
Vol.:(0123456789)1 3

Annals of Nuclear Medicine (2020) 34:565–574 
https://doi.org/10.1007/s12149-020-01490-7

ORIGINAL ARTICLE

Brain 18F‑FDG PET analysis via interval‑valued reconstruction: proof 
of concept for Alzheimer’s disease diagnosis

Florentin Kucharczak1,2  · Marie Suau1 · Olivier Strauss2 · Fayçal Ben Bouallègue1,3 · Denis Mariano‑Goulart1,3

Received: 25 March 2020 / Accepted: 31 May 2020 / Published online: 23 June 2020 
© The Japanese Society of Nuclear Medicine 2020

Abstract
Objective We propose an innovative approach for 18F-FDG PET analysis based on an interval-valued reconstruction of 18F-
FDG brain distribution. Its diagnostic performance for Alzheimer’s disease (AD) diagnosis with comparison to a validated 
post-processing software was assessed.
Methods Brain 18F-FDG PET data from 26 subjects were acquired in a clinical routine setting. Raw data were reconstructed 
using an interval-valued version of the ML–EM algorithm called NIBEM that stands for Non-Additive interval-based 
expectation maximization. Subject classification was obtained via interval-based statistical comparison (intersection ratio, 
IR) between cortical regions of interest (ROI) including parietal, temporal, and temporo-mesial cortices and a reference 
region, the sub-cortical grey nuclei, known not to be affected by AD. In parallel, PET images were post-processed using 
a validated automated software based on the computation of ROI normalized uptake ratios standard deviation (SUVr SD) 
with reference to a healthy control database (Siemens Scenium). Clinical diagnosis made during follow-up was considered 
as the gold-standard for patient classification (16 healthy controls and 10 AD patients).
Results Both methods provided cortical ROI indices that were significantly different between controls and AD patients. The 
area under the ROC curve for control/AD classification was statistically identical (0.96 for NIBEM IR and 0.95 for Scenium 
SUVr SD). At the optimal threshold, the sensitivity, specificity, accuracy, positive predictive value, and negative predictive 
value were, respectively, 100%, 88%, 92%, 83%, and 100% for both Scenium SUVr SD and NIBEM IR methods.
Conclusion This preliminary study shows that interval-valued reconstruction allows self-consistent analysis of brain 18F-
FDG PET data, yielding diagnostic performances that seem promising with respect to those of a commercial post-processing 
software based on SUVr SD analysis.
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Introduction

As the world population ages, early diagnosis of neurode-
generative dementia represents a challenge for both society 
as a whole and the medical community. It is estimated that 
46.8 million people worldwide are living with dementia 

in 2015. This number will almost double every 20 years, 
reaching 74.7 million in 2030 and 131.5 million in 2050 [1]. 
Alzheimer’s disease (AD) is considered as the main etiol-
ogy of neurodegenerative dementia (approximately 2/3 of 
cases have AD). AD impairs patient cognitive functions, and 
impacts daily life autonomy, and as such raises major public 
health policy issues in terms of home care and institutional 
placement [2]. Early diagnosis is a key feature in current 
patient management since treatments become less effective 
with worsening patient state.

Considerable effort is ongoing to identify and develop 
reliable biomarkers of incipient AD [3, 4] and other 
types of dementia [5] to target individuals who would 
most benefit from early therapeutic intervention [6]. 
Among these biomarkers, 18F-FDG positron emission 
tomography (PET) has been recognized as a valuable 
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imaging modality for the positive and differential diagno-
sis of neurodegenerative dementias [7–10]. Since absolute 
quantification of cortical glucose metabolism requires 
dynamic acquisitions [11, 12] that rarely fit with clini-
cal constraints, visual interpretation is usually performed 
using a static scan [13]. 18F-FDG uptake is a sensitive 
marker of synaptic dysfunction [14], and as such it has 
been shown to have good sensitivity in the detection of 
early brain dysfunction [15, 16] and follow-up of disease 
evolution over time [12]. Nevertheless, visual rating of 
relative cortical 18F-FDG distribution yields undesirable 
inter-reader variability [11, 17] and sub-optimal specific-
ity especially among moderately skilled readers [18, 19].

To overcome these limitations of visual interpretation, 
several automated semi-quantitative techniques have been 
developed. Although complex computational approaches 
based either on deep learning [20], neural networks [21], 
or Support Vector Machine (SVM) [22] showing promis-
ing classification capabilities have recently been reported, 
most semi-quantitative methods rely on the statistical 
mapping of voxel-based normalized cortical uptake ratio 
with respect to some reference region [23–27].

The aim of the present study is to propose and high-
light the potential and the relevance of brain 18F-FDG 
PET analysis based on an interval-valued reconstruction 
of 18F-FDG distribution [28, 29]. The proposed frame-
work allows for a direct estimation of voxel-wise confi-
dence intervals accounting for the statistical variability 
of voxel values. Subject classification was obtained via 
interval-based statistical comparison between cortical 
regions of interest and a reference region (extracted from 
the same reconstruction), known to be spared by AD. For 
the analysis, only raw data from current PET acquisition 
were required. Diagnostic performances were compared 
to those of PET data post-processing using a validated 
automated software based on the computation of regional 
normalized uptake ratios SD with reference to a healthy 
control database [30].

Materials and methods

Patient characteristics

Twenty-six patients were prospectively recruited from 
the outpatients of the Nuclear Medicine Department at 
Montpelier University Hospital from November 2016 to 
July 2017. All included patients were referred for brain 
18F-FDG PET in routine conditions for the exploration of 
memory or executive dysfunction. Clinical diagnosis made 
during follow-up was considered as the gold-standard for 
patient classification.

The AD group (10 patients, 3 men and 7 women, 
76 ± 6 years, range 64–84 years) was composed of patients 
diagnosed with probable AD according to the NINCDS-
ADRDA criteria [31] during a clinical follow-up of 
320 ± 204 days (range 101–606).

The control group (16 patients, 9 men and 7 women, 
61 ± 13  years, range 36–77  years) was composed of 
patients with null or low pre-test probability of neurode-
generative disease, for whom 18F-FDG PET data were 
within the range of normal, and/ or rated as normal during 
a clinical follow-up of 158 ± 162 days (range 0–590).

PET data acquisition and reconstruction

PET examinations were performed on a Siemens Biograph 
mCT 20 Flow PET-CT system (Siemens Medical Solu-
tions Knoxville, USA) about 30 min after intravenous (IV) 
injection of 2.5 MBq/kg of 18F-FDG. Data were acquired 
in three-dimensional (3D) time-of-flight mode for 10 min. 
Emission data were corrected for attenuation using the 
embedded computerized tomography (CT) scanner. Ran-
dom coincidences (where the two photons did not arise 
from the same annihilation event), scatter coincidences, 
and dead-time were also corrected using dedicated manu-
facturer tools. Patient characteristics and technical data are 

Table 1  Characteristics of the 
study groups

Categorical variables are given as number (percentage). Continuous variables are given as mean ± standard 
deviation [range].
a Significantly different from healthy controls

Healthy controls
(N = 16)

Alzheimer’s disease
(N = 10)

Male 9 (56%) 3 (33%)
Age (years) 61 ± 13 [36–77] 76 ± 6 [64–84]a

Follow-up (days) 158 ± 162 [0–590] 320 ± 204 [101–606]
Injected activity (MBq) 147 ± 17 [121–173] 141 ± 18 [121–166]
Plasma glucose level (g/L) 1.06 ± 0.26 [0.71–1.62] 0.96 ± 0.07 [0.85–1.10]
Injection-acquisition delay (min) 30 ± 3 [20–35] 32 ± 3 [30–36]
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summarized in Table 1. For the needs of the comparison 
experiments, PET data were reconstructed with two dif-
ferent reconstruction methods.

First, PET images were obtained using the routine work-
flow implemented at our institution for brain PET imaging. 
Iterative reconstruction was performed using 3D OSEM (21 
subsets, 8 iterations) including PSF correction, followed by 
a 5, 5, 5 mm FWHM Gaussian post-smoothing procedure. 
Images were sampled on a 400 × 400 × 109 grid with a voxel 
size of 2.04 × 2.04 × 2.03 mm3.

Second, PET data were reconstructed using an interval-
valued extension of the maximum likelihood-expectation 
maximization (ML–EM) algorithm [32, 33] called NIBEM 
[28, 29] that stands for Non-Additive interval-based expecta-
tion maximization. The main motivation for using this algo-
rithm resides in its ability to directly reconstruct voxel-wise 
confidence intervals. The considered confidence intervals 
account for the statistical variability affecting reconstructed 
voxel values. The confidence level associated with these 
intervals was shown to be about 90% (29). As the current 
version of the mentioned algorithm was only described in 
2D, 3D emission data were rebinned into a stack of 109 two-
dimensional (2D) sinograms using the Fourier rebinning 
(FORE) algorithm [34]. Then the 2D sinograms were recon-
structed using NIBEM on a 200 × 200 grid with a voxel size 
of 4.1 × 4.1 × 2.03 mm3. Reconstructions were performed 
using 70 iterations, which makes it possible to reach images 
with a similar noise level as obtained with 3D OSEM algo-
rithm described in the routine workflow. Time-of-flight 
information was not exploited in this preliminary work. 

Instead of computing scalar values for each voxel, the algo-
rithm used was interval-valued (i.e. the algorithm produces 
interval values for each voxel), then the measure associated 
with each voxel i was a real interval denoted [ fi ], which 
lower and upper bounds are respectively denoted fi and fi 
Here, [ fi ] represents the set of real numbers lying between 
its respective lower et upper bounds fi and fi. The central 
image f̂  (i.e. the image that minimizes the Hausdorff dis-
tance between f  and f  ) was defined, for each voxel i, as 
f̂i =

(

fi + fi

)/

2 . In other words, for each voxel i of the 
reconstructed volume, the value f̂i is the center of the inter-
val [ fi ] reconstructed with NIBEM. A graphical illustration 
of the reconstruction procedure is presented in Fig. 1.

Patient classification using SUV ratio

The first set of images (3D OSEM) was post-processed using 
the manufacturer’s tool dedicated to statistical analyses of 
brain PET data (Siemens Scenium) [30]. PET images were 
automatically registered to the Montreal Neurological Insti-
tute (MNI) space, then segmented into cortical regions of 
interest (ROI) including whole brain, parietal, temporal, and 
temporo-mesial cortices. Mean standardized uptake values 
(SUV) were measured in each cortical ROI and normal-
ized to mean whole brain SUV to produce cortical SUV 
ratios (SUVr). Last, these cortical SUVr were converted to 
standard deviation scores (SUVr SD), commonly called z 
score, based on reference distributions from age-matched 
control populations. As the ROI affected by AD appears 

Fig. 1  PET data reconstructed with interval-valued algorithm NIBEM
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hypometabolic, ROI SUVr SD of AD patients are usually 
negative. For example, a SUVr SD that equals − 1 means 
that the considered SUVr is 1 standard deviation below the 
mean SUVr of the control group. For a given classification 
threshold, a subject was considered as “not AD” if all the 
SUVr SD computed in 6 reference ROIs (parietal left/right, 
temporal left/right, and temporo-mesial left/right) were 
above the threshold. If at least one SUVr SD was below the 
threshold, the subject was classified as “AD”.

Patient classification using NIBEM

As Scenium is a commercial software, registration proce-
dure and reference database are not accessible. We then 
designed our own procedure to compare our method. For 
each subject, the NIBEM central image f̂  was smoothed 
with a Gaussian kernel of 5, 5, 5 mm FWHM, then spatially 
normalized to the MNI space using the widely known tissue 
probability map template provided by SPM12 (Wellcome 
Trust Centre, London, UK). Reconstructed upper and lower 
NIBEM PET volumes were then spatially normalized using 
the estimated transformation parameters computed over f̂  . 
As upper, lower, and central volumes are defined in the same 
space, normalizing the data with the same transformation 
parameters allows minimization of the spatial registration 
bias between upper and lower registered volumes. Result-
ing PET images were sampled on a 91 × 109 × 91 grid with 
cubic voxels. Image voxels were labeled according to the 
AAL21 anatomical atlas [35]. A graphical illustration of the 
proposed spatial registration procedure is shown in Fig. 2.

Spatially normalized NIBEM images were then seg-
mented based on voxel labels to define cortical ROIs includ-
ing left (L) and right (R) parietal, temporal and temporo-
mesial lobes.

The clinical diagnosis of AD in 18F-FDG PET is made 
by highlighting the hypo-metabolism of some specific ROIs 
that are affected by the disease with respect to reference 
regions that are known not to be affected by AD. Sub-corti-
cal grey nuclei can be considered as the reference region for 
such a comparison [36].

Thus, as NIBEM reconstructions are interval-valued, the 
interval-valued distribution associated with each relevant 
ROI (L and R parietal, temporal, and temporo-mesial lobes) 
needs to be compared to the interval-valued distribution 
associated with the reference ROI (sub-cortical grey nuclei).

To our knowledge, the literature concerning interval-val-
ued distribution comparison remains rather scarce. Although 
an interval-valued generalization of the Wilcoxon rank-sum 
test was proposed [37], it appears to be insufficiently specific 
for the statistical comparison needed to be performed in this 
present work. Indeed, robust tests like Wilcoxon’s test are 
affected by the imprecision of the data: the more imprecise 
the data the more difficult it is for the statistical tests to reject 
the null hypothesis. In the presence of a considerable impre-
cision (which is the case in the present application), the Wil-
coxon test is too weakly specific to reject such a hypothesis.

Therefore, we propose to compare interval-valued dis-
tributions using a consistency measure between the two 
interval-valued distributions: 

[

f 1
TEST

]

,… ,
[

f N
TEST

]

 for the tested 
ROI and 

[

f 1
REF

]

,… ,
[

f M
REF

]

 for the reference region. These 
two distributions can be considered as being two random 
empirical distributions of intervals. Note that the probability 

Fig. 2  PET data spatial registra-
tion procedure

1 Available at: https ://www.gin.cnrs.fr/AAL2.

https://www.gin.cnrs.fr/AAL2.
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density associated with each interval-valued reconstruction 
is unknown.

Two intervals 
[

f i
TEST

]

 and 
[

f
j

REF

]

 are said to be inconsistent 

if 
[

f i
TEST

]

∩

[

f
j

REF

]

= � and consistent if 
[

f i
TEST

]

∩

[

f
j

REF

]

≠ � 

The consistency function g
(

[

f i
TEST

]

,
[

f
j

REF

])

 is equal to 1 if 
both intervals are consistent, 0 if they are inconsistent. If we 
consider the pair 

(

[

f i
TEST

]

,
[

f
j

REF

])

 , assume these two inter-
vals independent and since there are N.M possible compari-
sons, the weight 1

/(

N.M
)

 can be associated with the pair. 
Under this assumption, in the theory of belief functions [38], 
the more common way to calculate a consistency measure 
between the two interval distributions is to consider the 
cumulative mass on the pairs that are consistent. The con-
sistency measurement denoted IR between the region to test 
and the reference region is thus defined by the equation:

where IRTEST,REF = 1 means that all intervals of the tested 
region intersect the intervals of the reference region. On 
the opposite, IRTEST,REF = 0 means that none of the inter-
vals intersect between the two considered regions. Varying 
a given classification threshold from 1 to 0, a subject was 
considered as “not AD” if all the concordance measures IR 
computed independently between the 6 ROIs (left/ right 
temporal, left/right temporo-mesial and left/ right parietal 
lobes) and the reference (sub-cortical grey nuclei) regions 
were above the threshold. If at least one intersection ratio 
was below the threshold, the subject was classified as “AD”. 
ROI segmentation and comparison processes are graphically 

(1)IRTEST,REF =
1

N.M

N
∑

i=1

M
∑

j=1

g
(

[

f i
TEST

]

,
[

f
j

REF

])

,

detailed in Fig. 3. Illustration of both post-processing and 
proposed methods outputs for an AD patient extracted from 
the database can be found in Fig. 4. For each method, one 
score by ROI is extracted from the analysis, albeit with dif-
ferent meanings: deviation scores for SUVr SD analysis and 
consistency measure between the analyzed ROI and a refer-
ence ROI for NIBEM IR analysis. An overview of the recon-
structions for both compared methods is presented in Fig. 5.

Statistical analysis

Differences between the control group and AD group in the 
distribution of SUVr SD and NIBEM IR computed on an 
ROI basis were assessed using Mann–Whitney’s test.

The ability of the two methods to discriminate between 
controls and AD subjects was evaluated using a receiver 
operating characteristic (ROC) analysis by varying the clas-
sification thresholds (from − 10 to 10 with a step. ROC anal-
ysis is performed with pre-defined criteria that, respectively, 
state false-positive (FP), false-negative (FN), true-positive 
(TP), and true-negative (TN) definitions:

• FP: a patient classified as “AD” whilst labeled “control”
• FN: a patient classified as “not AD” whilst labeled “AD”
• TP: a patient classified as “AD” whilst labeled “AD”
• TN: a patient classified as “not AD” whilst labeled “con-

trol”

For each threshold, FP, FN, TP, and TN were computed. 
Then always for each threshold, (sensitivity) vs (1− specific-
ity) was computed and plotted to obtain the corresponding 
ROC curve. Areas under the ROC curve (ROC AUC) were 

Fig. 3  PET data segmentation and ROI comparison step
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compared [39] and the optimal threshold was defined as that 
maximizing Youden’s index (sensitivity + specificity− 1).

Diagnostic performances of the two methods were com-
pared using Fisher’s exact test. A p value ≤ 0.05 was con-
sidered as significant. All statistical computations were per-
formed using Matlab (The MathWorks, Inc).

Results

Distributions of SUVr SD by cortical ROI in controls and 
AD subjects are presented in Fig. 6a. It shows that distribu-
tions were significantly different in all tested cortical ROIs. 
It thus highlights that SUVr SD analysis is effective in clas-
sifying “AD” and “not AD” groups of the study according 
to the analyzed ROIs.

The same experiment carried out with cortical ROI 
NIBEM IR distributions in controls and AD subjects is 
presented in Fig. 6b. Group distributions were shown to 
also be significantly different between controls and AD 
patients for all the comparisons ROI vs reference except 
for the left temporo-mesial lobe. However, the classifica-
tion (see Fig. 7; Table 2) is not impacted by the lack of 

IR statistical difference between the “AD” and “controls” 
groups in this specific ROI. It thus suggests that consid-
ering these groups and this comparison framework, left 
temporo-mesial lobe ROI does not play a big role in the 
classification framework in this specific study.

Figure 7 shows the ROC curves obtained by varying 
the classification threshold of each method. There was 
no significant difference between the ROC AUCs of the 
two methods (0.95 vs 0.96) for SUVr SD and NIBEM IR 
(respectively, p = 0.86). Both AUC values are excellent, 
and highlight the good classification performance of both 
frameworks on the considered dataset.

In the present experiment, the optimal classification 
thresholds that maximize the Youden’s index were 0.614 
for NIBEM IR and − 2.1 for Scenium SUVr SD. These 
threshold values are those used for analyzing and com-
paring the two methods. In Table 2, where the diagnostic 
performance of both methods in differentiating healthy 
controls from AD patients is summarized, we can observe 
that statistical outcomes (sensitivity, specificity, accuracy, 
positive and negative predictive value) are equal for both 
methods considering the formerly specified thresholds.

Fig. 4  Illustration of brain 18F-
FDG PET analysis for a patient 
diagnosed with Alzheimer’s 
disease with both compared 
methods

Fig. 5:  18F-FDG PET brain 
axial slice of an AD patient. a 
NIBEM lower bound, b NIBEM 
upper bound, c OSEM 3D 
reconstruction used in SUVr 
SD method, d SUVr SD map 
with its color bar. Same color 
bar was used for (a) and (b). 
All volumes were registered to 
template space
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Discussion

It is well documented that in the first stages of AD, the 
temporal and parietal lobes are usually affected by amyloid 
deposition [18]. This coincides with neurofibril deposition 
initially confined to the medial temporal lobe and limbic 
structures [11, 18]. These manifestations tend to be reflected 
as areas of hypo-metabolism on 18F-FDG PET reconstructed 
images. Visual rating of cortical distribution yields undesir-
able inter-reader variability [11, 17] and sub-optimal speci-
ficity especially among moderately skilled readers [18, 19]. 
To overcome these limitations, automated semi-quantitative 
techniques have been developed to help the physician judge 
whether the ROI can be considered as hypo-metabolic or 
not. In the first stages of the disease, hypo-metabolism is not 
usually observed symmetrically. It thus would seem intuitive 
to make a relative comparison: can the considered ROI be 
considered as identical in terms of radio-tracer concentration 
with respect to its symmetrical counterpart or a reference 
region?

The key limitation, for performing reliable direct ROI 
comparison in PET, is that no information about the statisti-
cal variability of the reconstructed data is directly available 
with the reconstruction algorithms used in clinical routine 
[28, 29].

Fig. 6  Box plots of (a) SUVr 
SD distributions and (b) 
NIBEM IR distributions both 
for healthy controls (blue) and 
AD patients (orange) according 
to cortical ROI. Box: median 
and inter-quartile range. Whisk-
ers: mean ± 1.5 standard devia-
tions. Round markers stand for 
extreme outliers beyond the 
whisker’s limits.

Fig. 7  Receiver operating curves (ROC) of SUVr SD (red dotted line) 
and NIBEM IR (blue line and boxes) in differentiating healthy con-
trols from AD patients. The black round marker indicates the optimal 
threshold maximizing Youden’s index that is common to both meth-
ods.
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To overcome this problem, most of the diagnostic assis-
tance techniques recently proposed in the literature rely on 
the use of databases. These techniques can be separated into 
two groups. The first one is artificial intelligence (AI) based: 
for a very specific task, a convolutional neural network can 
be trained using a previously annotated database to clas-
sify whether the proposed 18F-FDG PET scan belongs to a 
patient suffering from the disease or not. Such approaches 
can lead to very promising classification performance [20]. 
The second group of approaches relies on the statistical map-
ping of voxel-based normalized cortical uptake ratio with 
respect to some reference region [23–27]. Each investigated 
voxel or ROI is characterized by a score that reflects its dis-
tance to a reference score. The latter is computed based on a 
database of ethnic-, age- and sex-matched healthy controls. 
As previously mentioned, these approaches give promising 
results, but have certain limitations. The major drawback is 
that they inescapably depend on the database on which they 
rely or from which they have been trained. This raises the 
question of performance variations of these methods con-
sidering changes in acquisition equipment, in reconstruction 
parameters, acquisition conditions, radio-tracer dose, etc. 
As institution-wide, country-specific, or equipment man-
ufacturer-wide recommendations are and will continue to 
different, it appears very difficult to trust a diagnosis relying 
only on AI or database-aided techniques. Nevertheless, com-
parisons with these methods that are now fashionable would 
be of great interest. Apart from the need to have access to 
raw data to perform NIBEM reconstruction, the comparison 
between the proposed approach and these state-of-the-art 
methods would be straightforward as their output is of a 
comparable nature and the metrics used to assess their per-
formance are similar.

The framework proposed in this article is different from 
the kind of approaches described above as it apprehends the 
problem of ROI comparison in PET in an alternative way. 
Through the reconstruction of confidence intervals, what 
is proposed is to directly compare regions of interest for 
dementia with a reference region extracted from the same 
reconstruction thanks to concordance measures. The per-
formed comparison is not based on any external information 
(like a database for instance) for the analysis. Indeed, the 
reference used to perform the hypo-metabolism analysis is 

specific to each patient. It does not require a normalization 
step either. Only raw data of PET acquisition are needed. 
The preliminary results presented in this paper seem to 
highlight that such a processing framework makes possible 
diagnostic performances that are promising as they seem 
similar to a validated post-processing software for AD on 
the tested data.

However, the current study has also some limitations that 
raise interesting perspectives and necessary improvements. 
Concerning the clinical validation, the number of patients 
included remains limited. Indeed, as this method requires 
access to raw PET data, it is impossible to use databases 
such as ADNI [40] because associated raw data are usu-
ally not available. It thus could be interesting to validate 
the results on a more consistent database. Speaking of data-
bases, it could also be interesting to adapt such an analy-
sis to a broader panel of neurodegenerative diseases like 
mild cognitive impairment, fronto-temporal dementia, and 
Lewy body dementia. Another important step in the clinical 
follow-up of patients with dementia is the quantification of 
the evolution of brain function disorders. A method like the 
one proposed in this paper could have a role to play for this 
task. In further studies, one could imagine testing the ability 
to quantify the evolution of a disease over time by analyzing 
the analogous IR scores of PET scans acquired at two dif-
ferent times. It may thus be interesting to see if the IR score 
evolution correlates with the clinical and expected evolution 
of the disease and thus allow a better follow-up of disease 
evolution over time. On the side of theoretical developments, 
to be in line with current PET standards it may be interesting 
to perform NIBEM reconstructions making use of time-of-
flight information. However, this would require prior theo-
retical developments to manage time-of-flight in the NIBEM 
algorithm. Generalizing the NIBEM algorithm to perform 
3D reconstruction of CI estimates without making use of 
re-binning procedures would also be a plus. Comparability 
of the tested methods would be greatly improved. In short, 
the objective of further studies is to propose a reconstruction 
pipeline that meets all the current PET reconstruction stand-
ards. The diagnosis-aid performance will also benefit further 
theoretical developments in statistical testing of interval-
valued distributions that could be more specific to the sta-
tistical population characteristics we are trying to compare. 

Table 2  Diagnostic 
performances of SUVr SD and 
NIBEM IR in differentiating 
healthy controls from AD 
patients

Values computed using the optimal threshold maximizing Youden’s index.
ROC AUC  area under the ROC curve, Se sensitivity, Sp specificity, Acc accuracy, PPV positive predictive 
value, NPV negative predictive value

ROC AUC Se Sp Acc PPV NPV

SUVr SD 0.95 100% (10/10) 88% (14/16) 92% (24/26) 83% (10/12) 100% (14/14)
NIBEM IR 0.96 100% (10/10) 88% (14/16) 92% (24/26) 83% (10/12) 100% (14/14)
p value 0.86 1 1 1 1 1
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More generally, the diagnosis of neurodegenerative diseases 
in PET will surely continue to benefit from image quality 
improvements allowed by hardware and software progress 
of PET technology. However, chances are pretty good that 
tools like the one presented that facilitate better understand 
and characterize the acquired and processed data will also 
play an important role for early diagnosis in the future.

One last important point concerns the use of a database 
for comparative analysis. Even if the proposed analysis 
framework does not require external information like meta-
data or database references, it still requires to set beforehand 
a classification IR threshold that allows to state if the ana-
lyzed patient is affected by the disease or not. This infor-
mation is required for all the diagnosis assistance methods 
mentioned above. Obviously, this preliminary work does not 
have the level of proof to establish a definitive threshold 
that could be used to differentiate AD from healthy con-
trols in routine clinical work. As this threshold is the only 
dependence of the proposed method to a database, it would 
be interesting to carry out a study to see if the classification 
performance is independent of the group characteristics, 
acquisition conditions, radio-tracer dose, etc. In the case 
of a positive answer, it could be conceivable to propose a 
decision-making process based on the proposed methodol-
ogy that is freed from the need of using any database which 
would be an important step for aided-diagnosis methods.

Conclusion

The method presented in this paper is the first method of the 
literature that exploits the uncertainty quantization associ-
ated with the data (in particular the statistical variability 
here) to make an assisting diagnosis tool in PET. The pre-
liminary and original results presented in this paper high-
lighted the fact that clinical routine would directly benefit 
from theoretical progress in the field of confidence interval 
estimation and comparison. Moreover, the limited compu-
tational cost of the proposed method and its relatively easy 
implementation in the clinical routine framework should 
allow its use as a complementary tool for diagnosis aid and 
thus to improve the decision algorithm of AD diagnosis.

To conclude, this paper has shown that interval-valued 
reconstruction can allow promising analysis of brain 18F-
FDG PET data, yielding diagnostic performances similar 
to that of a SUVr SD-based commercial post-processing 
software.
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