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Abstract
In the last decade, different multivariate statistical techniques have been applied to assist enzymatic production by micro-
organisms through solid state fermentation (SSF). The optimization of fermentative parameters such as temperature, time, 
pH, unit, aeration, spore concentration, and microbial strain significantly interfere in the process of enzymatic secretion by 
microorganisms. The advantage in using these statistical models is the reduction in the number of experiments, which pro-
vides savings in operational terms, in addition to the possibility of investigating the possible synergistic interactions between 
the fermentative parameters defined in the process. Statistical techniques such as central compound, Box-Behnken, Doehlert, 
and mix planning are limited to the experimental domain defined by the researcher, while the use of artificial neural networks 
(ANN), a tool based on artificial intelligence, eliminates this limitation and provides a mathematical model of the experi-
ment. This review demonstrates the application of ANN for modeling experiments in SSF and its versatility to hybridize 
to different experiment optimization techniques. Thus, it is noticeable that the artificial neural network is a computational 
tool with the potential for replacing conventional statistical techniques, in addition to overcoming the limitations of these 
techniques, since ANN has the ability to extrapolate the experimental domain.
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Introduction

Solid state fermentation (SSF) is a biotechnological pro-
cess in which microorganisms are grown on solid substrates 
in the absence of free water [1–4] or with enough water 
present only for the development of microorganisms that 
secrete metabolites such as enzymes [5–7]. In SSF, bioreac-
tors resemble the natural habitat of several microorganisms, 
including fungi that grow in conditions of low humidity [8, 
9]. The process takes place in less time, but with high pro-
ductivity [10, 11], in addition to the possibility of using solid 
waste as a substrate.

The most important factors to be considered during the 
development of SSF are the choice of microorganisms and 
substrates [12]. Moreover, the specific surface area of the 
substrate is a critical factor, since, in a fermentative process, 
the particle size interferes in the sufficient effective surface 
area for the adsorption and penetration of hyphae, providing 
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adequate diffusion of nutrients and gases for microbial devel-
opment [13]. In this condition, they are able to synthesize 
and secrete different enzyme complexes in addition to other 
metabolites [14, 15]. The enzymes produced, in turn, are less 
susceptible to problems of inhibition by the substrate and 
stable in the face of changes in temperature and pH [16, 17].

Microbial enzymes obtained in SSF [18] are highly 
important in the food and pharmaceutical industries [19, 
20], due to their applications in detergent formulation [21], 
food and feed processing [22], waste treatment [23], bio-
whitening [24], beverage preparation [25], cosmetics [26], 
biodiesel synthesis [27], ethanol [28], bioremediation [29], 
and fertilizer formulation [30].

The production of these enzymes by the microorganisms 
in the SSF depends on fermentative parameters such as incu-
bation temperature, fermentation time, pH, moisture con-
tent, aeration, and spore concentration [31]. The incubation 
period in the SSF influences the proliferation and accumula-
tion of biomass, since, as the amount of mycelium increases, 
there is also an increase in the amount of cellulase. However, 
there is a maximum period and, upon reaching this period, 
the substrate can be consumed for growth purposes, decreas-
ing enzyme synthesis [32].

pH is a parameter in the complex monitoring of SSF, and 
therefore, it is important to choose microorganisms that can 
grow in a wide pH range [33]. Another factor that interferes 
with the performance of the microorganisms in SSF is mois-
ture content, where a high content results in less porosity of 
the substrate, which prevents oxygen penetration; in contrast, 
a low moisture content can lead to poor accessibility of the 
nutrients, resulting in slow microbial growth [34].

Temperature is considered one of the main parameters 
and requires some attention in the fermentation process, 
since most of the microorganisms used in the SSF are mes-
ophilic, with an ideal temperature for growth between 20 
and 40 °C and maximum growth below 50 °C. Gradients 
of temperature can delay microbial activity, dehydration of 
the environment, and undesirable metabolic deviations [33].

The ideal relationship between these variables (SSF 
parameters) can be achieved using statistical methods [12, 
35–39], which are gaining an increasing trend in finding 
an optimal parameter. Their application may involve both 
methodologies: univariate and multivariate.

The univariate methodologies are based on the analysis 
of a factor by time (OFAT), in which the optimization is per-
formed by analyzing the effect of one factor at a time on the 
experimental response and only one parameter is changed 
while the others are constant; however, this is a limited tech-
nique, since it does not have the capacity to relate the effects 
between the variables, in addition to the high number of 
experiments [40, 41]. Despite the presented disadvantages, 
there are still works being carried out with this technique 
[42–47].

In contrast to OFAT, multivariate methodologies solve 
these limitations, since they use a data matrix that mitigates 
the levels and variables studied, enabling the interaction 
between all the factors studied and their influence on the 
desired response [48, 49].

Studies already carried out confirm that, in comparison 
to univariate methodology, the application of multivariate 
methodologies can help to increase enzyme production, find-
ing more beneficial process/reaction conditions. Al-Saman 
et al., in their study of lovastanin production by Aspergillus 
terreus ATCC 10,020 by SSF, observed a 600% increase 
in enzyme production when using a multivariate technique, 
the central composite design [50]. In another SSF study, 
Das et al. optimized the production of Penicillium amphi-
polaria inulinase using the central composite design and 
obtained a 310% increase in enzyme production [51]. Other 
works found in the literature report significant increases in 
enzyme production when using multivariate optimization 
techniques [5, 52]. Despite the advantages over the univari-
ate methodology, the multivariate methodology is restricted 
to the experimental domain (lower and upper levels) and 
does not have the ability to extrapolate that domain. One 
way to avoid these limitations is the use of artificial neural 
networks (ANN) [53].

ANN is one of the classes of bioinspired computational 
algorithms that make up the area of artificial intelligence 
and are applied to modeling, prediction, and classification 
of data from different areas of knowledge [53]. Its funda-
mental elements are artificial neurons, which are organized 
in a neural network with the ability to learn and generalize 
the input–output relationship of the available data set [54].

Thus, this review demonstrates the importance in the 
application of bioprocesses such as SSF in the production 
of enzymes and the application of ANN as an important 
optimization tool.

Application of Chemometric Techniques 
in the Production of Enzymes by SSF

The conventional multivariate statistical techniques (central 
composite design (CCD), Box-Behnken design (BBD), Doe-
hlert design (DD), and mixtures planning simplex-centroid 
(SC)) used for enzyme production by SSF differ according to 
the experimental objective. All techniques have a similarity, 
since it is necessary to determine the maximum and mini-
mum values for each variable included in the experimental 
domain [55]; in addition, the user must recognize two types 
of variables, the independent ones (factors) and the depend-
ent ones (responses). The independent variables influence 
the response and can be divided into two distinct groups, the 
process variables (fermentation time, pH, initial humidity, 
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incubation temperature, concentration, and inoculum, among 
others) and the mixing variables [56] (Table 1).

When applying a matrix using process variables, their 
levels can vary independently of each other; however, when 
mixing variables are used, such as the proportion of resi-
dues in fermentation processes, the answer is related to the 
proportion of each one of the components and their levels 
should vary considering the others [55, 56].

The statistical techniques mentioned up to this point are 
restricted and have disadvantages, such as the inability to 
evaluate interactions between variables (univariate method-
ology) and the maximum point in the studied planning is 
restricted within the experimental domain. These limitations 
can be overcome using the artificial neural network hybrid-
ized to optimization techniques.

Artificial Neural Network

Artificial neural networks are data processing systems that 
present a mathematical model inspired by a neural structure 
of living organisms. The most widely used artificial neuron 
has a multiple linear regression as a mathematical model as 
a function of the neuron inputs propagated to the output by 
a possibly non-linear function, called the activation func-
tion (Table 2). Each artificial neuron can have a number of 
linear regression weights equal to its number of inputs and 
one more bias, a weight that allows a translation of the out-
put to adjust non-zero mean functions [67]. The non-linear 
function gives the neuron the possibility to model non-linear 
relationships between its inputs and output [68, 69]. ANN is 
formed by the set of interconnected neurons, a set of inter-
connected non-linear regressors, giving it the property of a 
universal approximator [70].

A determining factor for the capacity of effective gener-
alization of the network is the way in which the neurons are 
arranged and interconnected, that is, their structure [71, 72].

ANN Structures

There are different models of organization of these neurons 
in the literature, each generating a network with specific 
functionality and application. Feedforward neural networks 
(FFNN) (Fig. 1a), also called multilayer perceptrons (MLP), 
have in their topology an input layer, an output layer, and at 
least one hidden layer; the term feedforward indicates that 
the network is designed to travel the signal given in one 
direction, from the input nodes passing through the hidden 
layers to the output nodes, without connections to the previ-
ous nodes [70]. In MLP, artificial neurons are organized in 
parallel forming hidden layers between the input layer (input 
data) and the output layer (output data). Due to the unique 

direction of propagation of the signal from the input to the 
output, they are called feedforward. If the outputs of a layer 
are completely connected to the inputs of the next layer, they 
are called fully connected [71].

Recurrent neural networks (RNN) (Fig. 1b) are dynamic 
systems with memory and the ability to incorporate the feed-
back loop and, consequently, powerful representation capac-
ity [73]. In RNN, the connections between nodes generate a 
closed cycle and this characteristic is what differentiates it 
from FFNN, they are more suitable models for processing 
sequential input and learning long time dependencies within 
the data, and each sample is considered dependent on previ-
ous data [74]. Modular neural networks are used to predict 
oil production [75], computational process prediction [76, 
77], and meteorological forecasts [78].

Modular neural networks (MNN) (Fig. 1c) are a combina-
tion of structures in which small neural networks are moder-
ated by some intermediary fuse to solve a problem; this type 
of network is indicated to eliminate local minimums in larger 
networks, such as multilayer perceptrons [79]. After the 
resolution of the separate modules, the combination occurs 
from an integration unit, which generates the general output 
of the complex system [80]. Modular neural networks can be 
used in computing as in the creation of patterns [80], they 
can act by assisting neural networks with unbalanced train-
ing sets [81], and they can be applied in medicine, through 
the classification of lung diseases [82].

Neural Network learning

The ability of ANN to learn the input–output relationship 
of a set of data occurs through the optimization process of 
the weights and bias of neurons. This optimization aims to 
minimize a function of the error between the expected value 
of an output for a given input and the output obtained by the 
network for the same input. As an example of the most-used 
error functions are the mean squared error (MSE) and the 
root mean squared error (RMSE) [83].

Weights optimization is called network training, usually 
carried out by methods based on the gradient of the net-
work error in relation to weights and biases. The gradient, 
calculated by the chain rule, relates the network error to all 
weights and bias from the output layer to the input layer, 
giving this optimization process the name backpropagation 
due to the direction of error propagation. The most usual 
gradient-based method is the Levenberg–Marquardt, with 
the main advantages also using the error hessian in relation 
to weights and bias and a variable learning rate [70].

The optimization process can be carried out in batch 
(only once), in parts (minibatch). or with the new data 
being applied one by one, in sequence. Usually, a mini-
batch is used, with a user-defined size, to avoid the high 
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Table 1  Independent variables 
(process and mixing) applied in 
the optimization of fermentation 
processes

Process variables
Design Parameter Microorganism Enzyme Ref.
CCD Water activity

Incubation temperature
Penicillium roqueforti ATCC 10,110 Lipase [4]

CCD Fermentation time
Humidity

Aspergillus niger α-Amylase [11]

CCD Water activity
Incubation temperature
Fermentation time

A. niger Laccase
Lignin peroxidase
Manganese peroxidase

[34]

CCD pH
Fermentation time
Humidity

Mucor circinelloide Inulinase [1]

CCD Inoculum
pH
Incubation temperature
Fermentation time
Humidity

Cladosporium sp. l-Asparaginase [57]

CCD Yeast extract
Inoculum
Incubation temperature
Fermentation time
Humidity

Purpureocillium lilacinum CFRNT12 Chitosanase [58]

BBD Inoculum
pH
Substrate size
Temperature
Fermentation time
Humidity

Trichoderma reesei NCIM 1186
Neurospora crassa NCIM 1021

Cellulase [10]

BBD Water activity
Incubation temperature
Fermentation time

A.s orizae ATCC 10,124 Endoglucanase [39]

BBD Incubation temperature
Fermentation time
Humidity

A. oryzae ATCC 10,124 Endoglucanase [17]

BBD Temperature
Time
Humidity

P. roqueforti ATCC 10,110 Xylanase [6]

BBD Incubation temperature
Fermentation time
Humidity

P. Roqueforti ATCC 10,110 Xylanase [59]

DD Incubation temperature
Fermentation time

P. roqueforti ATCC 10,110 Endoglucanase
Xylanase

[3]

DD Frying oil residue
Lubricant residue
Fermentation time

Penicillium sp. Lipase [60]

DD Inoculum
Incubation temperature
Fermentation time
Humidity

Bacillus sp. UEB-S Liquenase [61]

Mixing variables
Design Substrates Microorganism Enzyme Ref.
SC Mesquite

Red grass
Cotton seed

A. niger MTCC 872 Lipase [5]

SC Cottonseed
Red grass
Wheat bran

Aspergillus sp. l-Asparaginase [62]
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computational cost of optimizing all data at once and reduc-
ing the randomness of doing the optimization for each data 
separately.

The network training process depends on the number 
of neurons in the network (or number of hidden layers 
and number of neurons per layer in the case of MLP) 
and depends on the initial conditions of weights and bias 
used in the optimization process. This makes the training 

process of a network experimental, where different num-
bers of neurons and different initializations of the weights 
and bias must be tested until a satisfactory result of the 
error function is reached [71].

Another problem associated with training is overfitting, 
where the excess of neurons leads to models without gen-
eralization capacity, especially if the training data con-
tains outliers or noise [71]. This is evidenced by a model 
with a high hit rate for training data, but a low hit rate for 
other data. A measure commonly used for the quantitative 
assessment of the generalization capacity of a network is 
the coefficient of determination, which represents an error 
measure with greater weighting for errors in data that are 
more distant from the average of the outputs [83].

As a methodological tool to create generalist networks, 
the set of data available for learning is divided into train-
ing, validation, and test data, generally divided into 70%, 
15%, and 15% of the data, respectively [71].

Table 1  (continued)
SC Orange peel

Cotton bran
Soybean meal
Wheat bran

A. niger LBA 02 l-Asparaginase [63]

SC Cotton bran
Soybean meal
Wheat bran

A. oryzae LBA 01 Protease
α-Amylase

[64]

SC Oat bran
Soybean meal
Wheat bran

A. tamarii URM4634 β-Fructofuranosidase [65]

SC Corn cob
Rice bran
Wheat bran

A. awamori GHRTS Fructosyltransferases [66]

Table 2  Main activation functions in artificial neural networks

Logistic sigmoid (LS) f(x) =
1

1+e−x

Hyperbolic tangent f (x) =
1−e−2x

1+e−2x

Radial base function or Gaussian func-
tion

f (x) = exp
(

−
(x−c)2

r2

)

Rectified linear unit function (ReLU) f (x) = 0forx < 0;xforx ≥ 0

Maxout function or leaky ReLU max(wT
1
+ b1,w

T
2
x + b2

Swish function f (x) = x ∗ sigmoid(x)

Fig. 1  Structural representation of feedforward neural networks (FFNN)—multilayer perceptrons (MLP) (a), recurrent neural network (RNN) 
(b), modular neural network (MNN) (c), and their weights (w)
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The training data are used to minimize the error function; 
in this step, the number of neurons is also defined [70]. The 
validation data are used to measure the generalization capac-
ity of a trained network, and if the network does not present 
an adequate value, a new training is carried out. Finally, the 
test data is data not applied in the previous steps and used to 
measure the performance of the network for new data, simu-
lating the application of the obtained network. It is usual to 
measure the function of error and generalization for the test 
data and to extrapolate these statistical measures for future 
applications into data statistically compatible with the test 
data, where the expected output is usually unknown [70].

Use of ANN in SSF

The application of hybridized ANN to optimization tech-
niques for enzymatic production by SSF can be considered 
as a new line of research, since eight studies were found in 

the last 10 years (Table 3). In these studies, factors such as 
fermentation time, incubation temperature, humidity, pH, and 
supplementation with various salts were used as input data. 
The investigated enzymes were lipase by Penicillium roque-
forti ATCC 10,110 [83] and Candida rugosa NCIM 3462 [88], 
exoglucanase by P. roqueforti ATCC 10,110 [84], laccase by 
Pleurotus ostreatus PVCRSP-7 [85], xylanase by Thermomy-
ces lanuginosus VAPS -24 [86], tannase by Bacillus gottheilii 
M2S2 [87], protease by Rhizopus oryzae (SN5) / NCIM-1447 
[89], and cellulase by Trichoderma stromaticum AM7 [90]. In 
all reported studies, satisfactory values in precision and predic-
tion were obtained (factors that indicate satisfactory modeling 
performance); as well, all studies showed high values of R2.

Table 3  Applications of hybridized artificial neural networks with optimization techniques for enzymatic production by solid state fermentation

GA genetic algorithm, RSM response surface methodology, LM Levenberg–Marquardt, BPA backpropagation algorithm, GN Gauss–Newton, 
EVOP design Evop-factorial

Microorganism utilized Enzyme Substrate Input layer neurons (factors) Training algorithm Hybridiza-
tion with 
RNA

Ref

Penicillium roqueforti ATCC 
10,110

Lipase Cocoa bark 1. Incubation temperature
2. Fermentation time
3. Humidity

LM GA [83]

Penicillium roqueforti ATCC 
10,110

Exoglucanase Mixture:
Sugar cane bagasse
Green coconut shell
Corn cob

1. pH
2. Incubation temperature
3. Fermentation time
4. Humidity

LM GA [84]

Pleurotus ostreatus PVCRSP-7 Laccase Black grass bark 1.  CuSO4
2. Glucose
3. Inoculum
4. Peptone
5. Incubation temperature
6. Humidity

LM GA [85]

Thermomyces lanuginosus VAPS-
24

Xylanase Wheat bran 1. Carbon source
2. pH
3. Incubation temperature
4. Fermentation time

GA [86]

Bacillus gottheilii M2S2 Tannase Crude tannin 1. Aeration
2. Substrate
3. Humidity

GA; RSM [87]

Candida rugosa NCIM 3462 Lipase Mixture:
Peanut oil cake
Sesame oil cake
Coconut oil cake

1. Substrate/moisture ratio
2. Incubation temperature

BPA RSM [88]

Rhizopus oryzae (SN5)/NCIM-
1447

Protease Mixture:
Soybean meal
Wheat bran

1. pH
2. Proportion of substrate
3. Incubation temperature

LM + GN EVOP [89]

Trichoderma stromaticum AM7 Cellulase Peach palm residue 1. Nitrogen source
2. Fermentation time
3. Incubation temperature

LM GA [90]
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Conclusion

Multivariate statistical techniques are successfully applied in 
solid state fermentation (SSF) to optimize parameters such 
as pH, incubation temperature, fermentation time, initial 
humidity, and substrate proportions. Artificial neural net-
works hybridized to optimization techniques have the ability 
to overcome the limitations of univariate (lack of interac-
tion between variables and a high number of experiments) 
and multivariate (inability to extrapolate the experimental 
domain) methodologies, enabling higher enzyme yields. 
There already exist reports that prove the efficiency of this 
powerful tool based on artificial intelligence for the produc-
tion of enzymes by SSF.
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