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Abstract Plant biomass offers a renewable and environmen-
tally favorable source of sugars that can be converted to dif-
ferent chemicals, second-generation ethanol, and other liquid
fuels. Cellulose makes up approximately 45 % of the dry
weight of lignocellulosic biomass. Prior to the enzymatic hy-
drolysis of cellulose, lignin and hemicellulose must be struc-
turally altered or removed, at least in part, by chemical and/or
physical pretreatments. However, the high cost and low effi-
ciency of the enzymatic hydrolysis prevent the process from
being economically competitive. For this reason, it is neces-
sary to find enzymes suitable for this type of process, with
higher specific activities and greater efficiency. Members of
the Bacillus and Paenibacillus genera have been traditionally
used for the production of many enzymes for industrial appli-
cations. Cellulases produced by both genera have shown ac-
tivity on soluble and crystalline cellulose and high thermosta-
bility and/or activity over a wide pH spectrum. In this review,
the most recent information about the characterization of cel-
lulolytic enzymes obtained from new strains of the Bacillus
and Paenibacillus genera are reviewed. We focused on the
variety of isoenzymes produced by these cellulolytic strains,
their optimal production and reaction conditions, and their
kinetic parameters and biotechnological potential.
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Introduction

There is a need to diversify energy sources that are sustainable
and less environmentally harmful than fossil fuels. One of the
most viable options to replace or complement the demand for
gasoline is ethanol [1], which is also an attractive product in
the chemical and medical-pharmaceutical industries. Ethanol
is non-toxic or carcinogenic when used as a fuel. Vehicles can
use it without requiring major modifications in engines.
Furthermore, ethanol is easy to store, transport, and distribute
within the existing infrastructure [2, 3].

There are biotechnological alternatives to producing
biofuels from renewable raw materials, e.g., agro-industrial
wastes. These are abundant and of low cost (or none) and
are not used for human consumption [4, 5]. A few examples
include stover, cobs of corn, sorghum stover, barley straw,
wheat, sugar cane bagasse, agave leaves, rice bran, and oats,
among others. These residues are abundant and have mar-
ginal use [4]. The annual worldwide production of lignocel-
lulosic residues from cereals is estimated to be
2802 million Mg year−1 [6]. Lignocellulosic biomass from
this agricultural waste constitutes approximately 90 % of the
dry weight of plants and is mainly composed of cellulose,
hemicellulose, and lignin. The compositions of the different
residues are shown in Table 1 [3].

In Mexico, renewable energy sources have a specific legal
framework, i.e., the Law on the Use of Renewable Energy and
Energy Transition Financing, published in the Official Diary
on 28 November 2008. This regulation establishes the obliga-
tion of the Secretary of Energy to develop a special program
for the exploitation of renewable energy, a national strategy
for energy transition, and a sustainable use of energy. In this
context, there are several available renewable energy alterna-
tives based on solar, wind, hydraulics, geothermal, and bio-
logical sources [7, 8].
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Although Mexico has only started to commercialize first-
generation ethanol as a biofuel [9], there is an insufficient
production level of corn, other grains, sugar cane, and beet
that will generate enough ethanol to complement the national
gasoline demand. These products have other purposes, such as
human consumption and livestock feed, and should not be
considered for use as raw materials for the manufacture of
biofuels. However, residues of these crops can be used for
the production of second-generation biofuels.

The useful components of agroindustrial residues, i.e., cel-
lulose, hemicellulose and lignin polymers, are strongly
intermeshed and chemically bonded by non-covalent forces
and cross-linking bonds [10]. Cellulose is approximately
45 % of the dry weight of lignocellulosic material. This linear
homopolysaccharide is composed of D-glucose subunits that
form cellobiose and is linked by β-1,4-glycosidic bonds.
Cellulose is primarily present in crystalline form (i.e., orga-
nized chains linked by hydrogen bonds and van der Waals
forces and highly resistant to enzymatic hydrolysis) and, to a
lesser extent, as amorphous cellulose (i.e., unorganized chains
more susceptible to enzymatic degradation) [10, 11].

Prior to the enzymatic hydrolysis of cellulose, lignin and
hemicellulose must be structurally altered or removed, at least
in part, by chemical and/or physical pretreatments [12–15].
These treatments also disrupt the crystalline structure of cel-
lulose and increase enzyme accessibility [16, 17]. The enzy-
matic hydrolysis of agroindustrial waste requires a consortium
of enzymes called cellulases (e.g., endocellulases,
exocellulases, and β-glucosidase), ligninases (e.g., laccases,
oxidases, and peroxidases), and hemicellulases (e.g.,
xylanase, xylosidase, arabinofuranosidase, feruloyl esterase,

acetyl xylan esterase, galactosidase, and glucuronidase) [10,
18, 19]. The degradation of lignocellulosic residues is affected
by factors including the source of substrate, enzymatic activ-
ity, and reaction conditions (e.g., temperature, pH, and reac-
tant concentrations). Enzymatic treatments can be applied be-
fore or after the traditional physicochemical pretreatments of
plant biomass to reduce the severity and eventually replace
thermochemical processes by simplifying the processing of
the raw material [13].

Cellulases consist of the following three types of enzymes:
(I) endo-β-1,4-glucanases (EC 3.2.1.4), also called
carboxymethylcellulases (named after the substrate used for
their detection), randomly attack internal sites in amorphous
cellulose to produce binding sites for subsequent attack by
cellobiohydrolases; (II) exo-β-1,4-glucanases or
cellobiohydrolases (EC 3.2.1.91) hydrolyze crystalline cellu-
lose by removing monomers and dimers from the end of the
glucan chain; and (III) β-glucosidases (EC 3.2.1.21) hydro-
lyze glucose dimers and, in some cases, cellulose oligosaccha-
rides to glucose [18].

In addition to the biofuel industry, cellulases can also be
applied in waste water treatment, starch processing, animal
food production, grain alcohol fermentation, malting and
brewing, the production of lactic acid and single cell proteins,
the extraction of fruits and vegetables, the pulp and paper
industry, and the textile industry [20, 21].

Cellulose enzymatic treatments tend to be expensive, slow,
and relatively inefficient [22–26]. A few of the technical chal-
lenges in the use of cellulose at the large-scale for biofuels
production include low specific enzymatic activity and high
costs of cellulase production. Furthermore, cellulose is

Table 1 Compositions of various
types of lignocellulosic biomasses Residue Cellulose Hemicellulose Lignin Reference

Sugarcane bagasse 38.1 26.9 18.4 [116]

Corn stover 36.4 22.6 16.6 [117]

Corn stover 39.0 19.1 15.1 [116]

Corn stover 29.9 23.0 21.7 [15]

Corn cob 45.0 35.0 15.0 [114]

Sorghum stover 29.7 15.4 25.9 Unpublished data

Wheat straw 38.2 24.7 23.4 [117]

Wheat straw 30.0 50.0 15.0 [114]

Rice straw 34.2 24.5 23.4 [117]

Rice straw 41.0 21.5 9.9 [116]

Rice husks 36.1 19.7 19.4 [116]

Cotton 80–95 5–20 0 [114]

Paper 85–99 0 0–15 [114]

Newspaper paper 64.4 21.7 21.0 [116]

Newspaper paper 40–55 25–40 18–30 [114]

Soft wood stalks 45–50 25–35 25–35 [114]

Wood hard stalks 40–55 24–40 18–25 [114]
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resistant to direct enzymatic attack due in part to strong pro-
tection by lignin and hemicellulose. Cellulose molecules in
crystalline form are compactly packed and are impermeable
to enzymes and water [27]. The hydrolysis of crystalline cel-
lulose is considered a limiting step in the conversion of ligno-
cellulosic biomass to ethanol. For this reason, it is necessary to
find new microorganisms producing enzymes suitable for this
type of process and with higher specific activities and greater
efficiency [28]. The characterization of these enzymes could
help to accomplish cellulosic biomass breakdown at the in-
dustrial scale.

Endoglucanase activity is the first stage in the enzymatic
breakdown of cellulose. A few cellulolytic microorganisms
appear to secrete distinct variants of endoglucanases
[29–35]. Some of these bacterial endoglucanases, mainly from
extremophilic microorganisms, have been cloned, purified,
and studied for their catalytic properties (e.g., optimum reac-
tion conditions, thermal stability, variety of isoenzymes, and
sometimes kinetic parameters) [20, 28, 36–44].

Because the enzymatic breakdown of cellulose is the result
of a set of synergistic activities, the knowledge of the catalytic
properties of individual cellulases is insufficient to determine
the potential applications of an enzyme complex produced by
a particular microorganism [23]. To this degree, studies have
characterized cellulolytic enzyme complexes mainly of fungal
origin. These works have focused on finding optimal reaction
conditions or proper balances of the three cellulolytic activi-
ties [45–51]. Other studies have evaluated the behavior of
enzyme complex mixtures from different fungi [25, 52–55].
However, scarce information exists on the kinetic behavior of
cellulolytic enzyme complexes [35, 46, 56–59], and because
enzymes can be inhibited by their own reaction products, this
effect will largely determine their potential applicability [17,
22, 23, 35, 60–66].

Cellulolytic Bacteria

A wide variety of bacteria and fungi produce enzymes that
catalyze the hydrolysis of cellulose. Bacterial enzymes that
degrade vegetal biomass primarily include anaerobes, faculta-
tive anaerobes, and extremophiles (e.g., thermophiles,
alkaliphiles, and halophiles). These bacterial cellulases have
relatively high activity on crystalline cellulose, such as Avicel
or cotton fibers [67]. However, the enzymatic degradation of
cellulose remains an expensive, slow, and inefficient task.
Interest in the application of these enzymes for the degradation
of lignocellulose has motivated the search and isolation of
these cellulolytic bacteria in different environments [22]. A
few of the most studied environments have been soil samples
obtained from mesophilic and extremophilic environments,
where species of the order Bacillales thrive. For example,
Bacillus sp. and Paenibacillus sp. have been found to produce

enzymes (either as cellulosomes or secreted proteins) that hy-
drolyze lignocellulose to assimilate released sugars, i.e., hex-
oses and pentoses, as carbon sources [22, 28, 35, 42–44, 46,
68–71].

As catalysts for commercial applications, high tolerance
and high temperature stability are desirable properties for en-
zymes. Compared with fungal cellulases, bacterial cellulases
typically have better thermostability. Additionally, bacteria
have shorter generation times and can easily grow to reach
high cell densities using inexpensive sources of carbon and
nitrogen. This provides the ability to efficiently produce great
amounts of enzymes. Additionally, the expression systems
and bacteria cultures are easier to handle. As such, high ex-
pression levels of endogenous cellulases in bacteria are more
easily achieved than with fungal cellulases [40]. The Bacillus
and Paenibacillus genera currently have a large number of
applications as producers of different types of enzymes and
metabolites at the industrial level [20, 72, 73]. Their commer-
cial applications as producers of cellulases and hemicellulases
need to be seriously explored. Herein, we discussed the most
recent studies on the cellulolytic strains of these bacterial
genera.

Bacillus and Paenibacillus Genera as Sources
of Novel Cellulases

Cellulosome Producer Strains

Cellulases and hemicellulases can be secreted by cells as free
enzymes or as extracellular cellulosomes. The collective ac-
tion of multi-enzymatic systems can be more efficient than the
activity of individual enzymes [3, 74]. Cellulosomes are su-
pramolecular extracellular machines produced by anaerobic
microorganisms belonging mainly to class Clostridia [22]
and are able to degrade crystalline cellulose and other poly-
saccharides of the plant cell wall. Cellulosomes have also been
identified in the mesophilic anaerobic species of Acetivibrio,
Bacteroides, Butyrivibrio, and Ruminococcus [75–77].
However, there is evidence of the existence of cellulosomes
in a facultative anaerobic bacteria of the genus Bacillus [69,
78–80] and in fungi, such as Neocallimastix, Piromyces, and
Orpinomyces [81, 82]. Other cellulolytic bacteria are also
speculated to produce cellulosomes [39].

Cellulosomes were first identified in 1983 by Lamed et al.
[83] inClostridium thermocellum, an anaerobic, thermophilic,
and spore-forming microorganism. Cellulosomes have high
activity for crystalline cellulose [67] and have also been re-
ported in Clostridium cellulolyticum and Clostridium
cellulovorans [22].

Each cellulosome containsmany different and complemen-
tary types of enzymes that act on carbohydrates, including
cellulases, hemicellulases, and carbohydrate esterases.
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Furthermore, carbohydrate-binding module (CBM) domains
bind tightly to cellulose. These enzymes are held together by
carrier proteins (scaffoldins) to form a multi-enzyme complex.
This cellulosome arrangement improves plant cell wall degra-
dation; the close interaction of the different enzymes exploit
enzymatically accessible regions of cellulose. Intermediary
products of enzymatic subunits can be quickly transferred to
other subunits for their subsequent hydrolysis [74, 76, 84–87].
One advantage from a biotechnological point of view is that
cellulosomes do not need to be attached to cells to function.
Furthermore, cellulosomes can function in aerobic and anaer-
obic conditions [3]. The existence of the cellulosomes reduces
energy waste in microorganisms that continuously produce
and release cellulases.

Available information about mesophilic, facultative anaer-
obic, and cellulosome producers remains insufficient.
B . mega t e r i um ha s b e en r epo r t ed t o p r oduc e
celluloxylanosomes (with cellulase and xylanase activities)
[69]. Similarly, Paenibacillus curdlanolyticus B-6 produces
two multi-enzyme cellulosome complexes (400 and
1450 kDa) with cellulolytic and xylanolytic activities.
Although this bacterium was isolated from an anaerobic envi-
ronment, the multi-enzyme production occurs during aerobic
and mesophilic conditions [88, 89]. The facultative anaerobe
Bacillus licheniformis SVD1 also produces a 2000-kDamulti-
enzyme complex under aerobic mesophilic conditions [80].
For thermophilic aerobic bacteria, there are few reports about
the presence of cellulosomes. The thermophilic strain belong-
ing to the family Paenibacillaceae, Brevibacillus sp. JXL
(closely related to the Bacillus and Paenibacillus genera), is
one of the few examples observed by scanning electron mi-
croscopy showing protuberances, which indicated
cellulosome production on the cell surface [39]. More recent-
ly, transmission electron microscopy revealed the presence of
cellulosome structures in Paenibacillus polymyxa EG2 and
EG14 [90, 91].

Secreted Cellulase Producer Strains

Members of the Paenibacillus and Bacillus genera are facul-
tative anaerobes and can produce many different enzymes for
industrial applications [20, 72, 73]. Table 2 shows general
characteristics of cellulolytic enzymes reported for these bac-
terial genera. In cellulase production, a few members of
Bacillus sp. have been reported to produce up to 0.26 U/mL
of secreted endoglucanase in liquid culture [40], which repre-
sents a 19 times higher production with shorter culture times
(between 0.03- and 0.016-fold) compared with those of fungi
traditionally used for commercial production [92]. Cellulases
from these two genera have shown activity on soluble and
crystalline cellulose, high thermostability, and/or high activity
over a wide pH spectrum [22, 35].

In 2000, Chu et al. [93] identified five extracellular proteins
of Bacillus subtilis K-1, which are specifically induced when

Table 2 General characteristics of cellulolytic enzymes reported for the
Bacillus and Paenibacillus genera

Characteristics Value/intervals References

Production in submerged
culture (U/mL)
Endoglucanase 0.2–2.8 [35, 40, 59, 96, 102,

113]

Avicelase 0.1–0.34 [96]

β-Glucosidase 1.2 [96]

Xylanase 2–12 [96, 102]

Number of isoenzymes 1–14 [28, 35, 37, 38, 40–44,
80, 88, 91, 109, 110]

pH range with high activity

Activity ≥70 % 2–9 [35]

Activity ≥80 % 4–6 [59]

4.5–9.5 [37]

5–7.5 [107]

6–8 [41]

7–8 [38]

Optimum pH

3.4 [35]

5.0 [59]

5.5 [113]

6.0 [20, 42, 112]

6.5 [38, 40]

7.0 [28, 41, 107, 111]

7.5 [37]

8.5 [108]

Temperature range with high activity (°C)

Activity ≥70 % 40–60 [35]

Activity ≥80 % 40–60 [59]

40–70 [107]

Optimum temperature (°C)

37 [37]

40 [112]

48 [35]

50 [28, 40, 59, 107, 113]

55 [108]

60 [38, 41, 111]

65 [20, 42]

Hydrolysis in long term
reactions

40 %
hydrolysis
in 12 h

[35]

Kinetic constants

Michaelis-Menten constant
(Km) (% CMC)

0.05–0.87 [20, 35, 41, 59, 107,
110]

Maximum reaction rate
(Vmax) (U/mg)

0.056–33.3 [35, 59]

Inhibition constants
(Kic, Kiu) (mM)

0.03; 0.35 [35]
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cultured in media with xylan, i.e., a polymer of xylose that
constitutes most hemicelluloses. Three of these proteins were
related to the metabolism of xylan and were identified as xy-
l o s e i s om e r a s e p r o d u c e d f r om C l o s t r i d i um
thermosacchrolyticum, endo-β-1,4-xylanase from Bacillus
sp. C-125, and endo-β-1,4-xylanase from Bacillus
stearothermophilus. The other two identified proteins were
similar to 3-dehydroquinate dehydratase produced from B.
subtilis (related to quinic acid catabolism) and GltC, a regula-
tory protein of B. subtilis (related to the synthesis of gluta-
mate). Furthermore, three other proteins were detected; how-
ever, these proteins showed no similarities to other proteins in
available databases. The isolation of the Bacillus strains with
cellulolytic activity has also been reported in semi-arid soils of
Brazil and in forest soils [94, 95]. Additionally, Kim et al. [96]
reported three strains (SL9-9, C5-16, and S52-2) of Bacillus
isolated from soil and composts of South Korea that produced
CMCase (0.2 to 0.9 U/mL), Avicelase (0.1 to 0.34 U/mL), β-
glucosidase (up to 1.2 U/mL), and xylanase (2 to 12 U/mL) in
submerged culture, which suggested synergic cellulolytic sys-
tems inB. subtilis. CMCase, Avicelase, and xylanase activities
were observed in cell-free culture supernatants, and β-
glucosidase activity was detected in cell debris. This sug-
gested that the three enzymes were extracellular, and β-
glucosidase was cell membrane bound.

The Paenibacillus genus has been reported in recent years
as a producer of lignocellulose-degrading enzymes [88,
97–100]. The Paenibacillus sp. B39 strain was isolated from
compost made with poultry manure. This strain produced a
high molecular weight (148-kDa) cellulase having the activi-
ties of Avicelase and carboxymethylcellulase, showing the
highest activity at 60 °C at pH 6.5 [38]. The Paenibacillus
campinasensis BL11 strain was isolated from strongly alka-
line black liquor resulting from the washing step of the Kraft
process during paper pulp treatment. This strain is thermophil-
ic and spore-forming and produces extracellular enzymes,
such as xylanases, two cellulases, pectinase, and cyclodextrin
glucanotransferase [37]. Most recently, Ghio et al. [101] re-
ported the isolation of Paenibacillus sp. VG-4-A-2 and VG-4-
A-3 with cellulolytic activity from soil samples of Argentine
forests; these strains were closely related to Paenibacillus
alvei strains. Subsequently, Ghio et al. [102] identified
Paenibacillus sp. A59, which showed a broad range of hydro-
lytic activities, being capable of degrading carboxymethylcel-
lulose (endoglucanase 0.45 U/mL), xylan (xylanase 3.6 U/
mL), starch, pectin, casein, and chitin. Fathallh et al. [103]
reported the isolation and identification of Paenibacillus
woosongensis SDCB10 and SDCB11, which have the capac-
ity to produce cellulase, xylanase, β-glucanases, and
mannanases on Dubose solid medium. Shi et al. [104] report-
ed on Paenibacillus sp. E18, which produces a bifunctional
xylanase-glucanase. Awide variety of extracellular cellulases
was observed in the P. polymyxa BEb-40 strain, which was

isolated from decomposing sorghum straw on farmland in El
Bajio, Mexico. A thermophilic strain Brevibacillus sp. JXL
(belonging to the Paenibacillaceae family) was isolated from
swine manure and can use crystalline cellulose, carboxymeth-
ylcellulose, xylan, cellobiose, glucose, and xylose as carbon
sources [39].

Basic information on the production of cellulases by these
microorganisms is scarce. The few reports that exist have only
described isolating enzymes from culture broths. These en-
zymes have mainly been endoglucanases produced by ther-
mophilic species of the Bacillus genus. These reports have
described a few enzymatic properties, such as Michaelis-
Menten constants (Km), maximum reaction rates (Vmax), and
stabilities at extreme temperatures and pH values [28, 40–44,
68, 71]. As mentioned earlier, enzymes obtained from these
extremophile microorganisms usually show optimum perfor-
mance under extreme pH or temperature. The maintenance of
this type of hydrolytic condition for production scale opera-
tions can be costly. Furthermore, these conditions do not fa-
cilitate the application of these enzymes in processes such as
simultaneous saccharification and fermentation (SSF), where
the fermentative microorganism culture is not adapted for ex-
treme conditions (the optimal temperature for enzymatic hy-
drolysis is typically close to 55 °C, while that of yeast fermen-
tation is typically at 30 °C) [105, 106]. Herein, we show the
most recent information on the qualitative and quantitative
characterization of cellulolytic enzymes produced by the
strains of the Bacillus and Paenibacillus genera (Table 2).

Production of Cellulases in Submerged Culture

The production of bacterial cellulolytic enzymes is preferably
performed with submerged cultures due to advantages in scal-
ing, optimization, and control. A prior study [40] reported that
a maximum cellulase activity (0.26 U/mL) was reached in
cultures of thermophilic B. subtilis DR grown during 24 h in
a CMC-supplemented Luria broth. Other studies have report-
ed high levels of activity in other cellulolytic bacteria of the
same order of magnitude. Another study [59] isolated
extremophilic strains, Bhargavaea cecembensis IARI-M-75
and Bacillus sp. IARI-AN-27, which produced 0.79 and
0.89 U/mL of endoglucanase activity, respectively, in 96 h
cultures with carboxymethylcellulose-supplemented Reese’s
minimal medium. Other strains from the same work produced
activity levels between 0.1 and 0.8 U/mL. In contrast, a com-
mercial enzyme complex NS50013 (Novozymes) was report-
ed to have a specific CMCase activity of 3.1 U/mgtotal protein at
pH 4.8 [107]. In comparison, purified 58-kDa cellulases from
Paenibacillus spp. were reported to have activities ranging
from 3.2 to 72.1 U/mg, for Avicel and CMC as substrates,
respectively [108]. A recombinant endoglucanase (Endo5A)
from Paenibacillus sp. MTCC 5639 and a purified enzyme
from Paenibacillus barcinonensisMG7 had specific activities
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of 14.6–24.2 and 16.88 U/mg, respectively [20, 100, 107].
The endoglucanase complexes from P. polymyxa BEb-40
showed specific activities between 14.3 and 33.3 U/mgtotal
protein (depending on reaction conditions) [35]. Interestingly,
these bacterial enzymes showed higher specific activity than
the fungal enzyme complexes mentioned above (Table 2).

Detection of Secreted Isoenzymes with Endoglucanase
Activity

Electrophoretic and zymographic one- and two-dimensional
methods were used to detect cellulolytic enzymes in culture
broth samples. These methods have enabled the study of a
variety of isoenzymes, the characterization of their molecular
weights and isoelectric points, and their isolation and identifi-
cation by mass spectrometry. Van Dyk et al. [80] described
(using zymography) the presence of three endoglucanase ac-
tive bands in crude supernatants obtained from cultures of B.
licheniformis. Other studies have reported the existence of
similar numbers of enzymes having endoglucanase activity
in the Bacillus genus: one of 24.4 kDa produced by B.
licheniformis [43], two secreted by B. subtilis 168 grown in
LB broth, separated by 2D PAGE and identified byN-terminal
sequencing [109], one of 54 kDa secreted by Bacillus
amyloliquefaciens DL-3 [28], one of 55 kDa produced by B.
subtilisDR [40], one of 65 kDa from Bacillus sp. [41], two of
27 and 54 kDa found in B. subtilis LN [44], and one of 52 kDa
produced by B. subtilis I15 [42]. Ko et al. [37] reported the
presence of three cellulases (42, 57, and 86 kDa) in the culture
broths of the thermophilic bacterium P. campinasensis BL11.
Another strain from the genus Paenibacillus, named B39, was
observed to secrete a 148-kDa endoglucanase [38]. The strain
P. polymyxa MTCC10056 was observed to produce two
endoglucanases of 26.5 and 34 kDa [110]. More recently,
zymograms obtained after the electrophoretic separation of
crude enzymes (SDS-PAGE) enabled the detection of the ac-
tivity of three cellulolytic enzymes with approximate molec-
ular masses of 220, 200, and 130 kDa in P. polymyxa EG2 and
EG14 strains; these strains were identified as cellulosome pro-
ducers [91].

Although the variety of isoenzymes detected by
zymography has generally been low (between 1 and 3 isoen-
zymes per strain), a number of endoglucanases have been
described for Paenibacillus strains. Nine non-secreted
endoglucanases over a wide range of molecular weights (from
63 to 216 kDa) were detected in P. curdlanolyticus B-6 [88].
Furthermore, at least 14 secreted endoglucanases with molec-
ular weights between 38 and 220 kDa were detected in P.
polymyxa BEb-40 [35] (Table 2).

Further improvements to zymographic detection tech-
niques will surely help in detecting a growing variety of cel-
lulolytic and hemicellulolytic isoenzymes. The environmental
conditions to which cellulolytic microorganisms are subjected

have fostered the evolution of isozyme complexes suitable for
a wide range of environments. These different environments
are favorable for the development of enzymes suitable for
industrial applications.

Optimization of Enzymatic Hydrolysis

The primary environmental factors that have been studied for
eliciting maximum cellulolytic activity are pH and tempera-
ture and, to a lesser extent, substrate concentration and reac-
tion times. Herein, we list optimum temperature and pH
values that have been reported for recombinant cellulases
and also those that have been purified from culture broths.
Lee et al. [28] described a purified cellulase (54 kDa) pro-
duced by B. amyloliquefaciens DL-3 with optimal conditions
at 50 °C and pH 7.0. A 55-kDa endoglucanase from B. subtilis
DR was reported to have maximum activity at 50 °C and
pH 6.5 [40]. Another 65-kDa endoglucanase from Bacillus
sp. achieved maximum activity at 60 °C and pH 7.0 [41].
The recombinant 52-kDa endoglucanase obtained from
B. subtilis I15 showed optimal behavior at 65 °C and pH 6.0
[45]. Three endoglucanases secreted by P. campinasensis
BL11 showed maximum activity at pH 7.5 and 37 °C, and a
recombinant 38-kDa enzyme from the same strain was opti-
mized at 60 °C and pH 7.0 [37, 111]. A purified 148-kDa
endoglucanase secreted by Paenibacillus sp. B39 and a
58.6-kDa enzyme obtained from P. barcinonensis had optimal
conditions at 60 °C and pH 6.5 and 65 °C and pH 6.0, respec-
tively [20, 38]. Ogawa et al. [108] reported Paenibacillus spp.
strains that expressed endoglucanases (approximately 58 kDa)
that hydrolyzed CMC under alkaline conditions (pH 8.5) at
approximately 55–60 °C. A recombinant endoglucanase,
Endo5A, from Paenibacillus sp. MTCC 5639 and an enzyme,
Cel5A (64 kDa), from Paenibacillus xylanilyticus were re-
ported to have optimal hydrolysis conditions at pH 7.0 and
50 °C and pH 6.0 and 40 °C, respectively [107, 112]. CMCase
activity produced by Paenibacillus terrae ME27-1 (2.08 U/
mL) was optimized at a pH and temperature of 5.5 and 50 °C,
respectively. The CMCase produced by this strain was stable
from pH 4.0 to 11.0 at more than 60 % activity levels [113].
Interestingly, most of the reported optimal conditions occurred
at pH values close to neutrality or slightly alkaline and at
thermophilic temperatures. Thus, these endoglucanases have
possible applications under alkaline and high-temperature
conditions.

P. polymyxa BEb-40 has recently been reported to produce
endoglucanases at optimal reaction conditions of 48 °C and
pH 3.4. This enzyme complex showed high levels of activity
of at least 70 % of the maximum activity for a wide pH range
between 2 and 9 from 40 to 60 °C. These wide ranges enable
the application of these enzymes in a wide variety of hydro-
lytic processes, including those wherein biomasses have been
subjected to acidic or alkaline pretreatment over mesophilic to
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thermophilic temperatures. Furthermore, these enzymes can
even be used in SSF processes [35]. Relatively wide pH and
temperature ranges have been reported for cellulolytic com-
plexes from other microorganisms from these genera. The
enzyme complex produced by the acidophilic bacterium
Bacillus sp. IARI-AN-27 can reach ≥80 % of its maximum
endoglucanase activity from pH 4 to 6 and between 40 and
60 °C (with optimum conditions at pH 5 and 50 °C). The
thermophilic bacterium B. cecembensis IARI-M-75 was re-
ported to reach the same levels of activity at a pH range of
4.5 to 6.5 and from 50 to 70 °C (with optimum conditions at
pH 5 and 60 °C) [59]. The endoglucanase complex produced
by P. campinasensis BL11 was stable at pH between 4.5 and
9.5 [37]. Other purified endoglucanases have shown narrower
ranges of stability, such as those described by Afzal et al. [41]
with activities of at least 80 % of respective maximums at pH
levels between 6 and 8. A 148-kDa endoglucanase purified
from Paenibacillus sp. B39 retained at least 80 % of its max-
imum activity at a pH range from 7.0 to 8.0 [38]. A recombi-
nant endoglucanase Endo5A from Paenibacillus sp. MTCC
5639 retained at least 80 % of its maximum activity at a pH
range between 5 and 7.5 and from 40 to 70 °C [107]. As can
be seen, for these two bacterial genera are enzymes with wide
pH and temperature values which show high enzyme activity
(Table 2).

Cellulose Hydrolysis in Long-Term Reactions

Enzymatic cellulose hydrolyses are typically carried out over
prolonged reaction times due to low rates of reactions.
Substrate levels affect the yield and initial rates of enzymatic
reactions, and the extent of this effect is dependent on the ratio
of total substrate to total enzyme [114]. For this reason, the
performance of newly discovered enzymes should be evalu-
ated under operating conditions that allow for their analysis in
potential industrial applications. A number of factors should
be varied, including the substrate to total protein ratio (S/TP),
the reaction time, and the presence of reaction inhibitors, to
determine the maximum yield of fermentable sugars. For ex-
ample, for fungal purified exoglucanase Cel7A from
Trichoderma reesei, Bezerra and Dias [115] reported the pro-
duction of cellobiose using Avicel as a substrate. They found
that the maximum cellobiose concentration after 47 h (approx-
imately 8 g/L) was not affected for substrate/enzyme ratios
between 37 and 92 (for enzyme concentrations between 600
and 1000 μg/mL and for substrate concentrations between
36,758 and 55,000 μg/mL). Similarly, Gastelum-Arellanez
et al. [35], using an endoglucanase complex from P. polymyxa
BEb-40, recorded CMC hydrolysis data for long-term reac-
tions. After a 10–12-h reaction period, they found that the
S/TP ratio increased up to a value of 76 had no significant
effects on the CMC hydrolysis level (approximately 40 % of
the theoretical maximum). The effects of the S/TP ratio are

technically and economically important when considering the
potential applications of enzyme complexes because high ra-
tios allow for reduced enzyme loads and therefore, reduced
costs. However, few studies have investigated the effects of
this ratio for cellulolytic enzymes from Bacillus and
Paenibacillus.

Kinetic Characterization of Cellulase Activity

Cellulolytic enzymes are frequently subjected to competing in-
hibition effects involving the product of the enzyme reactions,
free sugars, and oligosaccharides. The potential applications of
an enzyme complex will depend largely on its maximum reac-
tion rate (Vmax), Michaelis-Menten constant (Km), and inhibition
constants (Kic and Kiu). Michaelis-Menten constants were re-
ported for endoglucanases produced by Bacillus sp. IARI-AN-
27 and B. cecembensis IARI-M-75 (0.11 and 0.31 % CMC,
respectively) with Vmax values of 0.635 and 0.056 U/mg [59].
A few purified endoglucanases have shown Km values compa-
rable with those mentioned above. A 65-kDa endoglucanase
produced by Bacillus sp. had a Km value of 0.41 % CMC
[41]. Likewise, a 52-kDa endoglucanase from B. subtilis I15
presented a Km of 0.36 % CMC [110]. Recombinant
endoglucanases, Endo5a from Paenibacillus sp. MTCC 5639
and a 58.6-kDa enzyme from P. barcinonensis, were reported to
have Km values of 0.097 and 0.05 % CMC, respectively [20,
107]. Another endoglucanase produced by P. polymyxa
MTCC10056 showed a Km value of 0.87 % CMC [113].

An endoglucanase complex of P. polymyxa BEb-40 was re-
ported to have a Vmax = 33.3 U/mgtotal protein, which was approx-
imately 52 and 595 times higher than the maximum reaction
rates of a few of the above-described enzymes. The Km value
was 0.14 % CMC, and the inhibition constants Kic and Kiu were
0.03 and 0.35 mM, respectively, i.e., up to two orders of mag-
nitude lower than the Km, indicating an important end-product-
inhibition effect [35]. The higher maximum specific activities
reported for enzymes produced from these two bacterial genera
would allow for decreased total enzyme loads (and decreased
costs) for cellulose hydrolysis processes. However, for signifi-
cant inhibitory effects, these enzymes could be used primarily in
SSF processes, where the consumption of reducing sugars by
the cultured microorganism would reduce the effects of end-
product-inhibition. However, data on such processes have not
been reported in studies of cellulolytic complexes from Bacillus
and Paenibacillus. Most studies have only focused on determin-
ing the apparent values ofKm and Vmax and have not considered
the inhibitory reactions (Table 2).

Conclusion

The Bacillus and Paenibacillus genera have strains that have
produced various commercially applied enzymes and
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metabolites. Regarding cellulases, the strains have produced
enzymes with very interesting catalytic properties in industrial
applications. A few of these strains are capable of producing a
wide variety of isoenzymes and have high production yields in
submerged cultures. These bacterial enzyme complexes have
generally shown high levels of specific activity on lignocellu-
losic substrates, with competitive hydrolysis yields (and at
times, even higher yields) comparable with most cellulolytic
fungal enzymes. Furthermore, these complexes have high ac-
tivity and yields over wide ranges of pH and temperatures,
making them attractive and worthwhile to further explore to
identify new strains for use in industrial processes for
obtaining biofuels and other value-added products. The study
and characterization of cellulases present in the secretomes of
these cellulolytic strains will help improve the basic under-
standing of their behavior and generate the information and
tools necessary for the development of possible commercial
applications.
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