.

Physicochemical Conversion Processes

The physicochemical conversion process like transesterifica-
tion leads to high-density biofuels like biodiesel [19]. Bio-
diesel is an attractive substitute for diesel as it is non-toxic, 
has high oxygen content, and has better lubrication proper-
ties which allow efficient combustion in diesel engines [19, 
29, 102].

Transesterification/Esterification Process

The oil-containing first-generation crops like Jatropha, 
palm, rapeseed, and sunflower oil, waste vegetable oil, and 
microalgae, can be used as the feedstock for the conversion 
of oil to biodiesel (fatty acid alkyl esters) by the transesterifi-
cation process [19, 29, 171]. Currently, 80–85% and 10–15% 
of the total biodiesel production in the world are produced 
from rapeseeds and sunflower seeds respectively [19]. The 
oil extracted from crops, algae, and the waste vegetable oil 
is composed of triglycerides, which, when burned as fuel, 
lead to incomplete combustion and deposition inside the 
combustion engine [29]. Thus, conversion of triglycerides 
into biodiesel is a required step. The reversible chemical 
reaction of triglycerides with alkyl alcohol to form fatty 
acids alkyl esters and glycerol in the presence of a cata-
lyst is called transesterification [171]. The process occurs 
at atmospheric pressure and 50–70 °C temperature, in the 
presence of excess methyl or ethyl alcohol to increase the 
forward reaction rate as shown in reactions 6–8 [171].

Step 1: Conversion of triglycerides into diglycerides

Step 2: Conversion of diglycerides into monoglycerides

(6)
C6H5O6R3 + R − OH

catalyst
↔ C5H6O5R2 + R1 − COO − R

Triglycerides Alcohol Diglycerides Fatty acid ester
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Step 3: Conversion of monoglycerides into glycerol and 
fatty acids alkyl esters

Homogeneous catalysts like liquid acids (HCl,  H2SO4, 
etc.) or liquid bases (NaOH, KOH, etc.) can be used for 
the conversion; however, their activity reduces in the pres-
ence of excessive free fatty acids. Moreover, transesterifica-
tion reaction with homogeneous catalysts produces a huge 
amount of wastewater and the catalysts are corrosive and 
non-eco-friendly [172]. Heterogeneous catalysts on the other 
hand are preferred as they can simultaneously esterify fatty 
acids and transesterify triglycerides [173]. Heterogeneous 
catalysts can be solid acids or solid bases and have immense 
potential as they are easy to separate and have fewer envi-
ronmental repercussions [173, 174]. Also, the reusability of 
the catalyst and less consumption make biodiesel production 
more economical compared to the homogeneous catalyzed 
process. In the case of the vegetable oil transesterification 
process, solid acid catalysts are preferred because the base 
catalysts are known to cause saponification of the free fatty 
acids, which reduces biodiesel formation and increases the 
cost of production [171, 173].

The process of transesterification starts with the extrac-
tion of oil from the biomass feedstock as shown in the sche-
matic in Fig. 6. The extraction of the oil can be done using 
various methods like solvent extraction, supercritical fluid 
extraction, ultrasonic extraction, microwave extraction, 
osmotic shock, and enzymatic extraction [78, 171]. The oil 
extracted is then sent for transesterification. The glycerol 
formed as the by-product of transesterification is a much 

(7)
C5H6O5R2 + R − OH

catalyst
↔ C4H7O4R1 + R1 − COO − R

Diglycerides Alcohol Monoglycerides Fatty acid ester

(8)
C4H7O4R1 + R − OH

catalyst
↔ C3H8O3 + R1 − COO − R

Monoglycerides Alcohol Glycerol Fatty acid ester

denser compound compared to fatty acid esters and can be 
easily separated. The fatty acid esters once separated are sent 
for distillation, where the excess alcohol is removed. The 
distilled biodiesel is sent for a final water washing where the 
residual catalyst and soap are removed [19, 174].

Integration of different processes together to enhance 
the production and treat mixed biomass feedstock has also 
been researched. Karpagam et al. observe that integration 
of transesterification with biochemical processes enhances 
bioethanol and biodiesel production for algal biomass [175]. 
Similar observations have also been made by Jung et al. and 
Sundaramahalingam et al. when they combined transesterifi-
cation with thermal enhancement and ultrasound effects and 
reported a biodiesel yield of 59.3% and 94.7% respectively 
[172, 176]. A considerable amount of research is needed 
to identify reusable catalysts and economical downstream 
purification processes. It is also evident that single process 
conversion of vegetable/crop oil to biodiesel is not economi-
cal and proper integration of processes is advisable [174].

Chemical Conversion Methods

Hydrolysis

The chemical hydrolysis process is the pre-fermentation step 
of converting long-chain carbohydrates into simple sugars. 
Acid hydrolysis or acidolysis can be employed for starch-
based, lignocellulosic, and microalgal biomass [177–179]. 
Inorganic acids like HCl,  H2SO4, nitric acid, and phosphoric 
acid and organic acids like citric acid, oxalic acid, and acetic 
acid can be used for the process [178]. Acid concentration, 
temperature, time, and surface-to-volume ratios are impor-
tant parameters that affect the hydrolysis process [177, 178, 
180]. Hong and Wu reviewed that when microalgae G. ver-
rucose is treated with 0.1 M HCl at 121 °C, it yields 34.9% 
of hydrolysate, whereas when it is treated with 0.1 M citric 
acid using 10% biomass at 150 °C for 60 min, it yields 57.8% 

Fig. 6  Schematic for transes-
terification process to produce 
biodiesel [17, 19]
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hydrolysate [178]. Thus, the feasibility of acidolysis using 
organic acids is economical and environmentally friendly 
[178]. Integration of acid hydrolysis with ultrasound and 
microwave is currently being researched to improve the yield 
of the process [178, 181]. Ultrasound causes shearing of the 
cell wall of biomass due to cavitation which enhances the 
release of low-molecular-weight sugars from polysaccha-
rides [181]. Microwave-assisted hydrolysis on the other hand 
improves hydrolytic efficiencies by enabling better tempera-
ture and heating control [178]. Though the processes are 
well tested, their commercial applications are still at their 
initial stages [178].

Solvent Extraction

Solvent extraction of oil or lipid from oil-containing biomass 
like rapeseeds, palm seeds, corn, soybean, Jatropha, micro-, 
and macroalgae is a conventional method being commer-
cially used over the last 50 years [182]. Solvent extraction 
is also extensively employed to extract secondary metabo-
lites from biomass like terpenoids, waxes, resins, sterols, 
and alkaloids [182]. Extraction is a chemical process in 
which the solute (oil or lipid) is separated from the car-
rier (biomass) by allowing the solute to selectively dissolve 
in the solvent. For efficient extraction, the solvent needs to 
penetrate the biomass and match the polarity of the solute 
(lipid/oil). The choice of solvent is essential in this process 
as extraction and further separation of solvent from the 
extracted oil are both required [102]. Also, for the process to 
be cost-effective, the solvent must be inexpensive and easily 
available. Organic solvents like benzene, hexane, cyclohex-
ane, acetone, and chloroform are effective in extracting oil 
from the plant and algal biomass by degrading the cell wall 
[183]. Microalgal species like Botryococcus braunii actively 
secrete oil, which can be then recovered without damaging 
the cell wall using solvents like decane [183].

The process of solvent extraction follows the schematic 
given in Fig. 7. The biomass is initially dried and then sent 
for extraction using a choice of solvent. The extracted oil 
and solvent mixture is then sent for separation and the de-oil 

biomass meal is sent for toasting [102]. Integration of solvent 
extraction with processes like hydrolysis, fermentation, and 
transesterification is also being applied in biorefineries. The 
solvent extraction removes the secondary metabolites from 
the biomass, and hydrolysis and fermentation of the remain-
ing biomass meal lead to bio-oil production. Frequently, 
mechanical extraction is combined with solvent extraction to 
enhance the oil extraction process. The mechanical extraction 
processes like bead milling or wet milling allow the plant cell 
wall to be disrupted and ease the solvent extraction process. 
Mercer and Armenta report an increase in oil extraction from 
5.6 to 18.8% when bead milling is combined with extraction 
from Chlorella protothecoides using hexane solvent [183].

Microwave-assisted, ultrasound-assisted, and high-
shear-assisted extraction processes are a few advanced pro-
cesses that enhance the overall yield of bio-oil [184–186]. 
Supercritical extraction using supercritical  CO2 is another 
alternative to improve the yield of oil [183]. This method 
of extraction is completely free of solvent and thus yields 
pure products. Solvent extraction efficiencies can also be 
improved by a process called “Accelerated solvent extrac-
tion,” where the organic solvent is used at temperature and 
pressure above its boiling point [182, 186]. The increase in 
extraction temperature and improved contact between the 
solvent and biomass shortens the time required for extrac-
tion. However, thermal degradability and oxidation of lipids 
are a few critical shortcomings of the process. Also, the con-
ventional solvent extraction method may not be efficient in 
removing lipid from plant cells. Furthermore, parameters 
like solvent-to-sample ratios, sample sizes, extraction tem-
peratures, and extraction cycles need to be optimized to 
make the process commercially viable [182].

Supercritical Conversion of Biomass

Supercritical conversion of biomass is an efficient alternative 
to the chemical or enzymatic hydrolysis process. Chemical 
hydrolysis is expensive and enzymatic hydrolysis requires 
pre-treatment of the lignocellulosic biomass [187]. Con-
trary to these, supercritical water or  CO2 can easily convert 

Fig. 7  Schematic for the solvent 
extraction process [19] Solvent 
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biomass into a mixture of oils, alcohol, organic acids, and 
methane and cellulose into sugar [187]. A supercritical 
fluid is a state of matter that is at a temperature and pressure 
condition above the critical point. At the supercritical state 
(water, 644 K and 22 MPa; and  CO2, 304 K and 7.4 MPa), 
the fluid is neither liquid nor gas [102, 115, 188]. Water 
under supercritical conditions is present in its ionic  H+ and 
 OH− form and dissolves separately in the lignocellulosic 
biomass enabling faster rupture of the bonds and formation 
of simple sugars. The simple sugars (glucose and xylose) get 
converted into bioethanol and the lignin into bio-oil [102, 
115, 188].

Supercritical water gasification technology can convert 
cellulose into glucose in 10–20 s and produces bio-hydrogen 
[189]. When the temperature of the supercritical water is 
increased up to 873 K, the water acts as a strong oxidant 
leading to the complete decomposition of biomass. The oxy-
gen atom from water reacts with the biomass carbon atom, 
allowing the free hydrogen atom to form bio-hydrogen. This 
method is effective for biomass with moisture content and 
does not require any drying pre-treatment [189]. Also, the 
reaction medium being water allows better mass transfer and 
reduced coke formation. This method produces high energy-
dense renewable hydrogen gas at low purification and down-
stream separation cost. However, due to the requirement of 
elevated temperature and pressure requirement, the process 
is not yet industrially established [189].

Thermochemical Conversion Methods

The thermochemical processes of converting biomass to 
energy apply thermal and chemical decomposition method-
ologies under varied oxygen supply and temperature condi-
tions. Some of the methods like liquefaction, pyrolysis, and 
torrefaction are modern technologies with numerous ben-
efits like small carbon footprint, short reaction time, and 
capability of handling several types of biomass feedstocks 
[105]. However, most of these methods are still in the pilot 
or research stages of development.

Liquefaction

The liquefaction or hydrothermal liquefaction process con-
verts biomass into stable liquid hydrocarbons with a high 
H/C ratio under moderate-temperature (~ 280–370 °C) and 
high-pressure (10–25 MPa) conditions [19, 190–192]. The 
fuel obtained has a high heating value and low oxygen con-
tent making it a stable energy source. Lignocellulosic bio-
mass (dry biomass) and algal biomass (wet biomass) are 
the preferable feedstocks for the process with an adequate 
pre-treatment [190, 193, 194]. Prestigiacomo et al. have 
recently studied hydrothermal liquefaction of municipal 
sludge as a feedstock in a stirred reactor [195]. The process 

of liquefaction is either direct or indirect in the presence of 
alkalis, glycerine, and propanol or butanol [196]. In direct 
liquefaction, fast pyrolysis of biomass occurs producing liq-
uid tar/oil and condensable gases, whereas indirect pyrolysis 
requires catalysts to convert the non-condensable gaseous 
products into liquid fuel [196]. The biofuel produced is 
highly viscous and water-insoluble and requires solvents, 
reducing gases like CO and  H2 and the presence of a catalyst 
to upgrade its properties. Alkali salts like sodium carbonate 
and potassium carbonate can act as a catalyst for the ligno-
cellulose liquefaction process, which converts cellulose and 
hemicellulose into simple compounds by depolymerization 
and deoxygenation [196]. Nagappan et al. have reported 
that usage of heterogenous catalysts like Ni/Al2O3 or Mo/
Al2O3 improves selectivity and thus improves yield [197]. 
Ni/Al2O3 is known to be more selective toward lipid for 
deoxygenation and Mo/Al2O3 facilitates the deoxygenation 
of carbohydrates. Also, heterogeneous catalysts are easy to 
recover and are less corrosive [197].

The presence of water, alkalis, glycerol, and propanol/
butanol during indirect liquefaction facilitates different deg-
radation processes [198]. In the presence of glycerol and 
alkali salts, glycerol enables a reduction in surface tension of 
the solvent at a higher temperature, thus allowing the alkali 
salts to penetrate the lignocellulosic biomass and break the 
lignin bonds [102, 196]. In the aqueous liquefaction of ligno-
cellulosic biomass, the water molecules cause desegregation 
of the wood structure followed by partial depolymerization 
of the compounds. It is observed that the bio-crude yield 
from aqueous liquefaction is higher in the presence of a cata-
lyst (~ 63%) compared to its absence (~ 31%) [102].

The process of liquefaction, in general, follows three 
major steps: (i) depolymerization, (ii) decomposition, and 
(iii) recombination. Initially, the biomass depolymerizes and 
decomposes into smaller compounds. However, the presence 
of free radicals causes these simple compounds to repolym-
erize and recombine into bio-crude and solid residues. In 
depolymerization, long chains of hydrocarbons break down 
into smaller chains under high pressure and temperature 
conditions, mimicking the natural process of fossil fuel 
production. The decomposition step involves the removal 
of water molecules (dehydration), removal of amino acids 
(deamination), and loss of  CO2 molecules (carboxylation). 
The dehydration and decarboxylation processes facilitate the 
removal of oxygen from the biomass. The recombination 
or repolymerization of molecules occurs post decomposi-
tion due to the presence of excessive free radicals and the 
absence of hydrogen molecules. If hydrogen molecules are 
freely present during the liquefaction process, then it reduces 
the free radical activities enabling more stable molecular 
weight species yield [190]. The complete absence of free 
hydrogen leads to more coke formation. Parameters like 
temperature, pressure, residence time, and biomass type 
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significantly affect the process kinetics and product composi-
tion [190, 199, 200]. It is observed that elevated temperature 
(> 350 °C) yields gaseous products whereas low temperature 
(150–200 °C) favors solid formation, with bio-oil production 
maximized at moderate temperature (250–300 °C) [199].

The lignocellulosic biomass is liquefied at 350 °C and 
150 bar pressure for 15 min in a liquefaction unit in either a 
batch or continuous manner [190]. Elliot et al. have studied 
hydrothermal liquefaction of algal biomass in batch and con-
tinuous systems at 523–653 K and 1.0 MPa with a residence 
time of 3–5 min [201]. A spontaneous phase change of bio-
mass occurs under these process conditions producing  CO2, 
bio-crude, water, and solid residues [202]. It is observed that 
the more the lignin content in the biomass, the more will be 
solid residue production. The solid residues formed can be 
used as biofertilizers or biofuels. The bio-crude produced 
is sent for further processing and upgrading as can be seen 
in Fig. 8 [190, 202]. The upgrading of the bio-oil obtained 
can be done by esterification, catalytic cracking, hydrogena-
tion, molecular distillation, and catalytic pyrolysis [199]. 
Lignocellulosic biomass can also be directly converted to 
liquid hydrocarbons or bio-crude by reacting it with syngas 
in the presence of a catalyst [196]. The use of subcritical 
and supercritical solvents and water for direct liquefaction 
of lignocellulosic biomass is also known to yield fuel with 
80% energy efficiency [203, 204].

Microwave-assisted liquefaction for algal biomass, 
simultaneous hydrothermal liquefaction, esterification for 
sugarcane bagasse, and liquefaction by plasma electrolysis 
are a few technical integrations currently being researched 
[205–207]. Araujo et al. show that the integration of simul-
taneous liquefaction with esterification of sugarcane bagasse 
biomass yields 91% bio-oil and 9% biochar [207]. One of 
the major benefits of the liquefaction process is the genera-
tion of bio-crude which can be upgraded to replace fossil 
fuel. Also, the process has an energy efficiency of 85–90% 
and can recover 70% of the carbon content of the feedstock 
[190]. Furthermore, the bio-crude generated does not require 

extensive treatment or upgrading for commercial utilization 
[190]. However, the economics and scale-up of the process 
become an issue due to the high-pressure and high energy 
input requirements [190, 203, 204, 208]. The process is still 
at the lab-scale research stage and requires further under-
standing of chemistry, kinetics, catalysts, hydrodynamics, 
and economics before it can be made commercially viable 
[190].

Pyrolysis

Pyrolysis is the process of thermal degradation of biomass in 
the absence of oxygen to produce bio-oil, biochar, and gase-
ous fuel [209]. The fuel obtained has a medium–low calo-
rific value [210]. The high temperature of ~ 500 °C facilitates 
breakage of the bonds and the release of volatile substances 
which are condensed into liquid fuel [19, 209]. The pyrolysis 
oil obtained can be utilized as transportation fuel, electricity 
generation, and heating [211]. Algal biomass, forest residue, 
municipal sludge, agricultural residue, waste cooking oil, 
and lignocellulosic biomass are the possible feedstock for 
the pyrolysis process [212–214].

The process of pyrolysis occurs in stages, where primary 
phase decomposition at ~ 450–550 °C releases all the vola-
tile matters present in the woody biomass and forms non-
condensable gases like CO,  CO2, and  CH4. The secondary 
decomposition occurs at temperatures ~ 400–500 °C, causing 
cracking of the bonds and releasing vapors that can be con-
densed to form bio-oil. Finally, some extent of repolymeriza-
tion of the small chain hydrocarbon occurs to form char, bio-
oil, and gaseous products [215]. For lignocellulosic biomass, 
lignin is known to decompose over a larger range of tem-
perature (~ 550–770 K) compared to cellulose (~ 510–620 K) 
and hemicellulose (~ 470–530 K) which decomposes over 
shorter temperature ranges [210]. The kinetics, tempera-
ture for decomposition, the extent of decomposition, and 
product composition vastly vary with biomass feedstock, 
reactor type, temperature, heating rates, and pressure [210]. 

Fig. 8  Schematic for hydrother-
mal liquefaction process [196, 
202]

Bio-crude  

BIOMASS 
Pre-treatment Upgradation of 

biocrude

Wastewater 

Gas 

Hydrothermal 
liquefaction reactor 

BIO 
CRUDE 

Solid residue

697



BioEnergy Research (2023) 16:683–716 

1 3

Extensive research is being done to understand the correla-
tions between biomass type, pyrolysis pathways, and kinet-
ics, and the suitable reactor designs to improve pyrolysis 
conversion [216]. Based on the operating conditions, the 
pyrolysis process can be categorized into five types [209].

 i. Slow or conventional pyrolysis: The pyrolysis occurs 
at a low heating rate (~ 0.1–1 °C/s) with a vapor resi-
dence time of 10–60 min [209]. In slow pyrolysis, 
the first stage of decomposition, called pre-pyrolysis, 
leads to the internal arrangement and breakage of 
bonds, the release of water molecules, and the forma-
tion of free radicals, carbonyl, and carboxyl groups. 
In the second stage, fast decomposition of the solid 
state occurs forming the pyrolysis products. In the 
third stage, the char decomposes at a slow rate form-
ing carbon-rich solid residue [210]. This process is 
ideal for producing biochar. Studies show that yield 
of bio-oil is maximum (~ 24–43 wt%) at an optimum 
temperature of 500 °C with 34 to 63 wt% of biochar 
formation [209]. The major disadvantage of this pro-
cess is excessive cracking of the primary feedstock 
leading to low-quality bio-oil production [215].

 ii. Fast pyrolysis: Fast pyrolysis occurs under rapid 
heating rate (1000 °C/s), higher temperature (500–
650 °C), low residence time (0.5–10 s), and using fine 
particle (< 1 mm) [19, 102, 209, 215]. This process is 
recommended for producing bio-oil [17]. In fast pyrol-
ysis, the biomass rapidly decomposes to form vapors, 
aerosols, and a small amount of char. The vapor and 
aerosols can then be condensed to form bio-oil with 
a heating value of about half of the conventional 
fuels [102, 215]. Fast pyrolysis yields a product with 
60–75% bio-oil, 15–25% biochar, and 10–20% non-
condensed gases depending upon feedstocks [211].

 iii. Flash pyrolysis: Flash pyrolysis occurs at an extremely 
high temperature (450–1000 °C), short residence time 
(< 0.5 s), and very high heating rate with very fine 

biomass particle size (< 0.2 mm) [102, 215]. Flash 
pyrolysis can produce bio-oil fractions up to 75% with 
80% efficiency [17, 211]. Fluidized bed reactors are 
preferred for both fast and flash pyrolysis processes 
[209].

 iv. Catalytic pyrolysis: Catalytic pyrolysis is done to 
enhance the bio-oil quality and reduce the oxygen con-
tent of the bio-oil. The catalyst also alters the pyrolysis 
pathway and allows the process to occur at a lower 
temperature (300–600 °C). Acid and base catalysts are 
used for the process, with acid catalysts facilitating the 
production of more biochar, and base catalysts produc-
ing more bio-oil [209, 217]. Among all the catalysts, 
nickel catalysts are found to be better as they activate 
decarboxylation and decarbonylation reactions during 
the hydrodeoxygenation process [209].

 v. Hydro-pyrolysis: This is a novel pyrolysis process 
that occurs in high-pressure hydrogen conditions with 
nitrogen used as the carrier gas. Compared to other 
pyrolysis processes, this method produces hydrocar-
bon with better structural stability and less oxygen 
content. The optimum condition for maximized bio-oil 
and biogas production is 310 °C, 3 MPa, and 60 min. 
The addition of catalysts and conversion of the process 
to fast hydro-pyrolysis have been shown to improve 
the overall bio-oil productivity [209].

Figure 9 shows the schematic for the pyrolysis process. 
Microwave-assisted pyrolysis is an advancement made in 
the conversion methodology [209, 218, 219]. This process 
is slowly gaining importance because of its ability for mass 
conversion, uniform heating, and easy controllability. How-
ever, the process is expensive and is still in the lab scale of 
operation [209, 219]. Solar pyrolysis is another advance-
ment that has gained importance in recent times due to its 
usage of solar as the source of energy [220, 221]. The bio-
oil obtained from pyrolysis can be used as a feedstock for 
biorefineries and can also be used in engines and turbines. 

Fig. 9  Schematic for the pyroly-
sis conversion process [19]
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However, poor thermal stability, corrosive nature, and exten-
sive upgradation requirements function as major roadblocks 
in its commercial application [222]. Oxygen content reduc-
tion and alkali removal by dehydrogenation and catalytic 
cracking are a few treatments needed for the fuel produced to 
be commercially applicable [223]. Hydrotreating of pyroly-
sis oil or catalytic cracking can produce naphtha, high octane 
gasoline, and fuel oil [223, 224].

Torrefaction

Solid biomass has low energy density, high moisture con-
tent, low bulk density, low compositional homogeneity, and 
low shelf life (easily biodegradable) which are hurdles in its 
applicability as an efficient fuel in the industry [105]. Tor-
refaction is a thermochemical conversion technology that is 
applied to upgrade biomass and improve biochar quality as 
an alternative to coal [225]. Like liquefaction and pyrolysis, 
torrefaction also occurs in the absence of oxygen-producing 
solid biomass like biochar or coke as the primary product. 
The torrefaction of biomass (lignocellulosic, algal, munici-
pal waste, etc.) may occur via (i) wet torrefaction, (ii) dry 
torrefaction, and (iii) steam torrefaction [226]. The upgraded 
biomass from the torrefaction process may be commercially 
used for cofiring or combustion, as a feed for pyrolysis or 
gasification, as adsorbents for pollution, etc. [105, 227, 228].

Dry torrefaction occurs at 200–300 °C under either oxi-
dative or non-oxidative conditions. In non-oxidative states, 
nitrogen and  CO2 act as the carrier gas to sweep the biomass 
during the thermal degradation process [105, 229]. In oxida-
tive torrefaction, air or flue gas may be used as a carrier. The 
presence of oxygen enables oxidative torrefaction to have 
a higher reaction rate compared to non-oxidative torrefac-
tion, thus reducing the time for degradation [230]. How-
ever, oxidative torrefaction yields lower biochar compared 
to non-oxidative torrefaction. It is also found that biomass 
torrefied with higher oxygen concentration and temperature 
below 300 °C displays a lower heating value. Non-oxidative 
torrefaction requires high energy input and nitrogen separa-
tion from air compared to oxidative state processing [105, 
230, 231].

Torrefaction of biomass occurring in the presence of 
water or dilute acid at 180–260 °C and reaction time of 
5–240 min is called wet torrefaction. The solid generated as 
the product of wet torrefaction is called “hydro-char” [105, 
229, 232]. The properties of water like density, viscosity, 
diffusivity, and dielectric constant change drastically with 
an increase in temperature which affects the biochar quality 
during the torrefaction process. Therefore, wet torrefaction 
is preferably operated under conditions near the subcritical 
state [233]. It is observed that when biomass is treated with 
hot compressed water at 180 °C, volatile acids like alde-
hydes and furfural derivatives get generated which enhances 

the torrefaction process [105, 234]. The addition of acids 
like sulfuric acid and acetic acid, to water, is also known to 
improve the process [235]. A major advantage of wet torre-
faction is the non-requirement of any drying pre-processing. 
Thus, wet biomass feed like sludge, manure, and sewage 
can be considered for this process. Furthermore, with wet 
torrefaction, one can obtain a product with higher energy 
density and mass yield compared to dry torrefaction [236]. 
Another difference between wet and dry torrefaction is the 
ash content of the biochar. Ash is inert and its composition 
in the upgraded biochar increases proportionally after dry 
torrefaction. However, with wet torrefaction due to the dis-
solution of minerals in ash into the aqueous phase, the final 
ash content in the biochar is hugely reduced. The reduction 
in ash content prevents agglomeration, corrosion, fouling, 
and slagging during the hydro-char conversion processes 
[105, 225, 237].

Steam torrefaction is a process where high-temperature 
and high-pressure steam explosion is used to torrefy the 
biomass. In this process, the lignocellulosic biomass is 
treated in a chamber at 200–260 °C using high-pressure and 
high-temperature steam [105, 238]. The pressure inside the 
chamber is slowly increased which caused the biomass to 
swell and disintegrate into separate components. The volatile 
matter present in the biomass also gets removed by a steam 
explosion which increases the carbon content and calorific 
value of the biochar and decreases its mean particle size and 
bulk density [227, 231, 232, 239]. Furthermore, the biochar 
derived from steam torrefaction has higher elasticity and 
mechanical strength compared to wet and dry torrefaction. 
However, steam torrefaction requires a high energy supply 
and is expensive [105, 232, 239].

The commercial development of the torrefaction process 
is still at its initial stages. Various technical aspects like 
high ash content in the biochar, emission of dibenzofurans 
and polychlorinated dibenzo-p-dioxins during torrefaction, 
formation of tar as a by-product (~ 2000–8000 tons/year of 
tar gets generated during torrefaction), and scale-up are a 
few roadblocks in the commercial feasibility of the process 
[105, 240].

Hydrothermal carbonization (HTC) is a thermochemical 
conversion process similar to wet torrefaction technology. 
Many studies have discussed “wet torrefaction” under the 
terminology of “hydrothermal carbonization” [192, 229, 
241, 242]. However, the products formed at the end of both 
these processes are different in characteristics and usability. 
The wet torrefaction produces upgraded solid fuels, whereas 
the hydrothermal carbonization produces charcoal with high 
carbon content, which can be used as activated charcoal, 
fertilizers, catalysts, biosensing, supercapacitors, and fuel 
[192, 229, 243]. The HTC is a process of removing oxygen 
from biomass via dehydration and decarboxylation reactions 
(reducing the molar ratios of O/C and H/C), producing a 
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more coal-like product [192, 242, 244–246]. Analysis of the 
various process parameters shows that increasing the resi-
dence time and operating the reactor under optimum tem-
perature (180–260 °C) and pressure (< 300 bar) conditions 
can improve the “hydro char” characteristics [192]. A lot 
of the current research is focused on integrating HTC with 
wastewater treatment and municipal solid waste treatment 
to improve energy production and recovery. Industries and 
researchers are working on developing portable and flexible 
HTC processes for these integrated systems [242]. How-
ever, the treatment and processing of the contaminated water 
received from HTC as a by-product remains a major chal-
lenge for this process [192, 242].

Combustion

Combustion is an exothermic reaction process where the bio-
mass reacts with oxygen (air) at high temperatures to form 
carbon dioxide, water vapor, and chemical heat. This process 
accounts for 90% of the total renewable energy generated 
from biomass [19, 102]. The heat produced from combus-
tion can be converted into useful mechanical and electrical 
energy [228]. Dry wood, dry leaves, hard vegetable shells, 
agricultural residues (rice/wheat straws), etc. are some of the 
feedstocks that are used for the process to produce around 
20 MJ/kg biomass of thermal energy [247]. The combustion 
is carried out inside a combustion chamber at 800–1000 °C 
for biomass with moisture content less than 50% as shown in 
Fig. 10 [19]. High moisture content biomass is better suited 
for biochemical conversions. The generated heat from com-
bustion is used to produce steam which is fed to a turbine to 
generate electricity.

The current biomass combustion plants generate 
20–50 MW of electricity with electrical conversion efficien-
cies of 25–30%. With the incorporation of processing tech-
niques like fluidized bed systems and improved gas process-
ing, the production can be upgraded to 100–3000 MW with 
conversion efficiencies up to 30–40% [17, 19, 248, 249]. 

Integration of biomass combustion with coal-fired power 
generation is also attractive as it improves the conversion 
efficiencies [105, 250, 251]. The process of converting bio-
mass to energy by combustion is a conventional route that is 
widely implemented both at the commercial and household 
level. However, the emissions of particulate matter and  CO2 
are the major concerns with the process [247, 252]. Chemi-
cal looping combustion (CLC) integrated with biomass 
feedstock (bio-CLC) which combines bioenergy with  CO2 
sequestration is a novel technique to reduce  CO2 emissions 
[253]. The CLC consists of air and a fuel reactor. Oxygen 
carriers in the form of metal oxides carry oxygen from the 
air reactor to that of the fuel reactor, where it reacts with the 
fuel to produce  H2O and  CO2. This process enables pure 
 CO2 generation which can be easily sequestered without any 
further processing [253, 254].

Gasification

Gasification is the conventional process of converting bio-
mass into the combustible gas mixture (CO,  H2,  CO2,  CH4, 
and  N2) called syngas or synthesis gas and biochar by par-
tial oxidation at a high temperature of around 800–1100 °C 
[255]. Syngas, which normally have the lowest heating value 
(LHV) of 4–13 MJ/N  m3, can be used to generate electricity, 
petrochemical products, methanol, and hydrogen [255]. The 
char produced contains carbon, unconverted organic resi-
due, and ash and has an average LHV of 25–30 MJ/N  m3 
[255]. The composition of the char majorly depends upon 
the gasification methodology and biomass type and qual-
ity. Lignocellulosic biomass, forest residues, agricultural 
residue, etc. can be as feedstock for gasification [256, 257]. 
Pre-treatment and drying of the biomass are required before 
it can be converted. It is observed that the initial moisture 
content of the biomass adversely affects the LHV of the bio-
fuel produced [255].

Gasification is an endothermic process and is conducted 
in an air-tight chamber under air suction or low air pressure 

Fig. 10  Schematic for the com-
bustion process [19]

Steam  

BIOMASS 
Drying 

Steam turbine 

Condenser 

ELECTRICITY 
GENERATION 

Combustion 
chamber 

Stack 

700



BioEnergy Research (2023) 16:683–716

1 3

condition as shown in Fig. 11. The heat energy required for 
the process is derived from partial oxidation of the biomass 
feed. The gasification process follows five major steps in 
series [255]
i. Oxidation to generate heat: The partial oxidation of the 

biomass is an essential step to generate the heat required 
for gasification and maintaining the temperature. The 
oxidation occurring in absence of oxygen (given in reac-
tions 9–11) produces CO,  CO2, H2O, and heat [255]. 
Though all the carbonaceous components present par-
ticipate in the reactions, it can be simplified to consider 
the involvement of only char and hydrogen contained in 
the syngas [255].

Char combustion:

Partial oxidation:

Hydrogen combustion:

 ii. Drying: Drying is an essential step for removing mois-
ture from the biomass. The amount of heat required 
for drying is proportionately dependent on the amount 
of moisture content. The process of drying can be 
considered complete when the biomass temperature 
reaches the temperature of 150 °C [255].

 iii. Pyrolysis: This is the stage where thermochemical 
decomposition of the biomass takes place at 250–
700 °C. The long chains of hydrocarbon break down 

(9)C + O
2
→ CO

2
ΔH = −394 KJ∕mol

(10)C + 1∕2O
2
→ CO ΔH = −111 KJ∕mol

(11)H
2
+ 1∕2O

2
→ H

2
O ΔH = −242 KJ∕mol

into shorter chains of lower molecular weight com-
pounds producing solid, liquid, and gaseous fractions. 
The solid (biochar) yield is around 5–10 wt% for fluid-
ized bed gasifiers and 20–25 wt% for fixed bed gasi-
fiers. The liquid (tar) yield in downdraft gasifiers is 
around 1 wt%, 1–5 wt% in bubbling bed gasifiers, and 
10–20 wt% for updraft gasifiers. The gaseous fraction 
(pyrolysis gas) is typically 70–90 wt% and comprises 
incondensable gases like hydrogen, CO,  CO2, and 
light hydrocarbons. The process of pyrolysis is com-
plex and is governed by numerous factors like heat 
transfer, diffusion, and kinetics. At low temperatures, 
the process is kinetic controlled, but it becomes heat 
transfer controlled at higher temperatures [255]. The 
overall reaction for pyrolysis is as given below in reac-
tion 12.

 iv. Reduction: In the reduction step, the char and gase-
ous products from the above two stages react together 
to form the syngas as given in reactions 13–16. As 
the reactions are reversible, the temperature of the 
reduction stage defines the composition of the syn-
gas. Higher temperature reduces char formation and 
increases tar and syngas fraction. However, it may also 
lead to increased ash sintering and a reduction in the 
energy content of the syngas [255].

Boudouard reaction:

Reforming of the char:

(12)Biomass ↔ H2 + CO + CO2 + CH4 + H2O(g) + Char + Tar

(13)C + CO
2
↔ 2CO ΔH = 172 KJ∕mol

Fig. 11  Schematic for biomass 
gasification process [19]
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Water gas shift reaction:

Methanation reaction:

 v. Tar decomposition: The tar formed during pyrolysis 
also decomposes and contributes to the reduction step. 
 CH4 and short-chain hydrocarbons are formed as prod-
ucts from this stage as given in reaction 17.

The syngas via gasification can be produced by either 
the catalytic or non-catalytic route. The non-catalytic pro-
cess occurs at an extremely high temperature of ~ 1300 °C, 
whereas the catalytic gasification can be done at a lower 
temperature of ~ 800  °C [102, 189, 258]. Hu et  al. are 
researching chemical loop biomass gasification (CLG) using 
 F2O3/CaO catalyst to produce hydrogen-rich syngas. They 
observe that the hydrogen production using CLG is 1.88 
times more compared to normal steam gasification [258]. 
For transportation liquid fuel production, Fischer–Tropsch 
(FT) synthesis or methanol synthesis route of syngas con-
version is employed [257]. Recently, efforts are being made 
to produce renewable aviation fuel via gasification and FT 
synthesis [257]. Macri et al., in their work, proposed super-
critical water gasification (SCWG) as the route to improve 
bio-hydrogen production [259]. They observe that the pres-
ence of excess water during gasification promotes water gas 
shift reaction as well as steam reforming during the reduc-
tion stage increasing hydrogen production. Furthermore, 
SCWG can be employed on biomass with high moisture 
content like algal biomass [259]. Biomass integrated gasi-
fication with combined cycle (BIG/CC) can convert syngas 
into electricity at a high conversion efficiency of ~ 40–60% 
for a plant capacity of 30–60 MW. This is a process that uti-
lizes purified syngas thus reducing further processing costs. 
However, this process is still in the pilot stage [260, 261]. 
Similarly, microwave-assisted gasification processes are also 
being researched at a lab scale [262]. Suárez-Almeida et al. 
are currently studying solar gasification of biomass in a dual 
fluidized bed gasifier where the solid particle acts as the 
thermal energy carrier [263].

Gasification for syngas production or electricity produc-
tion is at pilot or small-scale developmental stages. One of 
the major disadvantages is that the producer gas contains 
contaminants such as particulates, tar, alkali metals,  H2S, 
and  NH3, which causes blockage and corrosion problems 

(14)C + H
2
O ↔ CO + H

2
ΔH = 131 KJ∕mol

(15)CO + H
2
O ↔ CO

2
+ H

2
ΔH = −41 KJ∕mol

(16)C + 2H
2
↔ CH

4
ΔH = −75 KJ∕mol

(17)CnHm ↔ Cn−xHm−y + H
2
+ C + CH

4

and requires extensive processing before the application 
[264, 265]. Also, technological advancements are needed 
to develop compatible engines for syngas applications [255, 
259].

Physical Conversion Methods

Mechanical Extraction

The crude oil from crops and microalgae can be extracted by 
applying mechanical pressure using a screw press [102, 171]. 
The mechanical pressing can be done either by (i) full press-
ing or (ii) pre-pressing method. The full pressing employs 
95,000 kPa of pressure on the oilseeds to extract up to 3–5% 
of residual oil. Pre-pressing is normally employed in integra-
tion with the solvent extraction process, where 18–20% of 
oil is removed from the crop using pressing and the rest of it 
by solvent extraction [102, 266]. This process is commonly 
employed for biomass with high oil content (~ 30–40%) 
[102]. Wu et al. have combined enzymatic hydrolysis with 
intermittent ball milling to increase the lignocellulosic bio-
mass conversion to 84.7% [267]. Mechanical extraction is 
normally combined with the transesterification process to 
convert the extracted oil into biodiesel and other value-added 
bioproducts. This method of oil extraction is well established 
and orthodox but is often time-consuming and energy inef-
ficient, and demonstrates low yield [268, 269].

Briquetting/Pelleting

The biomass received in bulk is often pre-processed into 
briquettes and pellets for transportation, storage, and appli-
cation in biorefineries as feedstock [270]. The most common 
pre-processing required is the densification of the biomass 
either by (i) pressing or (ii) maceration (chopping, grind-
ing, etc.). By pressing, the density of the biomass increases 
proportionately to the amount of pressure inflected [271]. 
The briquetted biomass is also recommended for usage as 
primary biofuel for traditional cooking and space heating 
as it increases burning efficiency and reduces emissions and 
pollution [272, 273]. The process of briquetting is conven-
tional and widely used but is expensive and needs economic 
analysis and technical improvements to have commercial 
success [271].

Distillation

Steam distillation and hydro-distillation are two of the most 
extensively used techniques to extract oils, essential oils, and 
many other value-added products from biomass [274]. The 
volatile matters present in the biomass are allowed to vapor-
ize using steam and then collected and processed [275]. A 
more recent development is the use of molecular distillation 
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for the extraction of temperature-sensitive components 
where conventional methods cannot be applied [276, 277]. 
In molecular distillation, the distance between the evapora-
tion and condensation surfaces is less than the mean free 
path of the molecules [277].

Feasibility Analysis — Prospects 
and Challenges

The biomass to energy conversion technologies is at various 
stages of development. Table 6 provides a detailed compari-
son between different biomass to bioenergy conversion tech-
nologies, their economics, scale-up possibilities, commercial 
feasibility, and the current state of development.

Conversion processes like fermentation and anaerobic 
digestion are well established and economic, and have high 
commercial feasibility for 1G biomass conversion. However, 
as first-generation biomass feedstocks, like sugarcane and 
corn, compete for both food and fuel, their viability for fuel 
production is low. This is one of the major reasons why, 
despite being the second-largest producer of sugarcane, 
countries like India, China, and Brazil are yet to establish 
commercial large-scale plants for 1G bioethanol produc-
tion. Lignocellulosic or algal biomass conversion to energy 
is more lucrative because of their abundant availability; how-
ever, their pre-treatment processes and scale-up are a major 
bottleneck. Furthermore, algal biomass technology is still 
at its preliminary stages of development and its conversion 
methodologies are extremely energy-intensive making its 
commercial feasibility low. Thus, fermentation and anaero-
bic digestion for 2G bioethanol production have a high pos-
sibility but moderate feasibility until the lignin pre-treat-
ments and its scale-up are improved. Viabilities of chemical 
hydrolysis and enzymatic hydrolysis are also largely decided 
by the pre-treatment technologies and the cost of production.

Supercritical conversion and liquefaction technologies 
have enormous potential in terms of fuel production effi-
ciency and fuel quality. However, the high-pressure require-
ment is a huge barrier to their large-scale productivity. The 
development of catalysts to improve the reaction pathway 
and reduction in pressure and temperature requirements for 
these processes may enhance the possibility. Similarly, pro-
cesses like combustion and gasification are well understood 
and are currently used but have problems with GHG emis-
sions. Integration of these processes with  CO2 sequestration 
and their economic analysis is needed to make the process 
environment-friendly. Processes like torrefaction, HTC, and 
pyrolysis are still in the lab and pilot stages of development 
and lack cost information, optimized process parameters, 
and post-treatment methodologies leading to uncertainties 
about their commercial applicability. However, appropriate 
technological interventions like reactor design and catalyst 

development for bio-oil upgradation will allow the processes 
to be commercially developed. Thermochemical and bio-
chemical conversion processes integrated with microwave 
technology or ultrasound technologies are novel and they 
improve the conventional methods; however, their scale-up 
is a challenge. The energy analysis of each of these processes 
is required to understand the energy efficiencies. Many of 
these processes like gasification, microwave or ultrasound-
assisted processes, or processing that require drying of bio-
mass will have huge energy input. Thus, if this energy is 
derived from fossil fuels, then they do not serve the purpose. 
Alternatively, the integration of renewable energy resources 
is needed to make the system self-sustainable.

Modeling and simulation-based analysis of the bioenergy 
conversion processes is an alternate route to understand the 
behavior of the systems, perform parametric analysis and 
optimization, and improve the design, technology, and over-
all productivity [32, 33, 278]. These modeling techniques 
allow holistic development of the processes, reduce time and 
labor-intensive experiments, and lead to rapid technological 
advancements. In recent times, a lot of emphases are given 
to integrating artificial intelligence (AI)/artificial neural 
networks (ANN) and machine learning (ML) frameworks 
into these modeling techniques to enhance their performance 
[278]. Application of various optimization techniques like 
ant colony algorithm (ACA), genetic algorithm (GA), fuzzy 
logic, and particle swarm optimization (PSO) to the biologi-
cal and chemical processes allows improved optimization of 
parameters like temperature, pH, hydraulic retention time, 
and substrate concentration [278, 279]. Machine learning 
frameworks with various optimization algorithms have 
allowed researchers to optimize different bioenergy conver-
sion technologies like pyrolysis, anaerobic digestion, and 
the supply chain for biofuel processing involving biomass 
cultivation, feedstock quality control, processing, and emis-
sions [280–284]. Khan et al. and Ullah et al. applied ANN 
integrated with various optimization algorithms like GA, 
PSO, and grey wolf optimization, to predict bio-fuel forma-
tion in the pyrolysis process using biomass characteristic 
and pyrolysis condition data [282–284]. Similarly, Aniza 
et al. integrated supervised ANN with the Taguchi method 
to maximize the bio-oil and bio-char yield for pyrolysis and 
torrefaction processes [285]. Pereira et al. applied AI with 
a PSO algorithm to optimize industrial bioethanol produc-
tion [286]. The results show that optimization of the input 
parameters like biomass purity and pH, fermentation time, 
and temperature leads to a 10% increase in bioethanol pro-
ductivity [286].

Thus, these techniques can be successfully implemented 
to develop a better understanding of the processes and 
improve their engineering at a reduced cost, time, risk, and 
labor [278]. These models can be used to optimize the prob-
lems of biomass collection, transportation, and segregation 
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[280, 287]. However, validation of these models will require 
lab-scale and pilot-scale experimentations. Moreover, all 
the AI/ML-based models require a huge amount of data for 
model development. The authenticity and availability of the 
data will limit the usability and validity of these models. 
Thus, authentic data collection, data validation, data clean-
ing, and sorting will be crucial for these techniques to be 
successful. Suitable identification of the parameters, network 
architecture, AI/ML framework, and model validations are 
also critical when implementing these technology advance-
ments [280, 281, 287].

The commercial feasibility of biomass to energy conver-
sion technology depends upon the type of biomass feed and 
its cost, ease of biomass collection, segregation, storage and 
transportation, ease of operation, cost of production, ease of 
scale-up, product quality, and environmental and govern-
ment policies.

a) The entire biomass supply chain starting with biomass 
collection and segregation followed by storage and 
transportation to the point of conversion is currently an 
extremely cost-intensive process [288]. The agricultural 
biomass collection and segregation are normally done 
at the point of farming. However, collection and segre-
gation of forest residue and municipal waste collection 
are a major logistics problem due to lack of access and 
cost [289, 290]. Many technological interventions like 
chipper, tractor and guillotine blades, multi-tree han-
dling devices, harvesters, and forwarders are employed 
for forest residue collection; however, the process is 
cost-intensive and lacks global standardization [289]. 
The storing of the biomass collected is the next logistic 
challenge. Biomass containing 15–20% moisture may be 
stored without drying at a reduced cost of storage, but 
material loss during handling and loss of heating value 
needs to be analyzed [288]. However, biomass feedstock 
with high moisture content requires drying before stor-
age and expensive storage facilities to avoid biomass 
degradation [288, 290]. Multi-agricultural biomass 
approach is suggested by Rentizelas et al., to reduce the 
storage requirement and the cost by combining differ-
ent agricultural biomass to be stored and transported 
together [288]. Finally, the transportation of the biomass 
to the conversion facility is governed by the distance and 
location of the conversion facility, biomass density, load 
capacity of the vehicle, and traveling speed [290–294]. 
The preferable logistics and methodology for collection, 
storage, and transportation are decided by the cost of the 
process. AI/ML-based supply chain modeling and analy-
sis can help decide the most optimized options [280, 
290].

b) Once biomass feedstock reaches the location, the con-
version process is decided based on the type of bio-Ta
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mass, product requirement, and cost of production. As 
discussed previously, lignocellulosic biomass, munici-
pal waste, agricultural and forest residues, etc. have 
immense potential to become the preferred source of 
bioenergy provided the pre-treatment processes are 
made more economical and their technological barri-
ers to scale-up are removed. Biochemical and thermo-
chemical processes like fermentation (normal, dark, 
and photo), anaerobic digestion, and torrefaction are 
the most scalable processes that can be commercial-
ized to produce bio-methanol, bio-ethanol, and bio-
hydrogen. Large-scale algal biomass generation is also 
a lucrative option if the challenges of huge water and 
nutrient requirements, and large energy need for drying 
are addressed. Moreover, integrated processes and inte-
grated biorefineries demonstrate improved productivities 
compared to standalone conversion methods but require 
more technological interventions.

c) Most of the conversion processes being researched are 
energy-intensive. Drying the biomass for energy con-
version requires a huge energy input, which is currently 
derived from fossil fuels. Also, though we consider bio-
mass as  CO2 neutral process, many of the conversion 
technologies like pyrolysis, combustion, and gasification 
produces  CO2 during the process. Furthermore, burn-
ing of the bio-char or hydro-char will also release  CO2 
and other GHG. Mat Aron et al. has provided a detailed 
analysis of GHG emissions from different conversion 
process and concluded that there is no conversion pro-
cess with net-zero GHG emissions; however, the emis-
sions are much lesser compared to fossil fuel burning 
[40]. Thus, analysis of energy requirements for the 
process and the GHF emissions during the process and 
post-processing is imperative to choose the most energy-
efficient and environment-friendly process. Furthermore, 
fourth-generation (genetically modified) algal biomass 
may be developed to sequester the GHG and increase 
lipid production [40].

d) Finally, the policies and government interventions for 
standardization of biomass price and quality control are 
necessary. Government subsidies, support plans, and 
price incentives are also required to encourage industries 
to invest in the commercialization processes [295]. Pol-
icy interventions are also essential to encourage the 1G 
ethanol producers to move toward 2G ethanol produc-
tion, thus increasing food security [295, 296]. Another 
approach to expanding the biofuel sector is to estab-
lish small-scale biofuel plants in rural settings to meet 
their local energy needs via clean and sustainable routes 
[296]. Finally, to improve the global market for biofuels 
and create a global need, international collaborations 
and global market-oriented policies for the biofuel sector 
are crucial [296, 297].

Conclusions

Biomass as an alternate energy source is lucrative and has 
immense potential to be developed into a commercially 
viable solution to energy challenges and waste manage-
ment. Biomass is abundantly available throughout the 
world which allows biorefineries to be established at any 
geographical location. Biomass as a source of energy can 
fulfill the electricity, heat, and transportation fuel needs. 
However, policy interventions are required to standardize 
biomass feedstock collection, distribution, transportation, 
and cost. Efforts are also needed to make conversion tech-
nologies more economic, easy to scale up, user-friendly, 
and with improved productivity. More emphasis is needed 
to improve the lignocellulosic biomass, forest and agri-
cultural residues, and municipal waste pre-treatment and 
conversion processes. The choice of the best conversion 
technology will be decided by the ease of operation and 
cost of production along with its energy efficiency and 
environmental impact. Based on the current analysis, 2G 
biomass conversion via biochemical and thermochemical 
pathways holds the most prospects. However, this study is 
limited to bringing an overview of the entire biomass to 
energy process and the technological interventions. Some 
limited discussions on the collection, segregation, trans-
portation of biomass, AI/ML-based modeling, and opti-
mization routes and policies are presented. However, the 
biomass pricing and economics of the processes are not 
reviewed here. Furthermore, a more detailed discussion is 
entailed on challenges in storage and transportation of bio-
mass, policies, and other modeling and simulation-based 
approaches to improve bioenergy generation.
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