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Abstract Since the 1950s, research has been undertaken to
promote algal oil as a sustainable alternative to fossil fuels.
This paper statistically analyzed 317 studies of algal bioreac-
tors to determine the interdependence of biological and phys-
ical factors affecting oil yield. Algal growth rates in bioreac-
tors often (71 %) exceeded maximal growth rates cited in the
literature, and biomass was generally higher than maximum
values cited for laboratory cultures. Growth rate decreased
with increasing biomass, and biomass, not growth, dominated
production rate, which was higher in closed than in open bio-
reactors. Except for Chlorella cultured in horizontal tubular
reactors, there were no statistical differences in algal produc-
tion when grown in different types of reactors. Production
decreased with increasing bioreactor volume, but increased
with surface to volume ratio of the bioreactor. In contrast,
estimated oil yields increased with bioreactor volume. Four
groups of bioreactors were identified based on their oil yields
and biomass production: (1) higher yields with lower produc-
tion were limited to open systems with volumes ≥104 L; (2)
higher yields with higher production were almost exclusively
closed bioreactors from 102 to 103 L; (3) lower yields with
higher production were closed systems from 3 to 99 L; and (4)
lower yields with lower production were a mix of open and
closed systems with diverse volumes. Based on these groups,
it is suggested that intermediate volume bioreactors with
higher surface to volume ratios could give higher yields and
production rates and would avoid the environmental and

scale-up problems inherent in large bioreactors currently be-
ing used commercially to culture microalgae.
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Introduction

Research on algal production rates for biofuels and commer-
cial products has lead to a plethora of work on open bioreac-
tors, such as ponds [1–34] and raceway flumes [4, 34–66], and
closed bioreactors, such as vertical [67–91], horizontal [34,
40, 92–142] and helical tubes [97, 143–154], flat plates [66,
155–184], and other unique designs [133, 185–189]. This
research dates back to the early 1950s and was chronicled in
a historical perspective by Borowitzka [190].

Most species that have been studied produce only 30–50%
of their biomass as lipids [191, 192]. Given this limitation in
cell lipid storage, the focus on increased biofuel yields has
been on operating bioreactors to optimize the culture condi-
tions and increase production. To maintain high yields of bio-
fuel from microalgae-based processes, it is essential to devise
culture systems that deliver high lipid content and high prima-
ry productivity. The former can be achieved by selecting target
species to optimize neutral lipid production and storage. The
later can be achieved by increasing biomass, cell growth rate,
and volume of the culture system. High biomass, growth rate,
and to some extent, lipid content are enhanced by optimal
culture conditions through regulation of temperature, nutri-
ents, and irradiance. However, to achieve these culture condi-
tions, the size of the bioreactor can vary from the laboratory
flasks of 10−1 L to large raceway ponds, on the order of 106 L.

Many excellent reviews have compared the various designs
and provided photographs and illustrations of these bioreactor
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systems [66, 96, 190, 193–201]. However, few papers have
examined statistical relationships from these bioreactor stud-
ies, with the exception of Williams and Laurens [199], who
determined that closed bioreactors were more productive than
open systems. This paper has compiled over 60 years (1953–
2015) of data from review articles and their original refer-
ences, special reports, and recent articles on algal culture sys-
tems and has statically analyzed optimum algal production
rates (i.e., algal primary production or productivity) based on
the algal class, cell volume, growth rates, biomass concentra-
tion, the bioreactor type, and the volume of the bioreactor.
Maximum growth rates in laboratory cultures were compared
to growth rates in larger (>1 L) bioreactors. Bioreactor bio-
mass was compared with data from both the laboratory and
phytoplankton ecology. Finally, the most effective culture sys-
tems for increasing production rate were examined, as well as
how predicted oil yields vary with scale-up of the culture
system. This paper does not evaluate the types of lipids pro-
duced by algae, which is very important to biofuel commer-
cialization—see BA matter of details^ [202], but focuses in-
stead on the efficacy of bioreactors as culture systems.

Methods

Data were collected from 189 articles, comprising 317 exper-
iments on the cultivation of microalgae in open and closed
bioreactors. From these articles, information was collected
on algal species, specific growth rate (μ), biomass of the cul-
ture (B), production rate (P), and bioreactor type, volume (V)
and illuminated surface area (SA). All articles reported pro-
duction rates as either mass per volume per time (g L−1 day−1

as dry weight) or mass per surface area per time (g m−2 day−1).
In this paper, the bioreactor volumes are in liters; therefore,
units of g m−2 day−1 were converted to g L−1 day−1 by multi-
plying the appropriate surface area and dividing by the culture
volume in liters. For studies that did not report growth rates
(73 %), growth was determined from the plot of biomass over
time in the article. However, if no plots or data were presented,
the relationship μ = P B−1 was assumed valid.

Bioreactors were grouped into seven types: two open and
five closed bioreactor systems. The two open systems were
raceway ponds (RW, n = 84) and ponds (n = 53), and the five
closed systems were vertical tubular reactors (VTR, n = 30),
helical reactors (n = 17), horizontal tubular reactors (HTR,
n = 58), flat plate reactors (FP, n = 56), and unique reactors
(UBR, n = 10), which included cascades (n = 5), cones (n = 3),
and dome/parabolic (n = 2). For bioreactors, both volume and
surface areas were reported or calculated. Most studies (91 %)
either reported the illuminated surface area of bioreactors or
provided dimensions and orientation of bioreactors such that it
was possible to calculate the surface area. For some studies of
ponds and raceway systems where only the surface area was

given, the volume was calculated based on depth. If no depth
was given, a mean depth of 0.1 m was assumed, based a
nominal depth of the majority of these systems using data
from Benemann [203] and Oswald [204]. For deeper ponds,
of say 0.2 m, this would lead to twofold over-estimation of
volume; however, this is still a small deviation in volume
given the 2 to 106 L range of bioreactors studied.

While all articles reported species and/or genus, few
gave the cell size or cell volume. Most, however, reported
the origin of parent cultures, in which case cell size was
found by searching the culture collection’s webpage for
the target species’ dimensions. For articles where this was
not possible, cell size was taken from Round [205] and
for diatoms from Cupp [206]. Finally, cell volume was
calculated based on cell morphology as a sphere or cylin-
der, with chains and colony size based on these two
shapes.

Most studies cited the maximum biomass or provided
graphs of biomass dry weight in grams per liter (g L−1).
Only 19 % reported cell number per culture volume (i.e., cell
concentration). In this case, cell concentration was multiplied
by the biomass per cell using Strathmann’s empirical relation-
ship to convert to biomass [207]. Strathmann’s equation spec-
ifies pg dry weight carbon (C) per cell as a function of cell
volume, and was converted to g dry weight biomass assuming
that 52 % of the biomass was organic matter on a dry weight
basis. Although the Strathmann regression applies to marine
phytoplankton, the same trend occurs for freshwater species
[208].

Results for bioreactor systems were compared with regres-
sions of maximal growth rates, biomass, and production taken
from the literature, which represent optimal conditions in lab-
oratory cultures. Maximum growth rates were plotted against
cell volume for diatoms [209], coccolithophores [210], green
algae and cyanobacteria [211], and mixed species [212].
Biomass from bioreactors was compared to maximum cell
concentrations from laboratory cultures [213] after converting
concentration to biomass using Strathmann’s equation.
Biomass was also compared to phytoplankton in temperate
[214] and tropical [215] oceans after converting biomass per
cell to g L−1 dry weight.

Regressions for biomass per cell (Bc), normalized biomass
(B′), cell concentration (C), and maximum growth rate (μmax)
all followed a power law relationship, where

Y ¼ aVb
c ð1aÞ

Transforming to a log relationship, the equation for a line is
as follows:

logY¼logaþblogV c; ð1bÞ
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where Y is the parameter of interest, log a is the intercept, b
the slope, and Vc is the cell volume in μm3. The units and
regression variables a, b, and Y are given in Table 1.

Data from bioreactors were plotted for Eq. 1b, and confi-
dence intervals were determined. To compare with regression
data from bioreactors, confidence intervals for regressions in
Table 1 were plotted for the original data points or were esti-
mated from reported sample size and standard errors.

All statistical tests were done in Microsoft Excel using
XLSTAT 2013 (V6.04) and StatPlus 2009 (V5.8) software.
Turkey’s and Bartletts’ tests were used to compare variances
between groups while a chi-squared test was used to deter-
mine normality of group distributions. Given equal variance
and normality, differences between linear regressions were
tested using analysis of covariance (ANCOVA). To compare
the effect of different factors on cultures, analysis of variance
was performed for equal variance distributions, otherwise the
non-parametric Krustal-Wallis test was employed or a Student
t test if only two means were compared.

Results

Microalgae

For the 317 bioreactor cultures referenced in this paper, a total
of only 35 genera were used. However, some algae have been
studied more than others. Green algae have been used in al-
most half of the studies (45.6 %) with 19 % accounted for by

Chlorella spp. (Table 2). The second most studied class was
cyanobacteria at 27 %, which was mostly Spirulina spp.
(24 %). The unequal number of genera and species, some of
which had small sample sizes, lead to unequal cell volume
distributions for growth, biomass, and production regressions,
as well as non-normality and unequal variances.
Consequently, genera were grouped into classes to increase
the sample size for statistical power.

Growth Rates

Maximal growth rates of microalgae have been found to be
inversely proportional to cell volume (Table 1). Figure 1
shows that the highest growth rates in laboratory studies were
for diatoms of all sizes followed by coccolithophores
>400 μm3. The lowest growth rates were for cyanobacteria
and green algae, which were similar for both unicellular and
colonies of all sizes.

Marañón et al. [212] found growth rates of mixed cultures
(i.e., not class-dependent) were between diatom and
coccolithophore maxima and only varied inversely with cell
volume for the larger (≥100 μm3) cell volumes. Smaller cells
(<100 μm3) displayed the reverse trend, although the magni-
tude of growth rates of these smaller cells varied between
maxima for coccolithophores and green/cyanobacteria
(Fig. 1).

For the different species grown in bioreactors, growth rates
ranged from 0.01 to 4.8 day−1. Although growth rates from
bioreactors also had an inverse relationship to cell volume for

Table 1 Coefficients for
regression of cell biomass, cell
concentration, and maximal
growth rates, all based on Eq. 1b

Parameter (log Y) Units log a b r2 Reference

log Biomass

Bc, Biomass cell−1a pg C DW cell−1 −0.314 0.712 0.90 Strathmann [207]

B′, Biomass mgC L−1 mg−1cell−1 −0.965 −0.158 0.96b Rodríguez and Mullin [214]

log C, cell concentration

Laboratoryb

Tropical ocean

cells mL−1

cells mL−1
8.79

3.61

−0.790
−1.29

0.94

0.98

Agusti and Kalff [213]

Huete-Ortega et al. [215]

log μmax, Max. growth

Green algae, total day−1 −0.164 −0.073 0.11 Adapted from Neilsenc [211]

Cyanobacteria, total day−1 −0.184 −0.067 0.11 Adapted from Neilsenc [211]

Diatoms day−1 0.580 −0.110 0.70 Banse [209]

Coccolithophores day−1 0.544 −0.32 0.86 Buitenhuis [210]

Mixed, >100 μm3 day−1 0.220 −0.150 0.86 Marañón et al.d [212]

Mixed, <100 μm3 day−1 −0.430 0.190 0.94 Marañón et al.e [212]

a Independent of light or temperature regimes
bAssumed light saturated cultures at 222 μE m−2 s−1

c New regression on volume using original data based on diameter
d Original regressions for >40 μm3

eOriginal regressions for <300 μm3
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cyanobacteria, coccolithophores, diatoms, and green algae
(Fig. 2), their low correlation coefficients indicated that cell
volume did not explain the variation in growth (Table 3).

Confidence intervals for maximum and bioreactor growth
rates of diatoms did not overlap (Fig. 2), indicating that
growth in bioreactors was statistically lower than the maxi-
mum calculated by Banse [209]. The fact that confidence in-
tervals for other algal classes did overlap, however, does not
mean that maximum growth rates and those in bioreactors
were not statistically different.

Even though growth rates were normally distributed for
all the classes, the variance for coccolithophores was
significantly lower than others (Χ2(3, 227) = 32.9;
p < 0.0001). Because of the unequal variance and the lack
of linearity, growth curves could not be directly compared
for the classes. However, cell volumes binned to similar
sample sizes showed growth rates were not significantly
different for algal classes (Table 4). Additionally, growth
rates were not statistically different for binned cell volumes
(Table 4).

Comparing means of growth rates in bioreactors was not as
meaningful as assessing the highest growth rates achieved in
the bioreactors. Indeed, it does not make sense to compare
average growth rates in large bioreactor.

For small laboratory cultures, maximum growth rates for cell
volumes <500 μm3 were ranked as follows: diatoms >
coccolithophores > cyanobacteria = green algae. In contrast, the
highest growth rates in the bioreactors were ranked as follows:
cyanobacteria = green algae = diatoms > coccolithophores.

Overall, 71 % of the growth rates for the bioreactor studies
were higher than maximum growth rates reported in the litera-
ture. Bioreactor growth rates exceeded maximal rates for 51 of
72 cyanobacteria, 14 of 18 coccolithophores, and 82 of 118 for
green algae studies. Only once did the diatom growth rate in a
bioreactor exceed the maximum rate, and this was in a biore-
actor system under high light (600–900 μEm−2 s−1) and low
mixing for a short duration [113].

Biomass

The maximum, theoretical biomass (i.e., concentration) of an
algal culture is given by the maximum number of cells packed
per liter of culture and is based on the cell volume, and thus cell
mass (Table 5). Several studies have shown that phytoplankton
cell concentrations and standardized mass vary inversely with
cell volume (and size), as seen by the negative slopes in
Table 1. This is intuitive since a larger number of smaller cells
can be packed into a liter compared to larger cells. However,
Strathmann [207] showed that cell mass increases with cell vol-
ume (and size). Therefore, themaximumnumber of small cells in
a liter of culture would have about the same biomass as fewer
large cells in the same volume, and the maximum biomass
should be constant for all cell sizes. Indeed, when converted to

Table 2 The percentage of dominant classes, genera, and cell types
represented in this paper. Of the 35 genera in the 317 studies, genera in
fewer than two studies were not listed here; hence, the total is 92.6 % and
not 100 %

Class/genus Percentage (%) Cell type

Cyanobacteria 27

Spirulina 24 Colonial

Nodularia 1 Colonial

Synechocystis 1 Unicellular

Diatoms 18.5

Phaeodactylum 7.6 Unicellular

Chaetoceros 3.8 Chains

Cyclotella 1 Unicellular

Fistulifera 1 Unicellular

Green 45.6

Chlorella 19 Unicellular

Nannochloropsis 9.7 Unicellular

Tetraselmis 5.5 Unicellular

Scenedesmus 4.8 Chains

Haematococcus 2.8 Unicellular

Dunaliella 2.4 Unicellular

Micractinium 1.7 Colonial

Chlorococcum 1.4 Unicellular

Prymnesiophceae 6.2

Pleurochrysis 3.1 Unicellular

Isochrysis 2.1 Unicellular

Other 2.1

Porphyridium 1.7 Colonial

Total percent of classes 99.4

Total percent of genera 92.6

Fig. 1 Maximum growth rates as a function of cell volume based on
Table 1
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biomass in g L−1 using Strathmann’s equation, this inverse rela-
tionship of cell concentration on cell volume is much weaker
(Table 4) since the mass per cell increases with cell volume
making the slopes of biomass per cell volume less negative
(Fig. 3).

The regression of bioreactor biomass over cell volume had a
low correlation coefficient, and the slope was not statistically
significant (Tables 5 and 6). Results of the ANCOVA for bio-
mass comparisons showed a slight statistical significance
(P > 0.033), which was attributed to growth rate (|t| > 0.015)
but not to class or binned cell volume (Table 7).

Despite the large degree of scatter in bioreactor biomass,
values were less than the packed cell biomass, but much greater
than ocean populations, and overlapped the maximum biomass
for laboratory data. Still, bioreactor biomass exceeded the max-
imum laboratory biomass in 86% of the samples. Themaximum
biomass and the biomass in the bioreactors were orders of mag-
nitude greater than distributions in the natural environment, most
likely because in aquatic environment, loss rates are higher (e.g.,
herbivory and bacterial/viral infects), and optimum growth con-
ditions are seasonal.

Production Rates

The linear dependence of production rate on biomass and
growth rate was compared, as was algal class and binned cell
volume. Productivity was not statistically significant for
binned cell volume or for algal class but did vary with both
biomass and growth rate (Table 8). The fact that biomass is
related to growth rate means that production could be directly
affected by growth rate and indirectly affected by the influ-
ence of growth on the maximum biomass. However, it could
also indicate that production is directly affected by biomass
and that biomass affects growth, say by shading cells and
reducing optimum growth conditions.

The maximum production rate in full sunlight has been
estimated at 173 g C m−2 day−1 for cultures grown on nitrate
as a nitrogen source and about 200 g C m−2 day−1 for ammo-
nium [216, 217]. The later gives a biomass production of
approximately 400 g m−2 day−1 or 4 g L−1 day−1 for a
b ioreac tor wi th a 10:1 sur face to volume ra t io
(400 g m−2 day−1 × 10m2 m−3/1000 L m−3), which is within
the range calculated by Williams and Lauren [199].

Fig. 2 Growth rates from
bioreactor cultures (solid symbols,
dashed regression lines) and
maximum growth rates (open
symbols, gray regression lines)
versus cell volume. Confidence
intervals are plotted at the 95 %
level for maximum growth rates
(shaded in gray) and bioreactor
systems (dotted lines). Regression
constants for cultured systems are
presented in Table 3

Table 3 Regressions of
bioreactor growth rates as a
function of cell volume, Vc, for
the four major algal classes

F P SS n log a a b r2

Cyanobacteria 10.6 0.002 2.47 72 0.466 2.922 −0.282 0.131

Coccolithophores 4.21 0.058 0.05 17 0.127 1.340 −0.124 0.167

Diatoms 0.44 0.512 0.10 35 −0.214 0.611 −0.084 0.013

Green algae 6.93 <0.01 1.89 116 −0.040 0.912 −0.195 0.049
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Production in bioreactors varied from 2 × 10−3 to
12 g L−1 day−1 with biomass changes from 3 × 10−3 to
67.3 g L−1 and growth rates from 10−2 to 4.8 day−1

(Fig. 4a). Mean values were 0.74 g L−1 day−1, 3.4 g L−1, and
0.61 day−1 for production, biomass, and growth, respectively.
Although it may seem odd to plot biomass and growth as a
function of production (and not vice versa), this clearly shows
that biomass was more correlated than growth rate to produc-
tion as seen by the slope of the regression lines in Fig. 4a.

Additionally, for production rates ≥1 g L−1 day−1, the mean
growth rate was 0.79 day−1, which was only 18% greater than
the overall mean, while the mean biomass was 8.7, nearly
triple that of the overall mean biomass. All these trends indi-
cate that production was dominated by biomass, and not
growth rates, which were much more constrained. Further, it
appears that for high biomass, growth rates declined, probably
as light or nutrients or both become limiting (Fig. 4b).

Bioreactor Types

Production rates for open ponds and raceway bioreactors had
lower variances than closed bioreactors and significantly low-
er mean production (χ2 = 70.7, P < 0.0001) compared to the
higher production rates in closed bioreactors (Fig. 5a), which
was also found by Williams and Lauren [199]. However, var-
iances for production in the five types of closed bioreactors
were not different, and neither were their mean production
rates (Fig. 5b), (df = 156, F = 0.849, P = 0.496).

Unfortunately, few algal species have been grown in all
types of closed bioreactors making comparisons difficult.

For species that have been cultured in more than one bioreac-
tor type, statistical analysis was hampered by low samples size
for one or more bioreactor types. Therefore, in some cases,
species were grouped into classes to increase sample size to
make comparisons possible. Figure 6 shows that production
across algal classes was not statistical different in either open
(df = 194, F = 0.7105, P = 0.5468) or closed systems
(df = 191, F = 0.7105, P = 0.547). As in Fig. 5a, closed
bioreactors had significantly higher production than open
systems, independent of algal class (df = 297, F = 3.529,
P = 0.001).

Comparing production for bioreactor type (Fig. 7), the
only statistical difference was in the horizontal tubular
reactors (HTR), where Chlorella production was signifi-
cantly higher than cyanobacteria production (df = 42,
F = 7.182, P = 0.001). Species means for flat plates
(df = 42, F = 0.569, P = 0.638), VTR (df = 23,
F = 1.24, P = 0.309), and helical tubes (df = 6,
F = 1.087, P = 0.985) were not significantly different.
When comparing production within a species cultured in
different bioreactors, only Chlorella had a mean P signif-
icantly larger for HTR than for FP and VTR (df = 33,
F = 5.641, P = 0.008). No differences in P were deter-
mined for diatoms (df = 25, F = 0.900, P = 0.4567),
Nannochloropsis (df = 17, t = 1.663, P = 0.114),
cyanobacteria (df = 13, t = 1.666, P = 0.119), or
Tetraselmis (df = 16, t = 2.1767, P = 0.0443) cultured
in different bioreactors. Generally, it seems that most
microalgae grow equally well in most bioreactors.

Looking at the effects of physical characteristics of biore-
actors, production rate was inversely related to the volume of
the bioreactor (Fig. 8a) and directly proportional to surface
area (not shown). The relationships for production were sta-
tistically significant at the 95 % level (df = 256, F = 16.585,
P < 0.0001) for both volume and surface area of the bioreac-
tors (Table 9). Interestingly, production varied directly with
surface to volume ratio (Fig. 8b), though the trend had a lower
correlation coefficient (r2 = 0.0484, df = 265, F = 4.73,
P = 0.030). There was a significant difference in production

Table 4 ANCOVA results for growth rates by class and binned cell
volumes

Source df SS MS F P

Class 4 8.176 2.044 1.363 0.247

Error 237 355.36 1.499

Total 241 363.54

Table 5 Regressions of biomass
(g L−1 dwt) for bioreactor cultures
and lab and ocean populations

F P SS n log a a b r2

Culture systems 0.59 0.44 0.166 249 −0.942 0.114 −0.018 0.006

Packed cellsa 2.987 970.6 −0.288
Lab. culturesb −0.524 0.299 −0.078
N. Pacific Gyrec −6.143 7.2 × 10−7 −0.112
Tropical Atlanticd −5.824 1.5 × 10−6 −0.348

a Based on Table 6
b Cells L−1 from Agusti and Kalff [213] converted to biomass, in g L−1 , using g cell−1 from Strathmann [207]
c Biomass from Rodríguez and Mullin [214] converted to g L−1 from Strathmann [207]
d Cells L−1 from Huete-Ortega et al. [215] converted to biomass, in g L−1 , using g cell−1 from Strathmann [207]
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for open systems and three of the closed bioreactors (VTR,
HTR, and FP) with the flat plates having the highest produc-
tion rates (Table 10).

Bioreactor volume and illuminated surface area (SA) are
physical variables that depend on the design of the culture
system. Both directly affect production, and thus oil yield.
For instance, a production rate of 1 g L−1 day−1 in a 102-L
bioreactor would yield a biomass of 102 g day−1, while the
same production rate in a 106-L pond would yield 106 g day−1.
Surface area of the culture system is important since it deter-
mines the photon flux to the cultures, while the ratio of surface
to volume relates to the light path.

Figure 9a shows that surface area was highly dependent on
the volume of the bioreactor (df = 265, F = 1360, P < 0.0001)
with most of the variance accounted for by the volume
(r2 = 0.880). However, this increase in surface area was ac-
companied by a reduction in the surface to volume ratio,

which decreased from about 102:1 to <1:1 m2 m−3. This
change in the surface to volume ratio is more clearly shown
in Fig. 9b

Predicted Oil Yield

The oil yield from algal cells depends not only on production
rate and culture volume but also on the mass of lipid droplets
in the cells (species-specific) and the efficiency of extracting
them. Yield is given by:

Yield ¼ PVSoeoρ−1oil; ð2Þ

where Yield is oil in L day−1, P is production (g L−1 day−1), V
is culture volume (L), So is oil storage as percent biomass, eo is
extraction efficiency, and ρoil is the oil density. By keeping
species-specific oil storage constant and extraction efficiency
fixed, it is possible to compare oil yields based only on biore-
actor characteristics. Oil yields were calculated based on P
and V for bioreactors under the assumptions that 30 % of the
biomass was oil [192], the wet extraction efficiency was 70 %
[218], given an algal wet weight to dry weight of 12-fold
[219], and ρoil was 900 g L

−1. Of course, more efficient down-
stream processing and use of algal strains with higher oil con-
tent or optimal fatty acid profiles would give higher oil yields;
however, since this review is focused on bioreactor processes,
these topics are beyond the scope of this paper. Further, a
statistical analysis of fatty acids across species and bioreactor
type would be handicapped by few data points, since this type
of data has only recently been published as a result of new and
improved analytical techniques.

Oil yield was highly correlated to culture volume, such that
larger volumes yielded more oil (Fig. 10a), which was oppo-
site to the trend in production, which decreased with increas-
ing bioreactor volume (Fig. 8a). However, oil yield decreased
with increasing surface to volume ratio (Fig. 10b).

Productivity and yield were categorized into four groups of
bioreactors: (1) higher yield and lower production (28 %); (2)
higher yield and higher production (11 %); (3) lower yield and

Fig. 3 Biomass for culture systems for cyanobacteria (□),
coccolithophores (○), diatoms (●), green algae (▼), and other (+)
relative to limits of biomass for packed cells and populations in oceans
and the laboratory. Confidence intervals are plotted at the 95 % level

Table 6 Characteristics of cell
sizes in a 1-L culture volume Cell diameter (μm) Cell volumea

(μm3 cell−1)

Packed concentrationb

(cells L−1)

Packed cell biomassc

(g L−1)

1 0.52 1.9 × 1015 5.8 × 102

10 5.2 × 101 1.9 × 1013 1.6 × 102

102 5.2 × 103 1.9 × 109 4.1 × 101

103 5.2 × 105 1.9 × 103 1.1 × 101

a For spherical cells, Vcell. = πd 3 /6, where d is the diameter in μm
bFor C packed, calculated as 1015 μm3 L−1 /Vc
c Biomass calculated from Strathmann [207] as Bc (g cell−1 ) × C (cells L−1 )
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higher production (37 %); and (4) lower yield and lower pro-
duction (24 %). Figure 11a shows the grouping based on these
four criteria, where high yield is assumed to be ≥1 L day−1 and
high production to be one-tenth of the theoretical maximum
(i.e., ≥ 0.4 g L−1 day−1), which was true for all bioreactors
except for six ponds that had higher production but were
clearly not clustered with group 2, and hence were assigned
to group 1.

Only 36 % of the bioreactor systems achieved yields
>1 L day−1; thus, most of the bioreactors were low yield.
Bioreactors with large aerial footprints (i.e., ponds, raceways,
and horizontal tubular systems) dominated group 1 (89 %).
Group 2 was composed of closed bioreactors or intermediate
size, except for one small (2200 L) raceway pond. Group 3
was mostly small, closed bioreactor systems, and group 4 had
a mix of bioreactor types and sizes.

The group median (mean) volumes were as follows: group
1, 105 L (8 × 107 L); group 2, 395 L (665 L); group 3, 33 L
(85 L); and group 4, 200 L (3780 L). Excluding raceway
ponds, the closed bioreactors in the group 2 had volumes

ranging from 140 to 1400 L and surface to volume ratios of
up to 102:1, as indicated by the shaded region in Fig. 11b.

Of the 19 closed bioreactors in the group 2, about 50% had
surface to volume ratios of approximately 102 or higher. Of
these ten bioreactors with high SA:V, four were horizontal
tubular reactors (HTR), four were helical, one was a vertical
tubular (VTR), and one was an inclined cascade. The horizon-
tal tubular system and inclined cascade were bioreactor sys-
tems that require large horizontal surfaces to optimize the
bioreactor-illuminated surface area relative to the nadir angle
of the sun, and therefore, they had large aerial footprints.
Helical systems had high illuminated surface areas but also
had a large footprint resulting from the extensive curvature of
the tubes around an inner column, which was not part of the
bioreactor volume, meaning it is an unproductive part of the
footprint. The smallest aerial footprint was the vertical tubular
bioreactor since its cylindrical column, which is the produc-
tive core of the bioreactor, was tall but had a small diameter.
Several other reactors exhibited high surface to volume ratios
(i.e., flat plates); however, these had smaller volumes or lower
production rates (Fig. 11b).

Conclusions

Algae Diversity

Over the nearly 200 years that algae have been studied, their
taxonomy is still being altered, which makes tallying the num-
ber of species difficult [205]. Despite the difficulties in
assessing algal characteristics, the Algal Database lists over
135,000 species [220] of which seaweeds are included, and
some species may have duplicate taxonomic names. In all,
there are 15 distinct phyla of algae.

Despite the large number and diversity of microalgal spe-
cies, few have been grown in larger (≥3 L) bioreactors. Thus,
the 35 genera represented here are only a small fraction of the
known microalgal species, and even these species have differ-
ent genomes with varied traits. Early work by the Aquatics
Species Program studied nearly 3000 algal species but only
300 were cultivated [61]. In 2008, the Food and Agricultural
Organization estimated that 40 species were used commercial-
ly [221] worldwide, although Terdici et al. [222] reported 10
species were commercial harvested in large bioreactors.

There are many types of photosynthetic organisms that could
be used to produce vegetable-like oils including macrophytes,
aquatic vascular plants, phytobenthos, as well as phytoplankton,
which inhabit freshwater, marine, and terrestrial environments.
One of the difficulties in finding data on these oil-producing
plants and algae is that studies are distributed between different
disciplines, the predominant ones being: oceanography which is
concerned with marine species; limnology which focuses on
freshwater species; phycology which looks at physiology and

Table 7 ANCOVA results for biomass (B) by class, growth rate, and
binned cell volume

Source df SS MS F P

Model 5 759.12 151.825 2.475 0.033

Error 236 14,475.20 61.336

Total 241 15,234.30

t P

Cell volume 241 0.000 −1.217 0.225

Growth rate 241 0.415 −2.459 0.015

Cyano B 241 1.752 −0.568 0.571

Cocco B 241 1.999 −1.179 0.240

Diatom B 241 1.545 −0.976 0.330

Green B 241 0.000

Table 8 ANCOVA results for production (P) by class, biomass,
growth, and binned cell volume

Source df SS MS F P

Model 6 236.77 39.46 16.25 <0.0001

Error 234 568.28 2.429

Total 240 805.05

t P

Cell volume 0.000 −0.604 0.546

Biomass 0.013 5.558 <0.0001

Growth rate 0.083 7.041 <0.0001

Cyano P 0.352 2.652 0.009

Cocco P 0.398 0.743 0.458

Diatom P 0.315 1.616 0.107

Green P 0.000
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morphology; and applied phycology and biotechnology which
study the industrial and practical aspects of algal science and
bioengineering. Therefore, the search for the best oil-producing
species/subspecies is disparate and far from complete. Yet, even
if cell lipid storage could be doubled bymore lipid-rich species or
through genetic [223] or physiological [224] manipulation of
cells, the overall effect on oil yield would not be as great as

optimizing biomass concentrations and production rates, which
could increase yields by tenfold or more.

Growth Rate, Biomass, and Production

Prior laboratory experiments found that maximum growth
rates of microalgal cells were predominately dependent on

Fig. 4 The relationships between a production rate based on biomass (●), and growth rate (○) and b growth rate versus biomass. The dashed line is the
slope for biomass; the heavy, solid line for growth rate. The light, solid line represents the 1:1 relationship

Fig. 5 Mean production rates for a photo-bioreactors (PBR), raceways
(RW), and ponds; and b the five different types of photo-bioreactors:
vertical tubular reactors (VTR), unique reactors (UBR), helical reactors,

horizontal tubular reactors (HTR), and flat plate reactors (FP). The upper
bar is the standard deviation, and the lower bar is two standard errors
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the species and their cell size. In contrast, growth rates in
bioreactors showed less species difference and no significant
tendency to decrease with increasing cell size. The fact that
growth in bioreactors varied so dramatically for the same spe-
cies probably obscured any trend in growth rate with cell size.
All the determinations of maximum growth in laboratory set-
tings used only a few species, in small volumes, and with few
variations in culture conditions (media, light, CO2, mixing,

etc.). In contrast, growth rates in the bioreactors were deter-
mined for many more species, over a wider variety of growth
conditions. In general, the fact that growth rates in bioreactors
exceeded maximal growth rates, especially for green algae
and cyanobacteria, may indicate that optimum conditions oc-
curred in these bioreactors but not for the laboratory cultures
used to determine the maximum growth rates. Still, growth
rates for diatoms in bioreactors were generally lower than the
maximum rates, which may indicate that some bioreactors had
sub-optimal growth conditions for the species cultured. It is
clear that bioreactor-specific growth rates never exceed
5 day−1, so growth rate was very confined in relation to
production.

Biomass in the bioreactors was nearly constant over
cell size. For all but 14 % of the samples, bioreactor
biomass was greater than the maximum biomass derived
from laboratory data, although less than the packed con-
centration. The mean biomass was 3.5 g L−1 with a me-
dian value of 1.0 g L−1, and the fact that the slope of
biomass versus cell size was flat means that mass was
constant such that the same mass could be achieved using
a large number of small cells or fewer large cells.
Therefore, the selection of a target species should not
necessarily depend on cell size but on growth rate, oil
content, and the specific culture conditions needed to
maximize the biomass.

Because population growth requires the synthesis of
new biomass, μmax is closely related to metabolic rate
[225, 226] with the same unimodal size scaling in CO2

fixation, which represents a biomass turnover rate. A
unimodal size scaling of biomass-specific metabolic rate
corresponds to a curvature in the log–log relationship be-
tween individual metabolic rate and body size [227, 228].
Thus, the decrease in maximum growth rates with increas-
ing cell volume can be explained by resource limitation as
a function of surface to volume ratio [212]. Because the
half-saturation coefficient, ks, for nitrate uptake increases
with mean spherical cell diameter, large cells with lower
surface to volume ratios have higher ks, and slower nitrate
uptake rates.

Chisholm [229] speculated that the maximum biomass and
maximum growth rate could be related to cell nutrient require-
ments of microalgae. Using the diffusion limitation model of
Morel et al. [230], she determined the nitrogen requirement
for a spherical cell. The steady state, diffusion flux of nitrogen,
with a nitrate concentration C to a cell of diameter, d, is given
by J = 2πdDC, where D is the molecular diffusion coefficient
of the nutrient (10−5 cm2 s−1). Chisholm noted that J ≥ μQN

was necessary for a cell to grow, where QN is the cell quota of
nitrogen in moles N cell−1. QN was determined from carbon
content of the cell using the Redfield ratio of 16C:N for cells in
exponential growth and the Strathmann’s equation to relate
carbon content to cell volume, πd3/6. Recasting J in terms of

Fig. 6 Production rates for diatoms, coccolithophores, cyanobacteria,
and green algae in both open and closed bioreactors (BR). Error bars
are two standard deviations

Fig. 7 Production for three green algae (Chlorella,Nannochloropsis, and
Tetraselmis) cultured in flat plate (FP), horizontal tubular reactor (HTR),
vertical tubular reactor (VTR), and helical reactor. Error bars are two
standard deviations. Stars indicate a significant difference for Chlorella,
and the bar in HTR represents a significant difference between algae
cultured in the HTR
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μ , gives μ ¼ 2πdDC Q−1
N or based on cell volume,

μ = 2πdDC(1.3 × 103d2.16)−1, which is proportional to μ ∝
DCd−1.16. This equation indicates that for balanced growth,
the nutrient concentration must increase as cell size increases.
Thus, to maintain a growth rate of 1 day−1, smaller cells re-
quire lower concentrations of nutrients than larger cells. The
maximum biomass for laboratory cultures was reached when
cells were spaced roughly 10 μm apart [229]. A nutrient
concentration of 10−1 μM N-NO3

− = 10−7 mol N L−1 has
6 × 1016 molecules in a liter (6.02 × 1023 molecules
mole−1 × 10−7 mol N L−1) or 60 molecules in 1 μm3. This is
approximately one molecule every 0.25 μm. However, as the
nutrient concentration increases so will the number of mole-
cules per unit volume, thus the distance between molecules
will decrease, and more molecules will be closer to the algal
cell. Biomass in the bioreactors was greater than the maximum
laboratory biomass and presumably was not limited by nutri-
ents. For the high biomass concentrations in bioreactors, the

distance between cells would decrease, and cells would be
closer to nutrient molecules. This is important since the dis-
tance over which diffusion acts would be shorter, so that nu-
trient limitation could be avoided and growth and biomass
stimulated, providing the nutrient concentration was sufficient
to meet the cell’s growth quota.

Diffusion-limiting conditions can also be overcome by en-
hancing the differential motion between the fluid and the cell
[231, 232]. This differential motion reduces the boundary lay-
er around the cell and effectively increases the diffusion flux
to the cell. The most common means of creating motions in
cultures is by cell sinking [233, 234] and by mechanical
mixing [235, 236].

Mixing rates and biomass also play a role in light exposure
of the cells. Production has been shown to varywith high-light
conditions. Increased mixing of increasingly concentrated cul-
tures also enhances production [158, 163, 236], presumably
by increasing the exposure time of the cells to the light regime.
Previous to this, Laws et al. [48] increased production in a
raceway pond using turbulent eddy shedding to create high-
frequency fluid motions, thereby exposing cells to high-light
fluctuations.

However, as biomass increases, so does attenuation of light
in the bioreactor. Light attenuation can be modeled as k = a +
b, where a is absorption, mostly due to algal pigments and
water, and b is scattering due to cell biomass and water. Mie
scattering theory predicts that smaller particles scatter light at
shorter wavelengths. Whitmire et al. [237] found that b
depended on both cells size and cell shape. They also deter-
mined that chlorophyll concentrations were highly correlated

Fig. 8 a Production versus the volume of the culture system. The seven
types of bioreactors systems are ponds (■), raceway ponds (RW, ●),
vertical tubular reactors (VTR, ▽), unique reactors (UBR, △), helical

reactors (⍂), horizontal tubular reactors (HTR, ○), and flat plate reactors
(FP, □); and b production versus the surface to volume ratio

Table 9 ANCOVA for production rate on bioreactor volume and
surface area

Source df SS MS F P

Model 9 50.37 5.597 16.58 <0.0001

Error 256 86.39 0.3371

Total 265 136.76

t P > |t|

Culture volume 0.054 −6.612 <0.0001

Surface area 0.059 4.712 <0.0001
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to b for different species. Scattering by cells, however, is more
concentrated in the forward direction [238] and directly pro-
portional to cell size [239]. High pigment concentrations tend
to increase a in cultures which also increases with cell size
[240]. Hu et al. [166] showed that the higher the cell concen-
tration in a culture, the higher the attenuation of light, with no
more than a 1 mm of light (at 550 nm) penetration for a
biomass of 15 g L−1. The optimum light path length to main-
tain high production for small cells was 20 cm [183].

Inconsistencies in biomass yields for microalgal systems
are largely responsible for the economic uncertainty and un-
favorable results of life cycle analyses for biofuel production
[241]. However, microalgae-based biofuels also hold the fu-
ture possibility for providing energy independence from fossil

fuels, without compromising the use of arable lands or food
production [200, 242, 243]. Benemann and Oswald [4] and
Linquist et al. [243] argue that a biomass of 20 g m2 day−1

with an oil content of 25 % oil costs more than the market
value, and needs to be ≥30 g m2 day−1 with a content of 50 %
oil. For a SA:Vof 102:1 this would be 3 g L−1 day−1, which is
similar to a recent estimate by Griffiths et al. [244] for cells
with 50 % oil content, but much lower for cells with lower oil
content.

Bioreactors and Scale-up

Production in algal cultures decreases with the volume of the
bioreactor, and open bioreactor systems are not as productive

Table 10 ANOVA for
production rate (P) for bioreactor
surface to volume ratio

Source df SS MS F P

Total 556 2,223,485 3999 10.9611 <0.0001

Type 7 272,647 38,949

Error 549 1,950,837 3553

Tukey’s test

SA:V comparison Mean difference |q| P

Pond P 44.84 7.07 <0.0001

RW P 44.68 8.31 <0.0001

VTR P 44.19 5.44 0.0033

FP P 43.88 6.58 0.0001

HTR P 43.78 7.06 <0.001

Fig. 9 Regressions for surface area on bioreactor volume (a) and surface to volume ratio of bioreactors (b). The thick line in a is the regression fit while
the thin lines indicate the surface area to volume ratios from 1 to 103 m2 m−3
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as closed ones. However, production in different types of bio-
reactors may be closely associated with bioreactor volume
since the median volume for open systems was 4000 L
(N = 136) compared to a median volume of 55 L (N = 182)
for closed systems. There also seems to be no strong data to
support that one species grows best in a specific bioreactor
type. Many scientists assume that species production is

dependent on bioreactor type, but this does not seem to be
supported by these statistical analyses. It is more likely related
to bioreactor operations.

Benemann [245] estimated 90 % of microalgae production
worldwide is in ponds, most of which are in China. Large
ponds that produce algal biomass for biofuels often exceed
105 L. However, such systems have come under increasing

Fig. 10 Oil yields based on bioreactor: a volume; and b surface to volume ratio

Fig. 11 a Oil yield and production for the different bioreactors (same
symbols as in Fig. 8) separated in to four groups, and b the same groups
plotted against the bioreactor surface area and volume. The shaded area

represents the range in volumes and surface areas for the closed
bioreactors in the group 2 (higher yield and higher production)
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criticism for their usage of large amounts of land and water
[241, 242]. Their advantage is that they do not require high
production rates to produce high oil yields, only large volumes.
In contrast, smaller horizontal reactors can conserve water by
recycling it; however, they too have a large footprint, and be-
cause they have lower volumes (104 L), they require higher cell
densities to achieve the same high yields as ponds. Ponds and
tubular reactors have lower production but higher cell densities
than algae growing in unlimited nutrient and light conditions in
small (<1 L) laboratory cultures. This may be a result of the
infamous Bbottle effect^ [246], or it may simply a result of
contamination/competition, low light or nutrients, or inefficient
mixing. Whatever the reason, it seems that larger cultures are
less productive yetmore concentrated than those at bench scales.
This makes system scaling more unpredictable, and no practical
scale-up methods exist although several design parameters have
been identified, e.g., light, CO2, mixing, etc. [247–257]. Since
production decreases with bioreactor volume, smaller bioreac-
tors (102–103 L) may be more practical, especially if they are
designed to provide high surface areas for high illumination
[257, 258]. Indeed, of 317 bioreactors studies analyzed in this
paper, only 8.5 % had production rates >2.5 g L−1 day−1, and all
of these bioreactors, except for two, were smaller systems with a
mean volume of 322 L, but achieved high biomass concentra-
tions and/or growth rates by a combination of high illuminated
surface areas (i.e., high SA:V) and moderate mixing with air or
1–5 % CO2. Interestingly, while air lift mixing is a cheap and an
efficient means to deliver high dissolved inorganic carbon (DIC)
levels to cultures and keep cells mixed, bubbles also can have a
high attenuation of light and create high shear when they break.
Therefore, the interplay between homogenous mixing of bio-
mass to optimize light levels in bioreactors, air mixing to en-
hance DIC, and high surface to volume ratio of bioreactors
needs to be explored in more detail to find the optimal
conditions.

Many biofuel bioreactors, such as coils, flat plates, and cas-
cades, have been designed to optimize the surface to volume
ratio to provide high-light conditions to cells. This design pro-
motes higher production rates, by enhancing biomass and
maintaining higher growth rates. However, high production
rates must be linked to high yields, which can be achieved by
larger volumes. The caveat is that large volume systems with
high surface to volume ratios drastically increase the footprint
of the culture system, thereby competing for space with agri-
cultural crop or high biodiversity lands, which is a major criti-
cism of commercial algal processes. Systems with large surface
areas also compete for solar radiation with other renewable
energy systems, such as photovoltaics and solar water heaters.
Other than higher production rates and smaller footprints, there
are other advantages to small bioreactors, such as they require
less energy-consuming components (e.g., one, small pump in-
stead of many large ones) and smaller downstream-processing
units. The later makes harvesting and extracting biomass from a

small closed reactor simpler and less expensive than harvesting
raceway ponds [259]. Thus, the combination of less power
consumption, fewer materials, and higher biomass and produc-
tion rates could reduce the price of algal oil, which would be
another advantage of smaller bioreactors.

To overcome the problem of low yields in small bioreactor
systems, the surface area being irradiated should be optimized
for theminimum volume that achieves high production rates (≥
1 g L−1 day−1) by maintaining high algal concentrations (e.g.,
≥1 g L−1) and growth rates (e.g., 1 day−1). In theory, one
hundred thirty, 200-L bioreactors could attain a cumulative
oil yield of about 10 L day−1 (1.1 L oil kg−1 lipids × 0.7 re-
covery efficiency × 0.5 lipids × 130 bioreactors × 200 L
biorector−1 × 10−3 kg L−1day−1); the same yield as half of the
ponds surveyed in this paper, provided the lipid content of the
cells, is around 50 % of the dry weight. The number of biore-
actors could be reduced to 33 if production could be main-
tained at the maximum level of 4 g L−1 day−1. One approach
to increase the irradiated area of a small volume bioreactor
would not be to increase the exterior surface area (i.e., foot-
print), but increase photon flux inside the system. Internal day-
lighting or a dense distribution of internal lights could achieve
this and also reduce the light path. If these were incorporated
into a small volume vertical bioreactor, the spatial footprint
would be small, minimizing the use of open space without
displacing agriculture, biodiversity, or green space.
Therefore, designs of future culture systems should pay closer
attention to high yields and low footprints [260–265], as well
as minimal energy consumption [266]. This would be especial-
ly applicable to smaller commercial volumes (i.e., 200 L) with
high illuminated areas and adequate mixing of cells through
the light field, but not at such high turbulent levels that would
increase cell mortality, and thus reduce biomass [267–269].
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