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Abstract The focus of this paper are the ethical, legal
and social challenges for ensuring the responsible use of
“big brain data”—the recording, collection and analysis
of individuals’ brain data on a large scale with clinical
and consumer-directed neurotechnological devices.
First, I highlight the benefits of big data and machine
learning analytics in neuroscience for basic and transla-
tional research. Then, I describe some of the technolog-
ical, social and psychological barriers for securing brain
data from unwarranted access. In this context, I then
examine ways in which safeguards at the hardware and
software level, as well as increasing “data literacy” in
society, may enhance the security of neurotechnological
devices and protect the privacy of personal brain data.
Regarding ethical and legal ramifications of big brain
data, I first discuss effects on the autonomy, the sense of
agency and authenticity, as well as the self that may
result from the interaction between users and intelligent,
particularly closed-loop, neurotechnological devices. I
then discuss the impact of the “datafication” in basic
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and clinical neuroscience research on the just distribu-
tion of resources and access to these transformative
technologies. In the legal realm, I examine possible legal
consequences that arises from the increasing abilities to
decode brain states and their corresponding subjective
phenomenological experiences on the hitherto inacces-
sible privacy of these information. Finally, I discuss the
implications of big brain data for national and interna-
tional regulatory policies and models of good data
governance.
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Introduction

We currently witness converging technological
macrotrends—big data, advanced machine learning,
and consumer-directed neurotechnological devices—
that will likely lead to the collection, storage, and anal-
ysis of personal brain data on a large scale. In basic and
applied neuroscience, this impending age of “Big Brain
Data” may lead to important breakthroughs, particularly
for our understanding of the brain’s structure and func-
tion, for identifying new biomarkers of brain pathology,
as well as for improving the performance of
neurotechnological devices (such as brain-computer in-
terfaces, BClIs). But the same technology, when applied
in consumer-directed neurotechnological devices,
whether for entertainment, the interactive use of web
services, or other purposes, may lead to the uncontrolled
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collection and commodification of neural data that may
put vulnerable individuals at risk with respect to the
privacy of their brain states.

Big data refers to collecting and storing vast amounts of
data, for example from wearable devices (e.g. “fitness
trackers™), electronic health records, or our online footprint
from using web-based software services. This growing
mountain of data, however, would not be of much use
was it not for the advanced machine learning algorithms,
specifically artificial neural networks (ANN) for “deep
learning” and related methods, that are now available for
analyzing this data. Most of the personal information that
web-based software companies gather today is based on
our voluntarily submitting our data—mostly by yielding to
convoluted and mostly inscrutable “end-user license
agreements” (EULAs). What we not yet have on a large-
scale, but what many device and software companies are
now actively developing, are consumer-directed wearable
devices for recording and uploading our brain activity,
mostly based on electroencephalography (EEG) [1, 2]. In
combination with other wearable sensors for tracking bio-
metric data, these devices will provide particularly rich
multivariate data troves for the “personal sensing” of an
individual “physiome”, for the (online) decoding of per-
son’s (neuro)physiological state and behavior [3], and for
making predictions on future states or behavior, an appli-
cation that is studied particularly intensively in the area of
mental health [4-7]. Meanwhile, companies are using
powerful algorithms for “deep learning” to create facts
on the ground' and invest heavily in leveraging these
methods for consumer and health-care applications, espe-
cially in basic and clinical neuroscience [9, 10].

This “datafication” [11] across all areas of research and
technological development—in which data not only refers
to but enacts and guides social life [12]—puts established
modes for normative reflection, deliberative value forma-
tion, as well as legislative and policy responses under
pressure. At the same time, finding sustainable political
and legislative responses to this transformation and hedge
the relentless stream of highly personalized data against
misuse and exploitation is becoming more and more diffi-
cult. For one, in order to be able to understand the benefits
and risks and to then formulate an adequate regulatory
response, lawmakers and politicians (as well as the general
public that elects these officials) need to have at least a
basic understanding of the complexity of the technologies

' Such as DeepMind’s Go-playing program AlphaGo Zero recently
beating it’s previous version AlphaGo by 100-0 games [8].
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involved. This is important for governments (or suprana-
tional bodies) in order not to succumb to indiscriminate
techno-alarmism and pass “laws of fear” [13] that stifle
important scientific and technological progress on the one
hand, while at the same time not to display a blind techno-
enthusiasm that ignores or downplays important risks.

Preferably, a democratic society should provide the
necessary space and time for an inclusive and participa-
tory bottom-up deliberative process that involves all
stakeholders in the debate on how to regulate and gov-
ern the use of personal brain data. In the spirit of such a
“reflexive modernization” [14]—that is not taming
(human) nature with technology (a defining feature of
industrialization and the modern era), but shaping tech-
nology through user-centered and value-based design—
I will discuss some important ethical and legal ramifi-
cations of this profound technological transformation.

Specifically, the aim and scope of this paper is to give
a comprehensive overview of (a) big data and machine
learning as the driving technologies behind the
‘dataification’ in basic and clinical neuroscience and
consumer-directed neurotechnology, (b) some pertinent
ethical, legal, social and political challenges that arise
from the collection, storage, and analysis of large
amounts of brain data from clinical and consumer-
directed neurotechnological devices.

Of the many threads and challenges that this emerg-
ing techno-social constellation offers, I will focus here
on the normative implications, both from an ethical and
legal perspective, of big brain data. To this end, I will
examine ethical and legal implications in areas in which
I believe emerging big data / machine learning applica-
tions will have a particularly profound influence. The
selection of topics—such as the privacy of brain data, or
the problem of bias in machine learning—is therefore
motivated mostly by the likely impact of the technolog-
ical transformation rather than inherent commonalities
between these areas of concern (e.g. in terms of ethical
theory or political philosophy).

Potential Benefits and Risks of Big Data Analytics
in Basic and Clinical Neuroscience

A Brief Introduction to Big Data and Advanced
Machine Learning

Before detailing the current use of big data and machine
learning in basic and clinical neuroscience, let me first



Big Brain Data: On the Responsible Use of Brain Data from Clinical and Consumer-Directed Neurotechnological... 85

provide some brief definitions of recurring concepts and
techniques from computer science:

Artificial intelligence (Al) is a term in computer sci-
ence and robotics that refers to an embodied (machine/
robot) or non-embodied (software program) system that
can reason, learn, and plan, and which exhibits behavior
which we associate with biological intelligent systems
(such as humans) [15].

Big data refers to the collection and/or systematic
storage of large amounts of (labeled or unlabeled) data
for the purpose of finding hitherto unknown patterns,
relationships or other informative features by computa-
tional analysis, often involving advanced machine learn-
ing algorithms.

Machine learning refers to a programming approach
in computer science in which the behavior of a program
is not fully determined by the code but can adapt its
behavior (i.e. learn) based on the input data (“Learning
without being programmed”). The first such program
was designed to play the game of checkers (1959)
foreshadowing the whirlwind successes of recent deep
learning networks in beating humans in games.

Deep learning is a particular variant of machine
learning which is often modelled on artificial neural
networks (ANN). A typical ANN architecture consists
of interconnected nodes — representing artificial neurons
— with an input layer, hidden layers and an output layer.
In the hidden layers, the data from the input layer
undergo linear or nonlinear transformations multiple
times (hence “deep”). The power of the ANN for solv-
ing data-driven tasks like pattern recognition lies in their
ability for reinforcement learning at different levels of
abstraction through recurrent modelling. Specific vari-
ants of such deep learning architectures, for example
convolutional neural networks (ConvNet), have recently
been particularly successful in applied machine learning
across many research fields (such as neuroscience [16,
17]) and industrial sectors. Historically, many machine
learning algorithms were developed to address pattern
recognition and classification problems in computer
vision and speech recognition. Therefore, detecting fea-
tures and classes in a large amount of images is still one
of the most widely used applications.

Factors Determining the Scope and Limits of Machine
Learning Approaches to Data Analysis

Across all of the many different problems, or “use-
cases” for which advanced machine learning methods

are now employed, we find some commonalities that
define the power and limits of these methods:

— Deep learning works particularly well in data-rich
(big data) environments for recognizing patterns
and generating predictions, tasks that are generally
difficult, very time-consuming or even impossible
for humans. Imagine you were asked to differentiate
between thousands of animal species by looking at
millions of animal images in a short time or learn to
play world-class Go by mining databases with mil-
lions of recorded games and moves.

—  Scalability, the ability to apply algorithms to very
large amounts of data while retaining reasonable
computation times and storage requirements, is an-
other important feature of recent advances in ap-
plied machine learning. In data-rich environments,
scalable machine learning algorithms become ever
more accurate and more usable with the increasing
data size.” In spite of these impressive achieve-
ments, there are still significant challenges and
limits for advanced machine learning:

As we have discussed, advanced machine learning is
particularly powerful for analyzing large amounts of data.
Consequently, in all scenarios in which only few data are
available, these methods are substantially less effective.
For clinical applications, for instance, rare diseases or rare
genotypes would be examples of such data paucity.

One important challenge, therefore, is to devise the right
computational model for addressing any particular use-
case given the data at hand. This manual tinkering, includ-
ing also the labeling and/or annotation of data for learning
and so-called hyperparameter setting, takes a lot of human
resources, knowledge and time and is also error-prone.

The effectiveness of machine learning for data anal-
ysis and classification also relies on finding the optimal
learning scenario for any given problem. For clinical
use-cases, the most effective applications of advanced
machine learning have so far relied on a so-called su-
pervised (or semi-supervised) learning scenario and
clinical questions related to digitized images. In super-
vised learning, an algorithm trains with labeled data, for
example magnetic resonance images (MRI) of the brain

% For example, while a couple of years ago the program Google
Translate often provided clunky, slightly “off” translations, the current
version (as well as similar programs such as the DeepL Translator) can
automatically recognize many input language and provide usable
translations in over 100 languages.
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that have been labeled as either normal or abnormal by a
radiologist. After learning, the algorithm then analyzes a
new data set and can identify abnormal images with
high precision.?

Finally, most current machine learning programs still
have difficulties with transfer learning, applying knowl-
edge extracted from one set of problems to a new
challenge [19]. An algorithm that is effective for classi-
fying brain images may not perform particularly well on
other types of data.

Benefits in Using Big Data and Advanced Machine
Learning in Basic and Clinical Neuroscience

For an informed risk-benefit-analysis, it is important—
in my view—to appreciate the actual and potential ben-
efits for patients that big data and advanced machine
learning may offer in basic and clinical neuroscience.”

While my observations here focus on the area of neu-
roscience, we should acknowledge that advanced machine
learning has revolutionized basic and clinical research
across all areas in biomedicine and turbocharged the
emerging field of “precision medicine” [20]. To provide
just a few recent examples: such algorithms have been
shown to achieve dermatologist-level accuracy in classify-
ing skin lesions as cancerous [21], to be able to predict the
outcome of antiepileptic drug treatment [22] or to predict
the prognosis of small-cell lung cancer from images of
pathological tissue samples [23].

For basic and translational neuroscience these methods,
particularly deep learning, yield important advances too.

3 Unsupervised learning, in contrast, does not use labels. The algo-
rithm therefore gets no input on what the “right” pattern of data is, but
explores the data and finds recurring patterns and structures by itself,
for example finding clusters of “similar” brain images. In situations in
which labeling data is unfeasibly time consuming or expensive, as in
labeling all CCTV images in London from a given day with whether
they contain faces or not, semi-supervised algorithms can use both
labeled data (images with and without faces) and unsupervised data
(the remaining images) for analysis. An intermediate approach, using
both supervised and semi-supervised machine learning, was recently
used to create a spectacular new brain map in which the semi-
supervised algorithm identified ninety-seven new anatomically distinct
areas [18]. Ideally, a machine learning program would recognize and
decide the optimal model parameters itself and unsupervised learning
with convolutional networks for deep learning is an interesting frontier
in that respect.

4 As basic neuroscience, I refer here to research on basic mechanisms
and functions in the central (and peripheral) nervous system, from the
(sub)cellular level to large-scale brain networks, whereas clinical neu-
roscience refers to all research related to pathological changes in the
nervous system and therapeutic interventions (particularly translational
neurotechnology).
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Researchers from the University of Freiburg (Germany),
for example, used a convolutional neural network
(ConvNet) in 2017 for deep learning to decode
movement-related information from EEG data [16] and
for operating an autonomous robot [24]. ConvNets for
deep learning were also successfully used to predict signal
processing in primate visual cortex [25] and to predict
human brain responses (from functional magnetic reso-
nance imaging, fMRI) to processing natural images [26].

In clinical neuroscience and translational
neurotechnology, we see similar advances in leveraging
advanced machine learning for diagnostic classification
and for predicting disease outcomes or therapeutic re-
sponses. The computing revolution mentioned above
results in a surge of digital health-related data, from
single data points (e.g. lab parameters), to continuous
data from monitoring devices over days or weeks (such
as continuous ECG monitoring from intensive care or
EEG in epilepsy centers) to complete electronic health
records (eHR), which can be used for data and text
mining [27]. It is therefore not difficult to imagine how
these streams of data may inform advanced computa-
tional analyses and even outperform human diagnosti-
cians in many medical disciplines.

Most recent efforts in leveraging advanced machine
learning in clinical neuroscience have been particularly
fruitful in neuroimaging-based diagnosis (and/or predic-
tion) in neurology and psychiatry. In neurology, such
approaches have already been able to: detect morpholog-
ical brain changes typical of Alzheimer’s disease from
neuroimaging [28, 29], to predict brain tumor response to
chemotherapy from brain images [30], or distinguish typ-
ical from atypical Parkinson’s syndromes [31]. In psychi-
atric research, examples for leveraging machine learning
are the prediction of outcomes in psychosis [32], the
persistence and severity of depressive symptoms [33],
and the prediction of suicidal behavior [7].

Risks of Big Data Analytics and Advanced Machine
Learning in Basic and Clinical Neuroscience Research

While acknowledging the many actual and potential ben-
efits of big data analytics with advanced machine learning,
it is equally important to discuss some inherent risks of this
approach. The sheer scale of the technological transforma-
tion discussed here across so many sectors of society
naturally invites scrutiny and caution in risk assessment.
With an eye on the scope of the paper, however, I will
focus on identifiable and concrete risks to individuals,
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particularly patients and research subjects (rather than
transformative effects on society as a whole).

For the time being, I see no immediate risks for the
momentary well-being of research subjects during ex-
periments in which big data and advanced machine
learning are later used for “offline” analysis of brain
data. In such typical research scenarios, data are collect-
ed from many individuals, collated on local servers or in
cloud-based data repositories, and then analyzed, for
example with advanced machine learning algorithms.
The collection and storage of neural (and other) personal
data does, however, carry certain risks with respect to
data privacy which I will discuss next. In subsequent
sections, I will then examine, how real-time interaction
between users and a neurotechnological device, partic-
ularly in closed-loop systems, may affect the autonomy,
sense of agency and other aspects of a user’s experience.

Some Ethical and Legal Implications of Big Brain
Data

The development described above will quite likely have a
transformative effect on research practices in neuroscience
as well as clinical neurology and psychiatry. Likewise,
consumer-directed neurotechnological devices will create
new ways in which users may interact with systems for
entertainment, personal computing and mobile devices. Of
the many ethical and legal challenges that emerge from this
techno-social constellation, I will limit my analysis here to
a few issues that I find particularly pressing—fully ac-
knowledging that this selection of topics is neither partic-
ularly comprehensive nor representing anything other than
my current personal interests.

On the Security of Neurotechnological Devices
and the Privacy of Brain Data

First of all, storing an individual’s brain data on local or
web-based servers / repositories makes these data vul-
nerable to unintentional data exposure, intentional data
leaks and (cyber) attacks (“hacking”). Furthermore,
cross-referencing biometric data with other types of data
may allow for the de-anonymization® of personalized
data—i.e. exposing the identity of research subjects or

> Or rather de-pseudonymization®, given that a lot of personal data
from participants is pseudonymized rather than anonymized (which is
often not feasible in studies).

patients. This de-anonymization may then leave individ-
uals vulnerable to identity theft or other criminal acts by
third persons (e.g. holding a person ransom by threaten-
ing to release potentially damaging information, such as
on brain pathology) [34].

While this is a general problem when data records
from research participants (or patients) are stored elec-
tronically, the highly personalized nature of brain data
(see e.g. the possibility for “brain fingerprinting”
[35])—much like genomic data—may increase the
identifiability of individuals.

Case Example: Deep Learning for Brain-Computer
Interfacing in a Severely Paralyzed Patient

For the individual user of a clinical or consumer-
directed devices that processes large amounts of neural
data, we may discern the following scenario as an ex-
ample of the importance of privacy of brain data.

In the case of a patient with locked-in syndrome—that
is severe paralysis through extensive damage to the
brainstem—who uses a spelling system operated by a
brain-computer interface that uses deep learning for ana-
lyzing her neural data, the following concern might apply:

You may imagine, that if a BCI spelling system was
used consistently for some time, it is quite likely that the
BCl user conversed with different people at different times;
with relatives, nurses, doctors, friends, visitors and others.
These different conversations will have been different in
topic and their level of intimacy. Perhaps the patient would
or would not mind if a mundane conversation with her
nurse to adjust the bed was to be read by another person,
but she might very well object if an intimate discussion
with her husband, for example about her fear of death,
would be read by anyone else. Furthermore, as we have
discussed above, combining the continuous neural record-
ings with the spelling content provides a powerful source
for unmasking the user’s identity.

Therefore, limiting and securing access to the pa-
tient’s data is an important prerequisite for preserving
privacy. For the log files, we might ask, for example,
whether they should be preserved at all, deleted after a
pre-specified time, or remain fleeting—like our spoken
conversations usually are? Or should they be recorded
permanently but only accessible to the BCI user via a
password? What happens when these records may be-
come relevant in a legal context? Imagine that the
locked-in patient may no longer be able to use the BCI
and a medical emergency occurs, for example a life-
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threatening pneumonia requiring artificial ventilation in
an induced coma. Now, the husband of the patient—
having become the legal representative via an advanced
directive—wishes no further treatment claiming this to
represent the wish of the patient. The doctor however
remembers conversing with the patient a couple of
weeks before, when she was still able to use the BCI,
where she told him to treat any medical emergencies
exhaustively. If the case is brought before a judge, will
he have the right to subpoena the BCI spelling log files?

Neurohacking and the Emergence of “Neurocrimes”

Another important threat to data privacy and security for
the individual patient / user is posed by “neurohacking”.®
If the BCI system, in the case presented here, was con-
nected to a web-based cloud server for storing and analyz-
ing the brain recordings, the data could get exposed either
intentionally (e.g. a rogue employee of the server company
who sells the data), released accidentally or be accessed
and/or stolen via hacking into the server.

The feasibility of hacking such active medical de-
vices has already been demonstrated for implantable
cardioverter-defibrillator (ICD) systems [36—-38]—
Halperin et al. [38] demonstrate how to use equipment
from a general electronics store to remotely hack into a
wireless ICD—and it seems likely that BCI systems
could be equally vulnerable to electronic attacks.

Such unwarranted access to one’s neural recordings
and other types of personalized information (e.g. the
spelling logs of the BCI system) would be a valuable
data trove for persons with malicious intent. For exam-
ple, a hacker could use the highly personalized informa-
tion for holding a person at ransom (threatening release
of the personal information) or could disable the BCI
and demand a ransom for unlocking the device and/ or
its operating software (“ransomware”). In a BCI system
that is used for controlling a robotic prosthesis, a hacker
could similarly take control of the prosthesis and threat-
en or cause harm to the user or other persons. Therefore,
the safeguarding of these highly personalized biometric
(and other) data and ensuring device and system security
is an important area of concern and merits an in-depth

T use “neurohacking” here in the sense of gaining illicit access to a
neurotechnological device or a software program that processes neural
data. In the literature and the media, neurohacking is sometimes
discussed in the sense of “hacking your brain”, i.e. referring to
neuroenhancement.
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examination from a legal, forensic and technological
perspective to prevent such potential “neurocrimes”.

Technological Barriers and Opportunities
for Safeguarding Neurotechnological Devices and Brain
Data

Given this importance of safeguarding neurotechnological
devices as well as servers and software programs for
processing brain data, let us first briefly look at the main
technological barriers.

First, the collection, aggregation and (real-time) analy-
sis of large amounts of data requires massive storage and
processing units, which today are most often provided by
services for server-based cloud computing.” While person-
al devices can be secured quite effectively against unwar-
ranted access,” cloud-based software repositories are much
more difficult to secure. Many of the technology giants that
are moving into the consumer neurotechnology market—
such as Facebook and Google—have traditionally been
software rather than hardware-based enterprises [40].
Therefore, it remains to be seen whether these companies
can develop strong safeguards at the hardware level to
secure such devices from unwarranted access.

At the software level, Alphabet and other companies are
very active in developing new paradigms for securing
personal data. One particularly ingenious idea is the con-
cept of federated learning. In federated learning, the algo-
rithm for machine learning with a person’s neural data
would operate locally on the neurotechnological device
and only share certain, non-personalized, inferences on
the data with a central server for further data processing
[41]. Such a local encapsulation, when coupled with strong
device-level hardware and software security and strong
encryption of the transferred data, could make such a
system much less vulnerable to device hacking and cy-
ber-attacks. Similarly, other technologies, such as
blockchain and “differential privacy™® [42] could be used
for the granular auditing and tracking of brain data.

7 The biggest three cloud computing services are currently provided by
Amazon Web Services, Microsoft and Google; cp. https://due.
com/blog/biggest-cloud-computing-companies-earth/, accessed
January 10th 2018

8 Exemplified by the fact that hacking the Apple smartphone of the
perpetrators of the San Bernardino mass shooting in 2016 cost the FBI
$1.3 m [39]

9 See also a current whitepaper by Nissim et al. (2017) on the subject:
https://privacytools.seas.harvard.edu/files/privacytools/files/nissim_
et al - differential privacy primer for non-technical audiences 1.
pdf; accessed Jan. 10th 2018
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Some observers have noted, however, that it might not
be ideal if users will have no other choice in the future, than
to leave both their data and the responsibility for data
safety in the hands of one company [43]. An alternative
could be the creation of so-called data banks, companies
that specialize in data security and act as intermediaries for
using brain data for research, clinical, or consumer pur-
poses. While this idea merits some further investigation, in
my opinion, I would, as others have, worry that such a
system could also abet the process of privatization and
commodification of health and biometric data [44].

With respect to legislative and regulatory implica-
tions, I would argue that legislators should therefore
mandate strong security requirements, such as device-
level encryption and hardware protection, end-to-end
encryption for data transfer, as well as methods for
auditing data trails for clinical and consumer-directed
neurotechnological devices.

Privacy of Personal Brain Data: Psychological
and Social Barriers and Opportunities

In addition to the technical challenges, there are also
important psychological and social barriers for
safeguarding brain (and other personal) data from un-
warranted access.

From the formative, comparatively open years of the
early internet to the cordoned off web dominated by
oligopoly and “data capitalism” of today, user attitudes
towards data privacy as well as the political and legal
frameworks for the security of personal data have
changed substantially. The current fabric of the web is
characterized by a triad of corporatization, commercial-
ization and monopolization for providing content and
services in which personal data has become the most
important commodity. Surveys in the U.S. suggest that
concerns about this commodification of personal data
and repeated instances of massive data leaks influence
the privacy concerns of internet users. While the main
topic of internet users’ concern—the disclosure and
trading of personally identifiable information (PII)—
has not changed over time (according to a study com-
paring 2002 and 2008 [45]), the level of concern indeed
has risen substantially in this period.

One would think that this gradual “Snowdenization”,
the rising awareness and concerns in society about the
mass collection, dissemination and misuse of PII, would
perhaps have created a fertile ground for a level-headed
and evidence-based debate about the future handling of

personal brain data. Yet, at the same time, don’t we often
wonder why users of online software services seem, on
average, to care little about their personal data trails?
From an individual psychology point of view, it seems
that on social media the actual (or perceived) psycho-
logical rewards for using the services often outweigh the
possible threats to privacy for the users [46].

Furthermore, the near ubiquitous use of social media
for communication may impel vulnerable individuals,
such as teenagers or individuals with psychiatric disor-
ders (e.g. social anxiety or depression), to use these
services to avoid social exclusion or ostracism and
thereby compromise on possible privacy concerns.

Another psychological barrier could be that still to-
day many services have a default opt-in (rather than opt-
out) policy concerning the use of personal data. Further-
more, even if there is a default opt-in environment, the
EULAs of the web services are often difficult to under-
stand and navigate [47]. Moreover, opting out of data
sharing with the service providers may also worsen the
usability and consumer experience (or even prevent the
usage of these services).

Counteracting these social and psychological pres-
sures would require the restructuring of many basic de-
sign and programming features of device- and web-based
software services. For a start, we may need to consider to
move from an opt-out to an opt-in environment in any
context in which sensitive personal information, particu-
larly biodata (and especially brain data), are being trans-
ferred. Furthermore, companies could be incentivized (if
not obliged) to improve the EULAs of such services,
allowing for a granular and transparent consent process
for the users. Moreover, in order to move from opaque,
black box neurotechnology to transparent systems, users
and patients should have the right to know whenever they
interact with an intelligent system, who trained the sys-
tem and what data was used for training.

Transparent EULAS in and of themselves are a neces-
sary but not sufficient step towards improving the con-
sent process for ceding personal brain data, however.
This needs to be complemented, in my view, by increas-
ing the average level of basic understanding of the capa-
bilities and limitations of big data and advanced machine
learning—"data literacy ”— in society. Many educational
initiatives in different countries already work toward this
goal but I would submit here that the “long view” in
shaping future educational policies should include brain
data as an emerging (and perhaps special) class of bio(-
medical) data (and commodity) [48].

@ Springer



90

P. Kellmeyer

Further questions such as whether and to what degree
this juridification of the processing of brain data should
remain solely in the hands of national governments and/
or should also be codified in international treaties and
international public law, as well as whether brain data
are a different kind of biometric data that may require
special “neurorights” [49] exceed the scope of my dis-
cussion here, but are certainly important issues for fur-
ther (comparative) legal scholarship.

Decision-Making and Accountability in Intelligent
Closed-Loop Neurotechnological Devices

When humans and intelligent medical devices work in
concert—take a closed-loop brain-computer interface
that uses deep learning for decoding a user’s EEG
data—mutual adaptivity may greatly increase the effec-
tiveness of the intended use, for example by increasing
the decoding performance over time. Advanced ma-
chine learning, moreover, is also a powerful method
for the analysis of brain data, such as EEG or fMRI, in
real time (“online”), for example to control of a robot
with brain activity [24]. As such closed-loop interaction
unfolds in real-time, there is the risk that the output of
highly adaptive algorithms for deep learning—which
are by their nature evolving and thus unpredictable—
may harm participants or patients. In cases in which
such intelligent closed-loop devices do not only decode
neural data for specific purposes but may also actively
interfere with brain states, for example by delivering
electric stimulation to the cortex, and the decision if
and with what intensity was determined solely by the
device, the system gains decision-making capacity.
Elsewhere, together with colleagues, I have discussed
the problem of an “accountability gap” that may arise in
such cases in which an (semi)autonomous intelligent
system is granted decision-making capacity based on
an evolving and adaptive algorithm [50]. In this paper,
we have argued that the regulatory process for approv-
ing such closed-loop neurotechnological devices should
take these possible effects into account and that further
research is absolutely crucial in studying these effects in
such devices—whether for medical or non-medical use.

I would add here the importance of developing
guidelines and models for promoting a design and de-
velopment process for neurotechnological devices that
is centered on the needs, capabilities and preferences of
the intended end-users. To date, most such devices as
well as complementary assistive technology, such as
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robotic systems that may be controlled by a BCI, under-
go a top-down design and development process with
little input from the end-user perspective.

Possible Neurophenomenological Effects
of Closed-Loop Neurotechnological Devices

While it is one thing to employ such closed-loop inter-
action to optimize the performance of a medical device,
for example for regulating seizures in patients with
otherwise treatment-resistant epilepsy, using the same
capabilities in consumer-directed neurotechnological
devices may result in many unintended adverse effects.
Especially closed-loop interaction—i.e. changing the
parameters of a device based on the real-time sensing
of neurophysiological data—may adversely affect the
phenomenological experience of individuals, for exam-
ple by altering the sense of agency, a subject’s sense of
authenticity and autonomy, or the self [S0-52].

Take the simple, non-brain related, example of the
now familiar algorithms for “optimizing” web searches
or for making recommendations for buying items in
online shops. If the algorithm recommends a certain
item based on my previous purchases (and other users’
purchases), to what degree does a purchase based on this
recommendation reflect a choice based on my prefer-
ences (momentary or long-term), and to what degree is
the decision shaped by the algorithm?

Similarly, we may examine such effects in (thus far
hypothetical) closed-loop consumer-directed
neurotechnological devices. Imagine, if you will, a wear-
able EEG system that is connected to your PC and web-
based cloud server, that continuously analyzes your neural
data with deep learning and modifies the content of your
social media feed (or other software) services adaptively
based on this analysis. If the underlying choices (and
biases) for classifying your neural data in certain ways that
the system makes to “optimize” your user experience
remain unknown or opaque, to what degree can you trust
the system that the modification of what you experience by
the system reflects your true preferences rather than inher-
ent biases in the algorithm (or the data it uses for learning)?
If learning occurs not only with a single user’s data but
across many users in the cloud, how personalized are the
choices the system recommends (or makes) really? Would
the co-evolving adaptivity between user and algorithm
over time blur the line between the users original and/or
genuine mental landscape (preferences, attitudes, opinions,
desires and so forth) perhaps even her cognitive abilities on
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the one side, and the system’s biased inferences on the
other side?

One might ask,10 of course, whether and how this ‘co-
adaptation’ between a human and an intelligent (closed-
loop) system substantially differs from the ‘standard’ ad-
aptation of our preferences, attitudes and behavior as we
engage with the world. Of course, we also see adaptation
between humans and other (data-driven) systems, for ex-
ample conventional advertising or standard treatment
models for common diseases. I would submit, however,
that there are indeed substantial, i.e. non-trivial, differences
between such established modes of interaction and the co-
adaptation between humans and a (closed-loop) system
based on big data analytics and advanced machine learn-
ing, particularly: (a) The aim of traditional models of data-
driven analytics is to derive common parameters / features
from data from many individuals to build system that
responds well for the average user; in the case of adver-
tisement, for example, a product would be tested on many
individuals and then modified according to the average
preferences of consumers. In emerging systems based on
big data / machine learning, the aim is often to achieve a
maximally individualized response based on pattern clas-
sification and predictive analysis; again in the case of
advertisement, to develop highly personalized ‘targeted’
advertising that can adapt to a consumers changing pref-
erences. For analytics based on brain data, for example, a
brain-computer interface for paralyzed patients, such a
system—because it continuously analyzes brain responses
and can thus adapt to neurophysiological changes—would
be much more adaptable to (e.g. disease-related) changes
to brain signals over time. (b) In the case of a closed-loop
system involving brain data, this co-adaptation is taken
even further: A brain-computer interface, for example,
based on measurements of bioelectric brain activity from
an implanted electrode on the brain surface (which has the
capability for delivering electrical stimulation to the cor-
tex), could modify brain activity in real-time through de-
livering electrical stimulation based on the measured brain
activity—a capability that would elude traditional open-
loop BCI systems. (c) More mundanely perhaps, the now
ubiquitous algorithms that provide recommendations for
further purchases in online stores (either based on individ-
ual data: “Because you bought item X, you might also like
item Y.”; or based on data analysis over many individuals:
“People who bought item X also bought item Y.”) can
produce eerie effects on our sense of autonomy (and

197 would like to thank an anonymous reviewer for raising this point.

directionality) and authenticity in making choices / deci-
sions: Would I like item Y equally if it had not been flagged
by the algorithm? How can I stay open-minded and/or
change my preferences if chance encounters with unusual
items are more or less eliminated by the ‘filter bubble’ of
the algorithmic shopping assistant? Such unease from a
close co-adaptation between an algorithm and human
interactors, of course, now emerges in many other do-
mains, such as information (‘“fake news’) or political opin-
ion formation.

Such continued interactions between a user and an
‘intelligent’ neurotechnological device may thus have a
profound and potentially transformative effect on the ex-
perience of authenticity, the sense of agency, the active self
and other aspects [53]. Therefore, I would recommend to
make the study of these “neurophenomenological” effects
an integral part of user-centered research on and the devel-
opment of neurotechnological devices, particularly devices
for closed-loop interaction.

The Problem of Bias in Applications Based on Big Data
and Machine Learning

As mentioned in the previous section, the influence of
bias on machine learning and (closed-loop)
neurotechnology may be substantial. Bias in (data) sci-
ence denotes systematic skews in the way data is col-
lected (e.g. ‘selection bias’, in which particular sources
of data are systematically, though mostly unconsciously,
ignored), annotated, categorized and so forth. Impor-
tantly, however, bias also (and to particularly deleterious
effect) operates at the level of human cognition. Con-
vergent research in behavioral psychology and cognitive
science has revealed the important and universal influ-
ence of cognitive biases on human decision-making and
choice-taking. Cognitive biases are mental shortcuts (or
heuristics) that all humans are inclined to take in evalu-
ating problems or making decisions. The availability
heuristic, for example, refers to the overreliance on
readily available information and the recency bias de-
scribes the reliance on often highly memorable, recent
events or information when making decisions'' [54].
Such human cognitive biases are particularly

" When making travel plans, for example, we are more likely to take
the car than flying if a major plane crash occurred a few days before,
despite the irrefutable fact that the probability of being harmed in a car
accident — independent of any particular plane crash having taken place
—is, was and will be much higher than being harmed on any particular
flight.
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problematic for techniques, such as machine learning,
that rely on large amounts of data that are annotated and
categorized by humans. In other words, bias is a ubig-
uitous and almost inescapable phenomenon which may
skew the basis for learning (and subsequent ‘behavior”)
of devices based on big data and machine learning at
many levels: at the level of the data collection, annota-
tion and categorization; through biases of the program-
mers; or the biases of the users of such a system [55]. In
the case of Al-based decision support systems for clini-
cians—a system that analyze a patient’s data and may
give advice for further tests or recommend treatments—
biases in the training data for the underlying artificial
neural networks may lead to skewed decision-making
[56].

If an ANN for skin cancer detection, for example,
was mostly trained on images from light-skinned indi-
viduals, it might perform better in screening light-
skinned than dark-skinned individuals, which would
effectively introduce an ethnic bias into the diagnostic
procedure [57].

Distributive Justice: Impact on Research in Data-Poor
Areas

As we have discussed, big data and machine learning
are particularly effective methods for analyses that are
easy for machines but difficult for humans. As re-
searchers increasingly leverage the power of this ap-
proach for a variety of problems, we might see whole
research programs in neuroscience move into data-rich
environments, simply in order to be able to employ these
methods to their maximal potential (much in the way
that gene editing based on CRISPR/Cas9 is currently
transforming research in cell biology and molecular
biomedicine).

For basic and clinical research on issues that are not
blessed with plentiful data, for example on rare (so
called “orphan”) diseases or research in countries with
no significant digital infrastructure and a lack of eco-
nomic resources, these new methods will not be so
readily applicable and/or available. It remains to be
seen, whether the promise and success of the
“datafication” of medicine will drain human and finan-
cial resources from such areas or whether the macro-
level research policies, at the international, governmen-
tal and funding agency level, will find ways for com-
mensurate funding schemes to allow different ap-
proaches to flourish.
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Mens Mea: On the Legal Status of Brain States

Given the technological development outlined above, it
seems realistic to anticipate an increase in the ability to
correlate particular brain states more and more reliably
with concurrent “mental states”'* through advanced
machine learning on brain data. This, in turn, could
breach the hitherto closed off sanctum of one’s thoughts
and feelings—particularly those mental states (often
denoted as phenomenological consciousness) that are
not accompanied by overt behavior or peripheral phys-
iological state changes and were thus far unobservable.
This scenario raises important questions regarding the
privileged privacy of one’s mental states, the right to not
disclose one’s thoughts or feelings, especially (but not
only) in a legal context.

The main question in this regard may well be,
whether brain states and inferences on those brain
states re their corresponding mental states (through
decoding) existing legal concepts and instruments
are sufficient to govern the fair use of these data in
the courtroom (as well as in the context of policing or
criminal investigations). On the one hand, we might
ask again whether individuals should have the (in-
alienable?) right to not have their mental states
decoded? If so, would this amount to a (new) funda-
mental human right or would existing legal frame-
works be sufficient to deal with this question (see
[49] for an excellent discussion). On the other hand,
what if such methods could also be used for excul-
patory purposes in favor of the defendant? Today,
neuroimaging, particularly for demonstrating structur-
al anomalies in a defendant’s brain, for example, is
overwhelmingly used for establishing brain damage
as a mitigating factor in criminal cases (see [58] for a
recent overview). Should a defendant therefore not
have the possibility (if not right) to use decoding
methods based on advanced machine learning for
establishing mitigating factors? To this end, it should
also be discussed whether the existing (in the US
legal system anyway) so-called Daubert standard for
scientific admissibility is applicable to decoding brain
states with the deep learning, given the concerns
about the “black box™ characteristics of many such
machine-learning-based decoding architectures [59].

121 use “mental states” here as a token for denoting first-person
phenomenological experiences, thoughts and feelings—without
“cryptodualistic” intentions.
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Jurisprudence and legal philosophy has long known the
concept of mens rea—the guilty mind—for determining a
defendant’s responsibility (and thus culpability) for his or
her actions. Perhaps it is now the time to intensify the
discussion of mens mea—the concept of one’s mind as a
protected sanctum of thoughts and feelings—with respect
to the legal status of brain data and mental states. In terms
of civil liberties, we encounter two main scholarly debates
on the freedom of our mental states and capacities: (1) The
mens mea question mentioned above (often framed in
terms of ‘freedom of thought’), i.e. the freedom fiom
unwanted interference with one’s mental states and/or
cognitive capacities by others (i.e. ‘negative liberty’)
[60—65]; and (2) the positive freedom fo (for some involv-
ing the fundamental right to) maximize / fully realize one’s
cognitive capacities, involving the right to employ
methods for cognitive / neural enhancement (also referred
to as ‘cognitive liberty’) [66-70].

For comparative purposes, it might be interesting to
look at the ongoing debate in forensic science and
criminal law around the acceptability—both in terms
of scientific standards and from a normative point of
view—of using DNA analysis for identifying phenotyp-
ical traits (e.g. eye or skin color) for identifying suspects
and as evidence in the courtroom [71].

Some Thoughts on Regulating and Governing Big
Brain Data

In a recent policy paper [57] together with colleagues,
we have pointed out the importance of updating existing
and/or developing new guidelines for research and de-
velopment of clinical and consumer-directed
neurotechnology that acknowledges the challenges
outlined above.

To this, I would like to add the following thoughts.
First, I would like to voice concern regarding the usur-
pation of the ethical and legal discourse by the private
sector around the question of brain data privacy and the
safety of Al [72]. While the participation and active
engagement, preferably beyond the minimal standards
of “business ethics”, of the industries that actively shape
the development of this technology is highly commend-
able and important (in the spirit of an inclusive deliber-
ation process), I think it is important to closely monitor
the ways in which these companies may dominate these
discourses by spending a lot of resources on the issue. If
for, for example, the Ethics Board of such companies as
DeepMind remains shrouded in intransparancy with

respect to their personnel and mission, it is difficult to
see the raison d’étre of such entities [72]. Arguably,
there is a discernable difference between running a
corporate policy of honest and transparent participation
in public discourse on the one side, and engaging in
lobbyism and opinion-mongering on the other, and I
hope the companies in question will adhere to the for-
mer, rather than the latter, form of corporate social
responsibility. To this end, the citizenry should actively
participate in the public discussion on neurotechnology
and Al and engage the companies in critical discourse
on their corporate strategies and policies.

Another important and largely unresolved question
concerns the adequate classification of different types and
sources of highly personal data, particularly biomedical
data, with respect to the appropriate (and proportional)
legal and regulatory frameworks. For example, most
would agree that results from blood tests or data from
wearable fitness trackers constitute biomedical data. What
about movement data from a person’s phone GPS sensors
or person’s text (or image or voice) entries in her social
media account, however? In recent studies, researchers
were able to infer suicidality from automated, machine-
learning-based analyses of electronic health records [7] and
even from user entries in Facebook [73].

Should the casual texts we disseminate via social media
thus be considered as biomedical data if they turn out to be
highly valuable for Al-based predictive analyses with im-
plications for a person’s well-being? These questions do
point to the fact that—perhaps counterintuitively— there is
no generally accepted definition, let alone granular classi-
fication, of biomedical data as a particular class of data.

In the absence of such a generally accepted, the
question whether brain data should be treated just like
any other type of data (and it’s ‘value’ solely determined
by economic or other parameters), or whether it should
be considered to be a special class of data must remain
unresolved for the time being.

Given the breathtaking speed with which new
methods and devices for gathering massive amounts of
highly personalized data enter our lives, however, |
would suggest that it is important to develop a compre-
hensive classification system that precisely defines bio-
medical data. Better yet, this system should also enable
an evidence-based risk stratification (e.g. in terms of the
potential for misuse and other risks for the individual
from which the data was collected).

Any coordinated effort of classifying biomedical da-
ta, of course, will not occur in a normative vacuum but
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will be motivated by ulterior (ethical, legal and/or polit-
ical) goals. For example, from a deontological perspec-
tive, the goal for such a classification could be to max-
imize each person’s individual rights, such as civil lib-
erties (e.g. in terms of data ownership), whereas, from a
utilitarian perspective the focus could be to maximize
the benefit of big data analytics for society and the
average individual. In terms of ensuring a transparent
and accountable process, developing a biomedical data
classification should be managed by institutions that are
democratically legitimated, such as commissions in (or
between) democratic states or supranational institutions
(e.g. the European Commission).

Furthermore, when it comes to forging an interna-
tional consensus process on how to shape and regulate
research and development of neurotechnologies and Al
(and Big Brain Data for that matter), we should ac-
knowledge that there are important differences, mostly
for historical and systemic political reasons, in the ways
in which different nations and supranational bodies
address the question of technology and risk assessment.

Without being able to map the full extent of the
problem here, let us briefly look at differences between
the US and European approach in risk assessment and
regulation: While the reality is of course much more
nuanced, it seems fair to say that—from a historical
perspective—the European take on risk regulation has
relied more on the precautionary principle'® than the US
approach. Historically, we may understand the emer-
gence of precaution as a regulatory strategy against the
globalization of large-scale technological hazards such
as nuclear proliferation, climate change, genetic engi-
neering and the like, in the modern era. The extensive
and ongoing legal and political struggle between the US
and the EU on how to regulate genetically modified
organisms (GMO) perhaps provides a case in point
[74]. In some grand sociological theories, this “risk
society” is even considered to be the constitutive con-
dition of modernity.'* In this discussion, the distinction
between hazards and risks is important for salvaging
precaution from being scrapped away as a “paralyzing”

13 The “precautionary principle” denotes an approach to risk assess-
ment and regulatory policy that is based on proceeding cautiously in
allowing the use of emerging technologies—often proportional to the
uncertainty regarding the likelihood of known hazards and acknowl-
edging the possibility of unknown hazards.

14 An influential concept in that vein is the notion—most prominent in
the works of the German sociologist Ulrich Beck—as living in a “risk
society” (German: Risikogesellschaft) as a constitutive condition of
modemity [75].
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principle, as exposed incisively in Cass Sunstein’s book
“Laws of Fear: Beyond the Precautionary Principle”
[13]. While I concur with Sunstein’s main criticism that
precaution in and of itself — without considering feasi-
bility, cost-effectiveness and other contingencies — is at
best ineffectual and may even prevent important prog-
ress or be harmful [76] I nevertheless think that precau-
tion is an important mechanism to hedge rapid techno-
logical developments against unintended (and unfore-
seen) adverse consequences of neurotechnology and Al
and merits further legal and sociological study.

Summary and Conclusions

To summarize, let me point out that my main concern
with the Big Brain Data scenario sketched here is not the
underlying technology—neurotechnological devices,
big data and advanced machine learning—but rather
the uncontrolled collection of brain data from vulnerable
individuals and the unregulated commodification of
such data. We have seen that the attitudes of technology
users towards the privacy of PIl and device security may
vary substantially, from uncritical enthusiasm to broad
skepticism and every stance in between. If we accept the
basic premise of living in a techno-consumerist society
predicated upon a growth model of (data) capitalism, we
need to find some discursive space to accommodate
both the “enthusiasts’” stance of cognitive liberty—the
freedom to shape their selves by means of new technol-
ogies—and the “critics’” stance of acknowledging in-
herent risks of emerging clinical and consumer
neurotechnology and proceeding with precaution in
the development and application of these devices.

I would submit that those two stances or “conceptual
lenses” [77] are not incommensurable in terms of how
they might inform and guide our legislative, regulatory
and political response (and preemptive strategies) for
governing the use of brain data. Despite the differences
between these stances, I hope that both sides could agree
on some basic guiding principles that may hedge and
facilitate this process of deliberation and, ultimately,
decision-making:

(1) To maximize the knowledge on the technical and
(neuro)scientific aspects as well as medical, social
and psychological effects of such devices on the
individual user and, at the macro level, on societal
norms, legal and political processes. This entails
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making qualitative, participatory and user-centered
research a central and indispensable part of the
design, development and application of clinical
and consumer-oriented neurotechnological
devices.

(2) To avoid the instrumentalization of neurotechnology,
machine learning and big data (in accordance with
Kant’s “formula of humanity™), i.e. treating the users
of such devices not merely as a means (e.g. to max-
imize profits through targeted advertising) but as an
end, by measurably improving their social, psycho-
logical and medical well-being and thereby promot-
ing human flourishing.

(3) To integrate the ethical, legal, philosophical and
social aspects of (neuro)technological research and
development, machine learning and big data into
the curricula of disciplines that participate in /
contribute to the development of such devices;
i.e. computer science, engineering, neurobiology,
neuroscience, medicine and others.

(4) To explore inclusive and participatory models that
combine expert knowledge and opinions with a
bottom-up process of public opinion formation to
inform the political and legal deliberation and
decision-making process. Such a model of indirect
normativity, i.e. specifying processes rather than
values, could perhaps enhance the acceptance and
safety of these emerging technologies and also
satisfy some stakeholders’ need for a precautionary
approach.

Finally, the broader (and, again taking the “long view”,
perhaps decisive) question that is highlighted by the ascent
of big data and machine learning across all sectors in
society is, in my view, how we as the public—a collective
of responsible social and political beings'>—can determine
and shape the beneficial use of this powerful technology in
society, how we can be the sculptors of this process rather
than mere data sources'® and spectators.
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