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Abstract
Objective This study aimed to assess the potential of 68Ga-DOTA-FAPI-04 PET/CT for the detection of the radioiodine-
refractory differentiated thyroid cancer (RR-DTC) lesions.
Methods We analyzed the 68Ga-DOTA-FAPI-04 PET/CT imaging data of 24 RR-DTC patients (7 men and 17 women; 
49.6 ± 10.5 year). Clinical data were collected including history, last post-therapeutic radioiodine whole body scan, contem-
porary CT, thyroglobulin, and antithyroglobulin. Target lesions were selected and measured by the RECIST 1.1. The mean 
growth rates of the target lesions in the past 6 months were recorded. Tumor uptake of lesions were quantified by SUVmax 
and the tumor-to-background ratios. The correlation between SUVmax and target lesion growth rate and thyroglobulin was 
analyzed.
Results On patient-based analysis, positive metastases were detected in 87.5% (21/24) patients. Except for the lymph node 
(LN) metastasis of 3 patients (patient 6, 12 and 17#) and the lung metastasis of another 3 patients (patient 9, 13 and 21#), 
most of the lesions were positive on 68Ga-DOTA-FAPI-04 PET/CT images, including LN metastasis and distant metastasis 
such as lung, bone and pleura. There were altogether 33 target lesions including 30 lung metastases and 3 LN metastases 
with the mean SUVmax and the growth rate were 4.25 and 6.51%, respectively. SUVmax was statistically associated with 
the growth rates of the target lesions (p = 0.047). No statistically significant correlation was found between the SUVmax and 
the serum thyroglobulin levels (p = 0.139).
Conclusions 68Ga-DOTA-FAPI-04 PET/CT has a promising detection rate for RR-DTC metastasis. The FAPI uptake of the 
tumor may provide a potential therapeutic target for RR-DTC.
Trial registry NIH Clinical Trials.gov (NCT04499365).

Keywords 68Ga-DOTA-FAPI-04 · PET/CT · Radioiodine-refractory DTC · Metastasis

Introduction

Thyroid cancer is the most common endocrine malignancy 
with a growing incidence, ranking ninth in the global inci-
dence of cancer [1]. The majority of thyroid cancers are 
differentiated thyroid cancer (DTC). Optimistic prognosis of 
DTC is commonly achieved because of its adequate manage-
ment strategies, such as surgery, radioiodine (131I) treatment, 
and levothyroxine therapy. However, radioiodine-refractory 
DTC (RR-DTC) have become the main cause of disease-
specific death with a 10-year survival rate as low as 10% 
[2], which represents a very difficult management situation.

Cancer guidelines of the American Thyroid Association 
recommend the use of 18F-FDG PET/CT for the detection of 
RR-DTC lesions [3]. However, 18F-FDG is neither a tumor 
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specific tracer nor a therapeutic one. Novel tracers with a 
specific target are urgently needed for diagnosis and therapy.

68Ga-DOTA-FAPI-04 is a novel radiotracer target-
ing fibroblast activation protein (FAP), which is highly 
expressed in cancer-associated fibroblasts (CAFs) of many 
epithelial carcinomas [4–6]. 68Ga-DOTA-FAPI-04 serves as 
an alternative to 18F-FDG for the assessment of malignant 
tumors and adds important diagnostic value in the context 
of challenging 18F-FDG PET/CT cancer subtypes in previ-
ous studies [7, 8]. The uptake of 68Ga-DOTA-FAPI-04 was 
observed in many various tumor entities like thyroid can-
cer [4, 9–13]. Unlike 18F-FDG, radiolabeled FAP inhibitors 
(FAPI) makes FAP-imaging and therapy possible. This study 
first reported 68Ga-DOTA-FAPI-04 PET/CT imaging in a 
cohort of RR-DTC patients.

Materials and methods

Patients

This study was approved by the Clinical Research Ethics 
Committee of the First Affiliated Hospital of Fujian Medical 
University and conducted in accordance with the 1964 Dec-
laration of Helsinki and its later amendments or comparable 
ethical standards (ID 2019-XJS-1130). This study was also 
registered online at NIH ClinicalTrials.gov (NCT04499365). 
Informed written consent was obtained from all of these 
enrolled patients.

RR-DTC is classified in patients with appropriate TSH 
stimulation and iodine preparation in four basic ways accord-
ing to 2015 American Thyroid Association Management 
Guidelines [3]. From December 2020 to November 2021, 
24 RR-DTC patients were recruited from the First Affili-
ated Hospital of Fujian Medical University. The eligibility 
criteria were as follows: (i) adult patients (aged 18 years or 
older); (ii) a negative pregnancy test; (iii) clinically accept-
able renal and hepatic function; (iv) RR-DTC patients with 
structural lesions, treated by 131I more than twice.

Radiopharmaceutical preparation

Good-manufacturing-practice (GMP) grade precursors 
DOTA-FAPI-04 were purchased from Jiangsu Huayi Tech-
nology Co. (Jiangsu, China). 68GaCl3 was eluted from a 
 [68Ge]/[68Ga] generator (JSC Isotope, Obninsk, Russia) 
using 5 mL of 0.1 M hydrochloride acid. Radiolabeling was 
performed manually in a hot cell as previously reported [14, 
15]. Radiochemical purity of the final product was over 95%. 
The median specific activity was 1.67 (range 1.25–2.76) 
MBq/ug.

PET/CT imaging

The injection activity of 68Ga-DOTA-FAPI-04 was calcu-
lated according to the patient’s weight (1.85–2.22 MBq/
kg). Before imaging, all the subjects were asked to urinate 
completely. The emission scan using a hybrid PET/CT 
scanner (Biograph mCT 64, SIEMENS, Germany) began 
30 min after intravenous injection. The patient was supine 
on the examination bed. CT scan was performed from the 
head to upper thighs. The following parameters for the 
CT scan were used: tube voltage of 110 kV, current of 
120 mA, and slice thickness of 3 mm, reconstruction inter-
val 1 mm with a sharp reconstruction kernelD. A PET scan 
was immediately performed after the CT scan in 3D acqui-
sition mode with 6–8 bed positions and 3 min/position. 
TOF mode/reconstruction is utilized. All the obtained data 
were transferred to the MultiModality Workstation (syn-
goTM MI, SIEMENS, Germany); data were reconstructed 
using the ordered subset expectation maximization algo-
rithm (two iterations and 21 subsets); CT data were used 
for attenuation correction; and the reconstructed images 
were then co-registered and displayed. An additional chest 
CT was performed with the patient in the supine position 
at full inspiration, without intravenous contrast medium. 
The CT acquisition protocol of chest CT 6 months ago was 
similar to that of FAPI PET/CT imaging.

Image analysis

Studies were analyzed by a group of two experienced 
nuclear medicine physicians (W Miao and S Chen). Any 
difference in opinion was resolved by consensus. All 
metastases were confirmed by pathological examination, 
medical imaging including post-therapeutic radioiodine 
whole body scan, 131I single photon emission computed 
tomography/computed tomography (SPECT/CT), high-
resolution ultrasonography (US) and CT, serum thyroglob-
ulin (TG) test, and clinical follow-up of at least 6 months 
as well (Table  1). In addition to elevated TG level, a 
diagnosis of metastatic lymph node (LN) was established 
in terms of at least two of the following signs: microcal-
cification, cystic aspect, peripheral vascularization, and 
hyperechogenicity in US examination [16, 17]. Because 
of ethical concerns, biopsies and histopathology were not 
available for most of the analyzed metastases except for 
lung metastasis in six patients, pleura metastasis in one 
patient and bone metastasis in three patients (Table 1).

RR-DTC metastases were coded as positive if the activ-
ity exceeded that of the adjacent background tissues. The 
positive lesions found on FAPI imaging were divided 
into target lesions and non-target lesions according to the 
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Response Evaluation Criteria in Solid Tumors (RECIST) 
1.1 [18]. The target lesions including lung metastases 
which were greater than 10 mm by CT scan and malig-
nant LNs which were greater than 15 mm in short axis 
when assessed by CT scan (CT scan slice thickness recom-
mended to be no greater than 5 mm).

The region of interest (ROI) was drawn manually on 
the entire target lesions on PET cross-sections. The maxi-
mum standardized uptake value (SUVmax) and the aver-
age standardized uptake value (SUVmean) was calculated 
for the quantitative analysis. The target-to-background ratio 
(TBR) was calculated by dividing the lesion SUVmax by 
the SUVmean of the ascending aorta. The normal organs 
were evaluated with a 1-cm-diameter (for the small organs 
[parotid gland and submaxillary gland]) to 2-cm-diameter 
(liver, spleen, bone marrow and kidney) sphere placed inside 
the organ parenchyma [9].

The size of well-defined metastatic lesions such as lung 
and LNs was measured. Lung metastases were measured 
by the longest diameter in the axial plane. The size of the 
metastatic LN was determined by the short diameter of the 
CT cross-section. The mean growth rates of target lesions 
were defined as follows: [(lesion size in FAPI imaging-lesion 
size 6 months ago)/lesion size 6 months ago] × 100%. The 
clinical data of the patients were recorded in detail for sub-
sequent analysis. Serum thyroid stimulating hormone (TSH), 
TG, and antithyroglobulin (TGAb) levels were measured 
before 68Ga-DOTA-FAPI-04 PET/CT imaging by an elec-
trochemiluminescent immunoassay on a Cobas analyzer 
(CCM + cobas8000, Roche Ltd., Basel, Switzerland). The 
correlation between SUVmax and growth rates of the target 
lesions was analyzed. Meanwhile, the relationship between 
SUVmax and TG was studied in patients with negative 
TGAb.

Immunohistochemistry of FAP expression

Immunohistochemical staining of FAP was performed on 
the tumor tissue obtained from biopsy specimens in one 
patient with pleural metastasis. An antibody against FAP 
(ab207178, Abcam) was used.

Statistical analysis

Statistical analysis was performed using SPSS Statistics 23 
(IBM Inc., Armonk, NY, USA). All quantitative data were 
expressed as mean ± standard deviation or as medians with 
ranges. Kruskal–Wallis test was used to compare median 
values. The correlation between the two variables was per-
formed by Spearman correlation analysis. A p value of less 
than 0.05 was set as indicating a statistical significance.Ta
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Results

Patients’ characteristics

We analyzed the data for 24 RR-DTC patients (7 men and 
17 women; 49.6 ± 10.5 year; 25–66 years) in our center 
from December 2020 to November 2021. Majority patients 
(22/24) had papillary thyroid cancer (PTC) histotype. 
Among these patients, the metastatic tissues of 10 patients 
did not ever concentrate 131I, 131I is concentrated in some 
lesions of 3 patients but not in others, the tumor tissue 
loses the ability to concentrate 131I after previous evi-
dence of 131I-avid disease (in the absence of stable iodine 
contamination) in 3 patients, and metastatic disease in 
other 8 patients progressed despite significant concentra-
tion of 131I. The enrolled patients received an average of 
3.87 times of 131I treatment, and the average activity was 
24.24 GBq. Patient 2# has been taking donafenib tosilate 
tablets 0.3 g bid for 28 months, patients 8# and 19# have 
been taking apatinib mesylate tablets for over 28 months 
and 34 months, respectively. Patient 1# had been treated 
with donafenib tosilate tablets 0.3  g bid 1  week and 
stopped because of a severe allergic reaction. The rest 
subjects only received levothyroxine therapy after the last 
131I treatment. TSH level of all patients enrolled was less 
than 0.01 mIU/L. Except of 1 patient who had high TGAb 

(2854 IU/mL), the mean TG level of the rest patients was 
791.7 ng/mL.  BRAFV600E mutations were detected in 4/24 
patients. Three patients had positive  BRAFV600E mutation, 
while only one patient had negative (Table 1).

According to pathological results, clinical information 
and follow-up, 6 patients had bone metastasis, includ-
ing patient 14# with only bone metastasis. Majority of 
enrolled patients (23/24) had lung metastasis. There were 
3 cases of pleural metastasis. Metastases involving both 
LN and distant organs were revealed in 12 patients. The 
detailed clinical characteristics of the enrolled patients are 
summarized in Table 1.

Detection of patient‑based RR‑DTC metastasis

Positive metastases were detected in 87.5% (21/24) 
patients. Majority of the patients (23/24) were compli-
cated with lung metastasis, among which 6 patients had 
negative FAPI imaging of lung metastasis. Twelve patients 
had LN metastasis, of which 3 patients had no abnormal 
FAPI uptake of lymph node metastasis. The typical posi-
tive image of 68Ga-DOTA-FAPI-04 PET/CT and detailed 
illustration of the enrolled patients are presented in Fig. 1 
and Table 2.

Fig. 1  68Ga-DOTA-FAPI-04 PET maximum-intensity-projection images of 12 patients with metastatic and recurrent RR-DTC lesions
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Table 2  68Ga-FAPI-04 PET/CT image of 24 RR-DTC patients

LN lymph node, TBR tumor-to-background, SUVmax the maximum standardized uptake value, SUVmean the average standardized uptake value

Patient no. Metastatic lesions SUVmax TBR SUVmean

Liver Spleen Bone marrow Parotid gland Submaxil-
lary gland

1 Lung 6.3 8.97 0.87 0.86 0.36 1.87 2.68
2 Thyroid Bed 13.5 17.1 2.57 2.37 0.38 1.04 2.55

LN 7.2 9.12
Lung 10.6 13.43
Bone 7.5 9.5

3 LN 9.6 9.16 1.41 1.41 0.50 6.4 2.4
Lung 10.4 9.93

4 Lung 9 9.18 1.34 1.49 0.46 6.32 4.6
5 LN 9.9 8.23 2.17 1.70 0.41 1.47 1.88

Lung 12 9.98
6 Lung 4.7 6.9 1.12 1.13 0.92 2.97 1.54

Pleura 10.3 15.12
LN – –

7 Lung – – 0.77 0.93 0.34 0.77 1.61
8 LN 10.2 8.85 2.60 2.00 0.68 1.07 2.60

Lung 3.1 2.69
Bone 5.8 5.03

9 LN 2.4 2.62 1.77 2.05 0.41 2.33 2.46
Lung – –

10 Lung 5.1 4.4 1.01 1.19 0.49 1.78 2.10
11 LN 6.7 8.93 2.0 1.51 0.45 0.74 1.23

Lung 3.4 4.53
12 Lung 5.1 3.4 0.98 1.22 0.48 1.65 2.37

LN – –
13 Bone 4.1 1.32 2.58 3.17 0.93 1.54 2.18

Lung – –
14 Bone 6.08 4.05 1.90 1.45 0.45 2.79 2.04
15 Lung 2.1 2.1 1.66 1.65 0.45 3.37 2.94
16 LN 8.2 10.12 1.01 0.68 0.48 1.37 2.51

Lung 10.2 12.59
Bone 4.2 5.18
Pleura 5.0 6.17

17 Lung 8.7 8.96 1.12 0.94 0.46 1.51 2.84
LN – –

18 Lung – – 1.82 1.49 0.34 1.05 1.39
19 Lung – – 3.08 2.47 0.54 3.24 2.55
20 Lung 2.25 2.29 2.24 2.19 0.60 6.5 10.07

Pleura 4.7 4.79
21 LN 2.28 3.16 2.75 1.50 0.40 7.43 2.37

Lung – –
22 Lung 1.0 1.4 1.6 1.19 0.42 3.26 2.87
23 Lung 8.2 8.36 1.92 2.07 0.38 8.6 7.4

Paratracheal nodule 8.4 8.57
24 LN 6.4 6.66 1.63 1.60 0.52 2.39 2.65

Lung 1.44 1.5
Bone 8.3 8.64
Paratracheal nodule 7.99 7.07
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Detection of all‑lesion‑based RR‑DTC metastasis

Most of the lesions were positive on 68Ga-DOTA-FAPI-04 
PET/CT images, including LN metastasis and distant metas-
tasis such as lung, bone and pleura (Figs. 2, 3). A total of 
118 well-defined metastatic lesions were included in the 
analysis, including 11 LN lesions, 80 lung lesions and 
27 bone lesions. Median size of metastatic LN and lung 
lesions measured 0.9 cm (range 0.8–2.3 cm) and 1.0 cm 
(range 0.6–2.7 cm), respectively. The mean SUVmax of 
LN, lung, and bone metastasis was 7.06 ± 0.39, 6.39 ± 0.91 
and 4.01 ± 0.48 (p = 0.000), respectively. The mean TBR of 
LN, lung, and bone metastasis was 7.96 ± 1.57, 4.29 ± 3.07 
and 3.35 ± 1.90 (p = 0.000), respectively. SUVmax was sta-
tistically associated with the metastatic organs (p = 0.000). 
While SUVmax was not statistically associated with the 
serum TG levels before the PET scan (p = 0.139).

All bone metastasis were clearly displayed (Fig. 3). A 
total of 27 bone metastatic lesions were found, including 3 in 
skulls, 2 in sternum, 2 in clavicles, 1 in rib, 11 in vertebrae, 
6 in pelvis and 2 in femurs. Osteolysis, osteogenesis and 
mixed type of bone metastasis were 14, 4 and 9, respectively. 
The mean SUVmax of osteolysis, osteogenesis and mixed 
bone metastasis was 4.16 ± 0.52, 2.14 ± 0.39 and 4.15 ± 0.31, 
respectively. The mean TBR of osteolysis, osteogenesis and 
mixed bone metastasis was 3.88 ± 0.64, 1.77 ± 0.32 and 
3.24 ± 0.17, respectively.

Detection of target lesion‑based RR‑DTC metastasis

There were altogether 33 target lesions including 30 lung 
metastases and 3 LN metastases in 11 patients for the 
detection of the mean growth rates. In patient 4# and 24#, 
there was no follow-up CT images in the past 6 months. 

Fig. 2  A 43-year-old female with left pleura metastasis was referred 
to 68Ga-DOTA-FAPI-04 PET/CT imaging (a axial CT; b axial 
68Ga-DOTA-FAPI-04 PET; c axial fusion image) which revealed 
multiple intense FAPI-avid nodules of the left pleura (as indicated 
by the arrow). A 62-year-old female with lung metastasis under-
went 68Ga-DOTA-FAPI-04 PET/CT imaging (d axial CT; e axial 
68Ga-DOTA-FAPI-04 PET; f axial fusion image) which revealed mul-

tiple nodules with intermediate to high uptake of FAPI of bilateral 
lungs (as pointed by the arrow). A 59-year-old female with lymph 
node metastasis underwent 68Ga-DOTA-FAPI-04 PET/CT imaging 
(g axial CT; h axial 68Ga-DOTA-FAPI-04 PET; i axial fusion image) 
which revealed the strong FAPI-avid lymph nodes in the mediastinum 
(as shown by the arrow)
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The mean SUVmax and the growth rate of the target 
lesions was 4.25 and 6.51%, respectively. Spearman’s rank 
correlation test revealed a positive correlation between the 
growth rates of the target lesions and SUVmax (r = 0.348, 
p = 0.047) (Fig. 4).

Detection of non‑target lesion‑based RR‑DTC 
metastasis

Metastatic lung lesions with a diameter smaller than 1 cm 
were defined as non-target lesions. All patients with lung 
metastasis had non-target lesions. SUVmax, fluctuated 
between 0.7 and 4.4, was hard to match non-target lesions 
correctly because of the patients’ respiratory movement. 
The total number is difficult to determine and meaningless.

Immunohistochemistry

One pleural metastatic tumor sample obtained from patient 
6# was assessed for FAP expression by immunohistochem-
istry. Stromal cells around the tumor had prominent FAP 
expression. 68Ga-DOTA-FAPI-04 PET showed high uptake 
(SUVmax = 10.3) in the pleural metastasis of this patient 
[19].

Organ distribution of 68Ga‑DOTA‑FAPI‑04 PET/CT 
imaging in RR‑DTC patients

68Ga-DOTA-FAPI-04 PET imaging of 24 patients with 
metastatic RR-DTC resulted in no adverse events. Except 
for the accumulation in the kidney and bladder due to 
the main excretion pathway, most patients (23/24) had 

Fig. 3  A 52-year-old male with bone metastasis was referred to 
68Ga-DOTA-FAPI-04 PET/CT imaging (a, d, g, axial CT; b, e, h, 
axial 68Ga-DOTA-FAPI-04 PET; c, f, i, axial fusion image) which 

revealed the skull and vertebrae lesions with mild-to-moderate uptake 
of FAPI, including mixed (a), osteolytic (d), and osteogenic (g) meta-
static lesions (as pointed by the arrow)
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only mild 68Ga-DOTA-FAPI-04 uptake in the renal paren-
chyma. Patient 8# had moderate uptake in renal paren-
chyma (SUVmean, 2.61) who had proteinuria 2 + (Fig. 1). 
The mean SUVmean of parotid gland and the submax-
illary gland were 2.97 ± 0.47 and 2.90 ± 0.39, respec-
tively. The mean SUVmean of liver, spleen and bone 
marrow were 1.74 ± 0.13, 1.59 ± 0.11 and 0.49 ± 0.03, 
respectively.

Discussion

In our study, the results proved moderate-to-high 
68Ga-DOTA-FAPI-04 avid in majority metastatic and 
recurrent RR-DTC lesions. LN and distant metastasis 
such as lung, pleura, and bone could be clearly detected 
by 68Ga-DOTA-FAPI-04 PET with statistical difference in 

Fig. 4  A 59-year-old female with lung metastasis underwent 
68Ga-DOTA-FAPI-04 PET/CT imaging comparing with her chest CT 
scan 6 months ago. In axial CT image 6 months ago, the metastatic 
pulmonary nodule (white arrow) measured 13.7  mm (a axial CT) 

and 10 mm (d axial CT), respectively. In 68Ga-DOTA-FAPI-04 PET/
CT imaging, the target lesions measured 16.1 mm (b axial CT) and 
11 mm (e axial CT) with SUVmax of 12.0 (c axial fusion image) and 
4.1 (f axial fusion image), respectively
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the uptake degree. Osteolytic, osteogenic or mixed bone 
metastases can be clearly demonstrated. Meanwhile, the 
lesions with higher SUVmax progress faster in a short 
term, suggesting that the expressions of FAP are related 
to the progression of the disease (Fig. 4), which is in line 
with previous studies [20]. To our knowledge, this study 
was the first attempt of FAPI-04 PET imaging in 24 RR-
DTC patients.

There was no obvious FAPI-04 uptake in metastatic 
lesions of 3 patients (patient 7#, 18# and 19#). We found 
that the number of lesions in these patients was less than 10 
and the diameter of lesions was less than 1 cm. Two patients 
with relative low TG level (13.1 ng/ml and 10.4 ng/ml) indi-
cated that the tumor load in these two patients were lower 
than the others, which may be related to the lower uptake 
of FAPI. This needs to be confirmed by further research. 
Except moderate FAPI-avid lung metastases were found in 
patient 4# with low TG level (3.74 ng/ml), other patients 
with intense FAPI-avid lesions had high TG levels (range 
57.8—> 5000 ng/ml). This finding is consistent with the 
results of the case previously reported by Fu [21]. There 
was no statistical significance between SUVmax of meta-
static lesions and TG level in this study. The results showed 
that there was no correlation between the level of TG and 
the expression of FAP.

The management of RR-DTC metastatic lesions has 
caused a dilemma. Surgery is not eligible for multiple metas-
tases. 131I cannot be concentrated by RR-DTC metastasis 
or effectively kill tumor cells [22]. In the last decade, TKIs 
such as sorafenib and lenvatinib have been approved for the 
treatment of progressive RR-DTC based on phase III clinical 
trials [23, 24]. However, TKI is not a specific targeted drug 
for RR-DTC, because it mainly targets vascular endothe-
lial growth factor receptor (VEGFR) [24], which plays an 
anti-tumor effect mainly by inhibiting tumor neovasculariza-
tion. And the relatively high incidence of side effects such as 
hand-foot syndrome, diarrhea, and hypertension also limit 
the clinical application of TKIs [25]. Personalized therapy 
is highly desirable for these patients. In recent years, tar-
geted radionuclide therapy (TRT) in neuroendocrine tumor 
and prostate cancer have shown good effect [26–28]. But 
there are no suitable radioactive drugs for TRT in RR-DTC 
patients. Unlike 18F-FDG, DOTA-FAPI can also be labeled 
with various therapeutic radionuclides such as 90Y, 177Lu and 
225Ac. Tadashi Watabe et al. have successfully proved the 
concept that α-therapy targeting FAP in the cancer stroma 
is effective [29]. Ballal S et al. have reported 177Lu-DOTA.
SA.FAPi radionuclide therapy in an end-stage breast can-
cer patient [30]. Therefore, FAP may be a promising target 
for theranostics. FAPI is not specific for de-differentiated 
thyroid cancer. However, in this study, intermediate to high 
uptakes of 68Ga-DOTA-FAPI-04 were observed in RR-DTC 
lesions, and strong FAP expression in stromal cells was 

confirmed by immunohistochemistry in such lesions [19]. 
Based on previous study and our findings, TRT based on 
FAPI may be presented as an alternative to RR-DTC [21, 
29, 30].

In this study, mild-to-moderate 68Ga-DOTA-FAPI-04 
uptake was found in the liver, spleen, renal and bone mar-
row, which were consistent with those of previous studies 
[6, 9]. We noticed that the intense uptake of 68Ga-DOTA-
FAPI-04 in parotid gland and submaxillary gland had been 
found in 7 patients. This may be owing to the atrophy of 
the secretory parenchyma and salivary gland fibrosis which 
caused by several times of 131I treatment [31, 32]. It reminds 
us to pay attention to parotid gland protection in the future 
FAP TRT.

There are some limitations in this study. The main limita-
tion of this study is that most of the lesions have not been 
confirmed by pathology. After all, it is unethical to perform 
pathological biopsies on all suspected lesions with abnor-
mally high uptake of 68Ga-DOTA-FAPI-04 to validate PET/
CT results. The second limitation is that these RR-DTC 
patients did not undergo 18F-FDG PET/CT examination 
simultaneously, so it remains unknown the added value of 
FAPI PET/CT compared to FDG PET, which needs further 
research.

Conclusion

In this study, intermediate to high uptakes of 68Ga-DOTA-
FAPI-04 were observed in RR-DTC lesions. 68Ga-DOTA-
FAPI-04 PET/CT is a promising modality for diagnosing 
and opening up new application for radioligand therapy in 
RR-DTC.
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