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Abstract An ecosystemmodel (Sima)was used to investigate
the impact of climate and varying thinning regimes concur-
rently on energy wood and timber production as well as on
growth and carbon stocks during 2010–2099 in southern
(below 64° N) and northern (above 64° N) Finland. The
analysis was carried out using sample plots from the ninth
National Forest Inventory. According to the results, both
energy wood and timber production increased under the
changing climate, with this effect being found to be higher in
northern compared to southern Finland. In relative terms, the
effect of forest structure, however, was more pronounced than
that of climate, especially in southern Finland. Increased basal
area thinning thresholds enhanced carbon stocks compared
with current thinning regime. In addition, increased thinning
thresholds enhanced concurrently energy wood production (at
final felling) and timber production during the period 2040–
2069 and merely energy wood production (at final felling)
during 2070–2099. In absolute terms, the production potential
of energy wood at energy wood thinning was found to be
higher in northern compared with southern Finland, but the
case was opposite at final felling both in current and changing
climate. It was concluded that a concurrent increase in energy
wood and timber production as well as carbon stocks would be
possible in Finnish forests if thinning was performed at a
higher tree stocking level than in the current recommendations.

Keywords Climate change . Ecosystem model . Energy
wood production . Thinning regime . Timber production
and carbon stocks

Introduction

Responding to the challenge of climate change, the
European Commission has set an ambitious target to
increase the share of renewable energy in the total energy
consumption of the EU from 8.5% (2005) to 20% by 2020
[1]. Finland (60–70° N, 19–32° E) is one of the leading
countries in the EU regarding the use of wood-based
energy, where it is the second largest energy source,
covering one fifth of the country's total energy consumption
[2]. A major part (ca. 11%) of this energy is from by-
products and black liquor produced by forest industries.
Furthermore, energy wood (e.g. forest and industrial chips,
bark and sawdust) consumed in heating and power plants
covers ca. 7% and in small-sized dwellings ca. 3% of the
total energy consumption [2].

The use of wood-based energy may produce several
benefits, which include offsetting greenhouse gas emissions
from the combustion of fossil fuels, utilisation of locally
available raw materials [3–6] and to some extent, reducing
carbon emissions owing to the decomposition of forest
residues left after final felling (FF). In Finland, the use of
energy wood in energy production has garnered growing
attention as it could help in the implementation of the
Kyoto agreement. Several attempts have been taken aiming
to promote and increase the share of renewable energy
sources of the overall energy production [7, 8]. For
example, Finland's ‘National Forest Programme 2015’ aims
to increase the use of forest chips in energy generation from
3.4 million m3 in 2006 to 8–12 million m3 by 2015 [7] and
a recent ‘National Climate and Energy Strategy’ [9]
approved by the Finnish Government aims to increase the
share of renewable energy to 38% by 2020.

In Finland, based on size and quality criteria, timber is
assorted into sawlogs and pulpwood for industrial purposes
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using the cut-to-length method. Total timber consumption
in Finland during 2006 was 81.5 million m3, over 90% of
this, or about 76 million m3, was used by forest industries
[2]. About 21 million m3 was utilised to generate energy,
of which 15% came from forest chips and 30% from round
wood with the remainder coming from the combustion of
bark, sawdust and industrial chips from the sawmilling
and plywood industries [2]. Forest chips are still a
relatively modest source of fuel, but it has extensive
growth potential [10]. A potential source of forest chips
consist of branches and crown mass harvested from
commercial thinnings and FF, i.e. tree components that
do not fulfil the requirement for industrial use, including
poor quality timber, stem tops, living and dead trees and
stumps. In addition to these, small-sized trees are
harvested for energy use in energy wood thinning (EWT)
and pre-commercial thinning [10, 11].

Several studies have estimated the potential recovery of
above and below ground energy wood raw materials in
Finland. Hakkila [10] estimated that, depending on the cost
limit, the maximum technically harvestable energy wood
potential is 16 million m3 year−1, which is about 35% of
theoretical potential estimated from all above and below
ground biomass residues from a hypothetical annual stem
wood removal of 70 million m3. In the study of Asikainen
et al. [12], potential annual felling residues were estimated
to be about 24 million m3, where they included stem wood
loss, branches, tops, needles, stumps and roots as biomass
components. A study for the whole of southern Finland by
Malinen et al. [13] found that the economically feasible
potential of energy wood that could be harvested was
estimated to be a maximum of 8.8 million m3 year−1 over a
40-year period. In their study, energy wood consisted of
logging residues from FF, branches, bark residues and stem
wood from first commercial thinning.

Forests in Finland are likely to experience considerable
changes in the future due to the changing climatic
conditions. In a boreal ecosystem, low temperature, short
growing season and limited availability of nitrogen are
considered to be limiting factors regarding forest growth
[14–17]. Changes in climate, as defined by an increase in
temperature and CO2 and changes in precipitation patterns
[18–20], may imply a higher decomposition rate of organic
matter [21–23], which may lead to more nutrients being
available for the trees. These changes are likely to increase
growth, enhance forest productivity [24] and change the
structure (e.g. species composition) and functioning of
boreal forest ecosystems [15, 25–32]. Accordingly, Bergh
et al. [33] found an increase of ca. 240% in energy wood
production from logging residues under climate change
from current production of 3.1 Tg year−1. The similar
increasing trend (ca. 30%) was also found by Kärkkäinen
et al. [34] between current and changing climatic condition,

however, the magnitude of projected changes was less
compared with the study by Bergh et al. [33] because of
shorter projection period.

In order to cope with the changing conditions, the
expected climate change may add a new dimension to the
business-as-usual forest management. It has been suggested
that impacts of climate change on European forests
(including Finland) necessitate the modification of the
business-as-usual management to mitigate the unfavourable
effects [35] and to optimally utilise increased growth in
energy wood [33, 34] and timber production [30, 36, 37]
and also in enhancement of carbon stocks in the forest
ecosystem. EWT, earlier and/or more intensive commercial
thinning and resulting shortened rotation periods with
decreased self-thinning of tree stands, could be effective
measures to utilise the increased productivity under climate
change with regard to energy wood and timber production
[38–40], whereas the effects on carbon stocks might be
opposite [41].

The role of forests to mitigate climate change and
produce energy wood concurrently with timber and carbon
stocks may change objectives of forest management in the
future. Management intervention together with varying
environmental conditions should be considered for different
forest types and structure of the forests (young or mature
stage). This will identify not only the determinants of the
production potential of forests but also possibilities in
mitigating climate change. Earlier, we have studied the
thinning and climate effects on growth, timber production
and carbon stocks in the forest ecosystem in Finland [42],
based on previously available National Forest Inventory
(NFI 8) data and climate scenarios. In the present study, we
utilised the newly available forestry datasets (NFI 9) and
new climate scenarios and investigated the impacts of
varying thinning regimes and expected climate change on
production and fossil fuel substitution potential of energy
wood (small-sized trees in EWT and logging residues in
FF) with implications to concurrent production of timber
(sawlogs and pulpwood) and development of carbon stocks
in the forest ecosystem (trees and soil) over the whole
Finland.

Materials and Methods

Ecosystem Model (Sima)

Outline of the Model

In the utilised model, the dynamics of the forest ecosystem,
as regulated by demographic processes (regeneration,
growth, and death), is assumed to be determined by the
dynamics of the number and mass of trees. All these
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processes are related to the availability of resources and
regulated by the canopy gap dynamics of the tree stand.
The model and its parameterisation and validation is
exhaustively described elsewhere [43–46] and therefore
only an outline of the model is presented here.

The model utilises four environmental subroutines
describing the site conditions that affect the growth and
the development of forests, i.e. temperature, light, moisture
and availability of nitrogen. The environmental subroutines
are linked to the demographic subroutines by the multi-
pliers (M); i.e. G ¼ Go �M1:::Mn, where G is growth and/
or regeneration, G0 is growth and/or regeneration in optimal
conditions meaning that there is no shading and no
limitation of soil moisture and supply of nitrogen, and
M1...Mn are multipliers for different environmental factors
(Fig. 1). In addition, in the case of growth, the values of G0

are assumed to be related to the maturity of the tree
(diameter of tree) and the prevailing atmospheric CO2,
furthermore the parameterisation of the growth response is
also species-specific. The data for the G0 calculation are
based on the simulations of a physiological growth and
yield model applying the same methodology than Matala et
al. [47]. In these simulations, the growth of a single tree
with an ample supply of water and nitrogen was calculated
under varying atmospheric CO2 concentrations and under
no shading for the conditions in southern Finland.

In the model, mortality is determined by factors that are
either age-dependent or age-independent. Age-dependent
mortality is a stochastic event depending on maximum age
of a tree. In the case of age-independent mortality, the
probability of tree death at a certain moment increases with
decreasing diameter growth due to competition from other
trees. After dying, trees are eliminated from among the
living trees and immediately converted to litter, which is

linked directly to the decomposition subroutine and
included in the nitrogen cycle.

The model is parameterised for Scots pine (Pinus
sylvestris L.), Norway spruce (Picea abies L. Karst.),
silver birch (Betula pendula Roth.), downy birch (Betula
pubescens Ehrh.), aspen (Populus tremula L.), and grey
alder (Alnus incana Moench., Willd.) growing between
the latitudes 60° N and 70° N and longitudes 20° E and
32° E within Finland. The model utilises an area of
100 m2 with a 1-year time step.

Input Data

The data utilised in the model was based on the NFI 9
(1996–2003). The measurements in the inventory were
done from systematically located rectangular or L-shape
clusters, each cluster containing 10–18 sample plots. The
distance between the clusters varied from 6×6 km in the
southernmost part of the country to 10×10 km in Lapland
(Fig. 2). In establishing sample plots, the Bitterlich
concepts were used and the tally trees were selected using
a relascope. The probability of the inclusion of a tree was
proportional to its diameter at breast height (dbh), where
maximum radius of 12.52 m was used [48–50].

For our study, data from one sample plot from each
cluster was used to represent variables such as tree species,
dbh, site type, location and temperature sum. In addition,
the simulations included only sample plots in upland
mineral soil sites (Fig. 2). As each measured tree in a
sample plot stands for a certain number of trees
depending on its diameter, inclusion of them were done
accordingly into the simulations. However, the inclusion
of large diameter trees into the simulations was done by
using a combination of different diameter classes of
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large trees. Due to the model structure (use of 100 m2

area), diameter classes were combined so that the number
of trees was as close to 100 as possible. Accordingly, in the
case of small-sized trees, the number of stems was limited
to 3,000/ha.

According to the NFI data, forests are mainly in young
stage in all the forestry centres located in south, but the
share of older forests is higher in northern Finland [2]
(Fig. 3). Soils in Finland are generally more fertile in the
south than in the north [51, 52]. Species composition,
therefore, differs among the site classes. Pine is mostly
dominating the less fertile sites i.e. Vaccinium type and
Cladonia type. While Norway spruce, together with birch,
is dominating the most fertile sites, i.e. Oxalis-Myrtillus
type. However, the medium site class, Myrtillus type, is
suitable for (or a mixture of) Norway spruce, birch and
Scots pine [26].

Forest Management Scenarios

In the simulations, management includes EWT, commercial
thinning, FF and regeneration. The thinning rules followed
those currently recommended for the different tree species,
site types and regions of Finland (southern and northern
Finland separately) [53]. Whenever a given upper threshold
for the basal area was encountered at a given dominant
height, commercial thinning was triggered (Fig. 4). Thin-
ning was done from below, to such a level that the
remaining basal area was reduced to the expected value at
a given dominant height [53]. In the case of executing
EWT, tree dominant height of between 8–14 m was used,
with the lower threshold being determined by following the
recommended remaining number of trees dependent on site
and species [53] (Fig. 4).

The FF was made whenever the mean diameter of the trees
in the plots exceeded the given value indicating the maturity
of the tree population for regeneration. On the other hand, the
FF can be done whenever the time since the previous
regeneration felling (rotation length) exceeded a given value
[53]. In regeneration, a combination of natural regeneration
and planting was utilised in the simulations. The tree species

Fig. 2 Sample plots used in this study (dots), forestry centres
(numbers) and separation in northern and southern Finland (thick line)
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that were present in the stand before regeneration would
occupy the stand either with same species or following
species-specific thresholds in environmental factors.

In general, these management rules are seldom applied
systematically. This has led to a situation characterised by
increased stocking due to cuttings being less than the
increment. This is the case especially in southern Finland,
where cuttings are often delayed compared to those
suggested by the management rules. Consequently, simu-
lations using the current management rules led to excessive
cutting removal and a large reduction of stocking at the
beginning of the simulation. Therefore, the deterministic
application of the management rules was replaced by a
random procedure.

Whenever the management rules indicate thinning or FF
for a stand, a random number r (0...1) was selected, and its
value was then compared to the value of the parameter p. If
r<p, no cutting was executed. The value of p=0.95 was
selected. This meant that the mean delay (x) for cutting was
13 years compared with that indicated by the management
rules (Eq. 1). As a result of the delay, the simulated cuttings
were comparable with the business-as-usual management
currently applied in Finnish forestry, since there were no
major changes in the stocking at the beginning of the
simulation [46].

px ¼ 0:5 ) x ¼ 13years ð1Þ
In addition to the current thinning, three other thinning

regimes were selected for this study by changing both the

basal area thinning thresholds compared to business-as-
usual; 15% (M1), 30% (M2) and 45% (M3). These were
suggested by the authors according to earlier findings [42].
The current recommendations were considered as a base,
business-as-usual, thinning (M0) (Fig. 4). The thresholds
for EWT were always similar for the different thinning
regimes.

Climate Scenarios

The simulations utilised climate data provided by the
Finnish Meteorological Institute. Scenarios for the climate
projection are averages of responses calculated using
nineteen global climate models, where variables such as
minimum and maximum temperature, precipitation, solar
radiation, air pressure, snow depth, soil moisture and wind
velocity have been analysed [54, 55]. The grid for current
climate (1971–2000) was 10×10 km, however the model
used in this study applied it in a 50×50 km grid. The
climate change scenarios were in three tri-decadal periods
i.e. near-term, 2010–2039, mid-term, 2040–2069 and long-
term, 2070–2099 and used the same grid size applied in
model as current climate. The certainty regarding the level
of climate change was stronger for the first two projection
periods compared with the final period, which includes
major uncertainties in predictions due to the development
of global greenhouse gas emissions for different scenarios
and considered more as an example of probable climatic
condition at the end of this century. This study utilised the
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A2 scenario [56], where CO2 concentration was estimated
to rise to 840 ppm by 2100 and temperatures were projected
to increase, for example, by 7.6°C for January and 3.4°C
for July over the whole of Finland. In winter, warming was
strongest in the north, while in summer the more pro-
nounced warming would be in the south of the country.
Correspondingly, by 2100 precipitation was estimated to
increase by about 30% in the winter and about 10% in late
summer [54, 55].

The data for the current climate and the climate change
scenarios represented the daily values. Based on these the
monthly mean temperature and the monthly mean precip-
itation, both with standard deviation, were calculated over
the periods applied in the context of the model. In the case
of the climate scenarios, the mean temperature and
precipitation represented the mid-point of the period used
in the model. The values between the mid-points are based
on a linear interpolation between the values at two
consecutive mid-points. In the simulations for a given
sample plot, the calculation algorithm utilised the climate in
the closest grid point of the climate data.

Computations

The analyses of climate and thinning regimes impact focused
on energy wood, growth, timber and carbon stocks in three
30-year periods during 2010–2099 in Finland. The growth in
the calculations refers to the mean annual increment of the
growing stock over the each studied 30-year period. The
concept of timber production here refers to the production of
sawlogs and pulpwood. The part of the stem with a minimum
top diameter of 15 and 6 cm refers to sawlogs or pulpwood,
respectively, the remainder of the stem represents logging
residues.

Energy wood consists of both small-sized trees from
EWT and logging residues (branches and tops of the stem,
large roots and stumps) from FF. The dry weight of large
roots, in the context of the utilised model, was calculated
via allometric relationship with dbh, while the stumps were
calculated as a function of stem wood. Energy wood, in this
study, was focused on the potentiality and may deviate from
what is technically harvestable or available for recovery.
Carbon stocks refer to the carbon in stems, branches, leaves
and roots in the trees in the growing stock and in the
ground vegetation and forest floor (decaying wood, litter
and humus) including standing dead trees according to the
outputs of the utilised model. Initial values of litter and
humus layer were used in initialising the simulation as a
function of site type and temperature sum [46].

The calculations were done to get absolute values of
energy wood (Mg ha−1 year−1), growth (m3 ha−1 year−1),
timber (m3 ha−1 year−1), and carbon stocks (Mg C ha−1) for
all the thinning regimes under current climate (CU) and

changing climate (CC). Therefore, comparisons focused on
either the effect of climate or effect of thinning regimes
under CU and CC. To be able to produce the effect of
climate, corresponding thinning regimes under CC were
compared with CU. The effect of thinning was compared
only with the current thinning and this was done both for
current and changing climatic conditions.

Apart from above simulations, controlled simulations
were done to separate the effects of climate and forest
structure on forest growth during the whole simulation
period (2010–2099). The outcomes of these simulations are
shown in the last section of the results. In these simulations,
the forest structure was kept constant according to initial
data (based on the NFI 9) at the start of each 30-year period
(2010-2039, 2040–2069, 2070–2099) and simulated until
the end of each period both under current and changing
climatic condition. Eventually, the results from business-as-
usual structure were compared with the results of these
controlled simulations.

In all cases, comparisons of scenarios were always done
with corresponding output periods. For example, the out-
puts of the first period (i.e. 2010–2039) under CC were
compared with outputs from the CU for the same period.

Results

Effects of Climate and Thinning on Energy Wood
Production

Recovery at Energy Wood Thinning

In general, the energy wood production at EWT (small-
sized trees) increased over time both for CU and CC in
southern as well as in northern Finland. During the first
period (2010–2039), neither increased basal area thinning
thresholds, compared with current thinning regime, nor
climate change, did affect the energy wood production at
EWT, either in southern or northern Finland. During period
two (2040–2069), increased basal area thresholds did not
affect the energy wood production at EWT, neither in
southern nor in northern Finland but climate change
increased energy wood production at EWT both in southern
and northern Finland. In both southern and northern
Finland, during the last period (2070–2099), climate change
increased the energy wood production at EWT but
increased basal area thresholds increased the energy wood
production at EWT only under CC (Fig. 5a, b).

Recovery at Final Felling

The energy wood production at FF (branches, large roots,
stumps and tops of the stem) was higher during the second
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period (2040–2069) compared with first period (2010–
2039) under both CU and CC in southern as well as in
northern Finland but it was highest during the third period
(2070–2099) under CC in southern Finland. During the first
period (2010–2039), both in southern and northern Finland,
increased basal area thinning thresholds, compared with
current thinning regime did not affect the energy wood
production at FF under CU and CC, but climate change
increased the production at FF. During the second and last
period, both climate and increased thinning thresholds
enhanced the energy wood production at FF both in
southern and northern Finland (Fig. 5c, d).

Effects of Climate and Thinning on Growth, Timber
Production and Carbon Stocks

In general, the climate change increased growth (growing
stock increment), timber production (sawlogs and pulp-
wood) and carbon stocks in the forest ecosystem (trees and
soil) in both southern and northern Finland in all the three
periods (2010–2039, 2040–2069, 2070–2099). The changes
were similar for all the thinning regimes, but they varied
between southern and northern Finland (Fig. 6).

During the first period (2010–2039), under CU and CC,
increased basal area thinning thresholds enhanced growth,
compared with current growth of 5.7 and 3.0 m3 ha-1 year-1

in the current thinning regime in southern and northern
Finland respectively (Fig. 6a, b). During the same period,
increased thinning thresholds increased carbon stocks in the
forest ecosystem for both CU and CC in southern and
northern Finland (Fig. 6e, f), but this reduced timber
production both in south and north under CU and CC
(Fig. 6c, d). In both southern and northern Finland, during
the second period (2040-2069), growth, timber production
and carbon stocks were increased with increased thinning

thresholds in either CU or CC. During the last period
(2070–2099), increased thinning thresholds enhanced
growth and carbon stocks regardless of regions and climate
scenarios, but timber production was increased only under
CC in northern Finland (Fig. 6).

Separated Effects of Climate and Forest Structure on Forest
Growth

According to the controlled vs. business-as-usual forest
structure simulations, the effect of forest structure on
forest growth, in relative terms, was more pronounced
than that of climate (Fig. 7). The effect of climate was
found to be higher in the north (forestry centres 11–13)
than in the south (forestry centres 1–10), whereas the
effect of structure was the opposite both under CU and
CC. In addition, there was no structure effect found during
the first period (2010–2039) owing to have a similar
structure at the beginning of the simulation and develop-
ment of growing stocks in that period.

Discussion

This study focused on the effects of energy wood
(small-sized trees and logging residues) due to climate
change and varying thinning regimes with implications
on growth (growing stock increment), timber (sawlogs
and pulpwood) and carbon stocks (trees and soil) in
Finland. In the simulations, the parallel effect of climate
change, in terms of temperature, precipitation and CO2

increase, were studied. Risks, for example related to
insects attack, wind throw, forest fire and frost damage
related to climate change were not included in the analysis
of this study.
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Under CU and current thinning regime, the produc-
tion of energy wood at FF (ca. 6.6 Tg year−1 or 16
million m3 year−1) during the first period (2010–2039) had
lower values than those estimated by Hakkila [10],
Asikainen et al. [12] and Kärkkäinen et al. [34]. This
might be a result of the different cutting scenarios, logging
residues components and their recovery at varying
thinning stages. Thus, results from those studies may not
directly be comparable with our findings. For example,
poor quality timber as energy wood raw material and
energy wood extraction (logging residues) in all the
commercial thinnings, were not considered in this study

as was done by Kärkkäinen et al. [34]. Moreover, our
study used a mean delay of 13-year period between the
cuttings in order to have consistency of the stocking at the
beginning of the simulation, which was not taken into
consideration in other studies [10, 12, 34]. As the
production of energy wood at FF was converted to usable
energy, this study found 60 and 100 MWh ha−1 (40 and
68 TWh year−1) in current thinning regime under CU and
CC, respectively (Table 1). However, part of the estimated
energy wood production is affected by practical limita-
tions, so that the results should be considered as
theoretical potentials.
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The potential production of energy wood at FF was
higher in southern Finland compared to northern Finland,
which might be due to the effect of timber production in
those regions. On the contrary, energy wood production at
EWT was higher in northern than in southern Finland.
These dissimilarities in productions were mainly the result
of variation in forest structure and growth potential in
southern and northern Finland. Currently, in the south, the
forests are dominated by young stands, while, in the north,
stands are more mature or close to that stage (Fig. 3) [2].
Therefore, with the development of the forests both in
northern and southern Finland, the energy wood production
was enhanced in the second (2040–2069) and third (2070–
2099) periods compared with the first period (2010–2039).

When thinnings were done according to current man-
agement recommendations, this study found a 5% smaller
forest growth under current climate during the first period
(2010–2039) than that found in the Finnish NFI [2]. This
smaller growth might be due to the utilisation of only
upland sites on mineral soils in the simulations. However,
this study found that increased tree stocking after thinning
(or increased basal area thinning thresholds) enhanced
growth regardless of climate scenarios, periods and loca-
tion. Higher tree stocking after thinning may, however,
decrease individual tree growth as a result of competition
for limited resources. Accordingly, timber production was
reduced during the first period (2010–2039) implying that
thinning at higher tree stocking delayed cuttings [58, 59].
This had also effect on energy wood production at FF,
which was reduced associated with reduction in timber
production, where it was increased in the later phases of the
simulations (i.e. 2040–2069 and 2070–2099).

The concurrent analyses of energy wood, timber and
carbon stocks showed that a concurrent increase in them
was possible at the same time, during the second period
(2040–2069), where they increased with enhanced level of
basal area thinning thresholds. In the case of timber and

carbon, this is in well agreement with the findings of
Briceño-Elizondo et al. [29], Garcia-Gonzalo et al. [60],
and Thornley and Cannell [61], where they concluded that
management with higher tree stocking, but also with
continuous canopy cover and fewer disturbances through-
out the rotation could give maximum production of timber
and carbon stocks. However, Seely et al. [41] suggested a
trade-off between ecosystem carbon storage capacity and
timber production, which was found also in this study
during the first and last periods. The earlier study done by
the authors [42] had also a similar trend, where former NFI
data and climate scenarios were utilised. Nevertheless, in all
cases, increased thinning thresholds enhanced carbon
stocks in the forest ecosystem under CU and CC, as could
be expected due to an increase in growing stocks.

The results showed that, compared with CU, forest
growth increased considerably in Finland under changing
climatic conditions. The largest relative changes were
found in northern Finland, although values in absolute
terms were higher in southern Finland. Our study also
showed a greater relative effect of forest structure on
growth than that of climate change (Fig. 7). This change
in growth was higher in southern than in northern Finland,
which was opposite to the effect of the climate. This was a
result from varying initial forest structures in different
parts of the country. However, the effect of climate was in
line with other findings in boreal conditions [e.g., 30, 42,
62] where a corresponding increases in growth under the
climate change were found. Garcia-Gonzalo et al. [32]
reported also that initial age class distribution may not be
the same at the end of 100-year simulation period even if
there is equal distribution at the beginning of the
simulation. That could be owing to management interven-
tion in the forests during the rotation period. Therefore,
management activities and varying growth rate have
profound and prolonged effects on forest structure and
composition [32, 63, 64].

Table 1 Effects of thinning on production and fossil fuel substitution potential of energy wood in energy generation in Finland derived from
EWT (energy wood thinning) and FF (final felling) over the whole simulation period (2010–2099)

Thinning regimes Current climate Climate change

Energy wood thinning Final felling Total Energy wood thinning Final felling Total

MWh ha−1 year−1 % MWh ha−1 year−1 %

M0 (0%) 0.43 2.00 2.43 – 0.88 3.34 4.22 –

M1 (15%) 0.43 2.17 2.60 7 0.90 3.60 4.49 6

M2 (30%) 0.41 2.29 2.71 11 0.91 3.77 4.68 11

M3 (45%) 0.40 2.41 2.81 16 0.94 3.97 4.91 16

M0 (0%) represents current thinning regime. Effective heating value at 20% moisture content on fresh mass basis: 19.23 GJ/t (energy wood
thinning) and 19 GJ/t (final felling) [57]. 1GJ=0.2778 MWh
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Conclusions

Higher growth rate and thus increase of carbon uptake and
production in forest ecosystems under climate change may
provide new objectives and opportunities for forest man-
agement. In our case, it was possible to enhance the growth
and concurrently increase energy wood and timber produc-
tion mainly in the second period by increasing tree stocking
from the current level. Otherwise there was a trade-off
among energy wood, timber and carbon stocks. At the same
time, higher carbon stocks were still maintained throughout
the simulation period if the tree stocking was increased.
The interaction between forest management and climatic
conditions has not only a vital role in maintaining forest
growth in forest ecosystems, but also it is highly relevant to
energy wood production for fossil fuel substitution,
integrated with timber production and carbon storing in
the context of climate change mitigation. In the future
optimally combining all these factors to fulfil their
objectives might not be possible without modifying the
current forest management.
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