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Abstract
Aim The aim of the study was to compare the kinetic analysis of 18F-labeled choline (FCH) uptake with static analysis and 
clinicopathological parameters in patients with newly diagnosed prostate cancer (PC).
Materials and methods Sixty-one patients were included. PSA was performed few days before FCH PET/CT. Gleason 
scoring (GS) was collected from systematic sextant biopsies. FCH PET/CT consisted in a dual phase: early pelvic list-mode 
acquisition (from 0 to10 min post-injection) and late whole-body acquisition (60 min post-injection). PC volume of interest 
was drawn using an adaptative thresholding (40% of the maximal uptake) on the late acquisition and projected onto an early 
static frame of 10 min and each of the 20 reconstructed frames of 30 s. Kinetic analysis was performed using an imaging-
derived plasma input function. Early kinetic parameter (K1 as influx) and static parameters (early SUVmean, late SUVmean, 
and retention index) were extracted and compared to clinicopathological parameters.
Results K1 was significantly, but moderately correlated with early SUVmean (r = 0.57, p < 0.001) and late SUVmean 
(r = 0.43, p < 0.001). K1, early SUVmean, and late SUVmean were moderately correlated with PSA level (respectively, 
r = 0.36, p = 0.004; r = 0.67, p < 0.001; r = 0.51, p < 0.001). Concerning GS, K1 was higher for patients with GS ≥ 4 + 3 than 
for patients with GS < 4 + 3 (median value 0.409 vs 0.272 min− 1, p < 0.001). No significant difference was observed for 
static parameters.
Conclusions FCH influx index K1 seems to be related to GS and could be a non-invasive tool to gain further information 
concerning tumor aggressiveness.
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Introduction

Prostate cancer (PC) is the most commonly diagnosed can-
cer in male worldwide [1]. A number of studies have shown 
the usefulness of 18F-labeled choline (FCH) derivatives 
tracers for non-invasive positron emission tomography/com-
puted tomography (PET/CT) in PC [2, 3]. Indeed, choline 
is a precursor of the biosynthesis of phosphatidylcholine, 
which is located on the cell membrane phospholipids and 
highly expressed in cancer, especially in PC [4–6]. To date, 
FCH PET/CT is mainly used for patients with recurrence 
of PC [7].

Concerning newly diagnosed PC, FCH PET/CT is mainly 
used to assess imaging abnormalities seen during interme-
diate-to-high-risk PC staging with pelvic magnetic reso-
nance (MR), CT, and/or bone scan [8]. In general, for newly 
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diagnosed PC, staging and therapeutic options depends on 
the extent of the tumor (TNM), prostatic-specific antigen 
(PSA) level, Gleason Scoring (GS), number of biopsies 
involved with cancer, percentage of each biopsy involved 
with cancer, PSA doubling time, and life expectancy [9]. 
However, the utility of integrating novel prognostic factors 
into an updated risk stratification schema is still source of 
debate [10]. Indeed, overtreatment is a concern, because 
many of these cancers are not life-threatening. FCH PET/
CT is a non-invasive procedure which could help in newly 
diagnosed PC to identify aggressive tumors, especially dur-
ing active surveillance [11]. Therefore, FCH PET/CT could 
be added to the risk stratification schema in further studies.

Usually, the imaging protocol for FCH PET/CT consists 
in a dual-phase procedure: a pelvic kinetic acquisition starts 
immediately after tracer injection followed by a late scan 
covering the base of the skull through the superior portion of 
the thighs [12–14]. The early phase is mainly used to detect 
pelvic lesions before radioactive urine appears in the excre-
tory pathways [12, 15, 16]. Moreover, this early acquisition 
could also be used to extract an FCH influx index using 
pharmacokinetic modeling [17–20]. Similar to the kinetic 
modeling of 18F-Fluorodeoxyglucose (FDG) PET/CT used 
for several cancers [19, 21–23], the kinetic modeling of FCH 
PET/CT in PC could add further information concerning 
tumor aggressiveness [24].

The aim of this study was to characterize the uptake of 
FCH using kinetic analysis in comparison with usual static 
parameters and GS in newly diagnosed PC.

Materials and methods

Patients

From October 2015 to April 2017, 61 patients with newly 
histologically proven PC and before any treatment referred 
to the nuclear medicine department to perform an FCH PET/
CT were included. The study was approved by the insti-
tutional review board (2016.CE11). Before inclusion, each 
patient signed a written informed consent form after verbal 
and written explanations. All patients underwent 18F FCH 
PET/CT at least 14 days after US-guided biopsies to avoid 
any biopsy effect. Results of PSA test performed few days 
before FCH PET/CT were collected. GS were obtained from 
systematic extended-sextant 12-core biopsies, based on the 
Gleason System on ISUP criteria 2014 and stratified by 
categorization into low-grade (GS ≤ 3 + 4) and high-grade 
malignancies (GS > 3 + 4), respectively.

FCH PET/CT data

FCH was synthesized in Austria (IASOcholine; IASON 
GmbH, Austria). Each patient underwent a CT scan fol-
lowed by a 10-min dynamic PET scan using list-mode 
acquisition with the field of view centered over the pelvic 
region. At the start of the PET acquisition, 3 MBq/kg were 
intravenously administered using an automated injector and 
flushed with 40 mL of saline. Two different PET/CT instru-
ments were used: a Siemens Biograph mCT 64 camera and 
a Siemens Biograph mCT40 camera (Siemens, Knoxville, 
TN). Both systems have similar PET detector characteris-
tics. All patients fasted at least 6 h before the FCH PET/
CT scanning. A whole-body PET/CT scan was performed 
1 h post-injection (p.i). PET data were reconstructed using 
point spread function based on time-of-flight 3D-ordered 
subsets expectation maximization iterative algorithm (2 
iterations, 21 subsets) with corrections (attenuation, dead 
time, randoms, scatter, and decay) and 2 mm kernel convolu-
tion filter. Voxel size was 4 × 4 × 2 mm3. Twenty frames of 
30 s and 1 static frame of 10 min were reconstructed from 
the list-mode acquisition. Time-activity curve (TAC) from a 
volume of interest (VOI) was generated with the Syngo.via 
software (Siemens) by a nuclear medicine physician. The PC 
VOI was manually drawn on the late acquisition. Metabolic 
tumor volume was defined using an adaptative threshold-
ing method based on the signal to noise ratio described by 
Daisne et al. [25]. The VOI was projected onto the early 
static frame of 10 min and each of the 20 reconstructed 
frames of 30 s. The standardized uptake value (SUV) was 
calculated and adjusted by means of an injected dose accord-
ing to tissue activity concentration and patient body weight. 
The SUVmean of the metabolic tumor volume was measured 
on the early static frame of 10 min (early SUVmean) and 
on the late acquisition (late SUVmean). SUVmean param-
eter was preferred to SUVmax, because a lower number of 
counts is detected during the short duration of kinetic recon-
structed frames. The retention index (%) was calculated as 
100 × (late SUVmean − early SUVmean)/early SUVmean. 
For the kinetic analysis, an imaging-derived arterial input 
function was estimated from a manually-drawn VOI within 
the largest arterial blood-pool structures available on the 
early PET image when the peak blood-pool activity was the 
highest. For the tracer kinetic modeling, the reversible one-
tissue compartment model with blood volume parameter 
was adopted, like recently published [17, 26]. Verwer et al. 
have suggested that this model is suitable for FCH kinetic 
modeling due to its robustness and consistency in shorter 
examinations [26]. Kinetic parameters were extracted with 
PMOD software version 3.8 (PMOD Technologies; Zürich, 
Switzerland). K1  (min− 1) represented the influx between 
plasma compartment and tissue compartment.
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Statistical analysis

The Pearson’s correlation test was performed to meas-
ure the statistical association between K1 and SUVs and 
between imaging parameters and PSA level. To compare 
imaging parameters and GS, a Mann–Whitney U test was 
performed. A p value < 0.05 was considered as statisti-
cally significant. A commercial program was used for all 
statistical analysis [Wolfram Research, Inc., Mathematica, 
Version 11.1, Champaign, IL (2017)].

Results

Patients

Median age was 65 years +/− 7 (range 45–87). Thirty-nine 
patients showed tumor stage < T3 (8 as T1 and 31 as T2) and 
22 patients showed tumor stage ≥ T3 (21 as T3 and 1 as T4). 
At the time of FCH PET/CT, the median PSA level was 13.4 
+/− 53.1 ng/mL (range 2.7–298). GS varied between 3 + 3 
and 5 + 4 (15 as 3 + 3, 11 as 3 + 4, 15 as 4 + 3, 9 as 4 + 4, 9 
as 4 + 5 and 2 as 5 + 4). Figure 1 shows TAC obtained in a 
66 years old man.

Fig. 1  A 66-year-old man 
with PSA level = 29 ng/
mL. Fused axial early static 
frame FCH PET/CT (a) 
demonstrates prostatic uptake 
(purple arrow) with corre-
sponding time-activity curves 
(b). FCH PET/CT param-
eters are: K1 = 0.344 min− 1; 
early SUVmean = 2.2; late 
SUVmean = 3.4 and retention 
index = 55%. Anatomo-patho-
logical report from systematic 
sextant biopsies showed Glea-
son score = 3 + 4
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Correlation between kinetic and static FCH PET/CT 
parameters

Results showed that K1 was moderately correlated with early 
SUVmean (r = 0.57; p < 0.001) and late SUVmean (r = 0.43; 
p < 0.001). No significant correlation was observed between 
K1 and retention index (r = − 0.11; p = 0.396) (Fig. 2).

Comparisons between FCH PET/CT parameters 
and clinicopathological characteristics

K1, early SUVmean, and late SUVmean were moderately 
correlated with PSA level (respectively, r = 0.36, p = 0.004; 
r = 0.67, p < 0.001; r = 0.51, p < 0.001) (Fig. 3). Concerning 
GS, the results of the Mann–Whitney U test showed that K1 
was significantly higher for patients with GS ≥ 4 + 3 than 
for patients with GS < 4 + 3. No significant difference was 
observed for static parameters. Concerning the sub-group of 
patients with GS = 7 (26 patients), only K1 parameter was 

also significantly higher for patients with GS = 4 + 3 than for 
patients with GS = 3 + 4 (Table 1).

Discussion

In this study, results show that FCH influx (K1) was the only 
FCH PET/CT parameter that is related to GS. To the best 
of our knowledge, only two studies with a lower number 
of participants compared kinetic FCH parameters and GS. 
Schaefferkoetter et al. demonstrated that FCH influx was 
significantly higher in tumors with GS of 4 + 3 than tumor 
with GS of 3 + 4 or 3 + 5 [24], which are consistent with 
the results of our study [24]. However, on the other hand, 
Choi et al. showed no difference between high and low GS 
[17]. Controversial results could be explained by a differ-
ent kinetic modeling used between these studies (Schaeffer-
koetter et al. were using the one-tissue compartment model 
and Choi et al. were using the the two-tissue compartment 

Fig. 2  The Pearson’s correla-
tion analysis showing moder-
ate but significant association 
between early SUVmean (a), 
late SUVmean (b) and K1. 
No significant association was 
observed between retention 
index and K1 (c)
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model). Furthermore, only 10 and 12 participants, respec-
tively, were included.

Concerning static parameters and GS, results remain 
also controversial. In contrast to the results of our study, 
Schaefferkoetter et  al. showed that 60-min SUV were 

higher for GS of 4 + 3 than GS of 3 + 4 or 3 + 5 [24]. 
However, studies with a larger group of patients showed 
consistent results with our study. Indeed, Beheshti et al., 
De Perrot et al., and Choi et al. found no significant cor-
relation between static parameters and Gleason scores [17, 

Fig. 3  Pearson’s correlation analysis showing moderate but significant association between K1 (a), early SUVmean (b) and late SUVmean (c) 
and PSA level. No significant association was observed between retention index and PSA level (d)

Table 1  Comparison of FCH 
PET/CT parameters and 
Gleason scoring

Statistical analysis was performed with the Mann–Whitney U test
* p value < 0.05 = statistically significant

All of Gleason score Gleason score = 7

≥ 4 + 3 < 4 + 3 p 4 + 3 3 + 4 p

K1  (min− 1) 0.409 0.272 < 0.001* 0.438 0.281 0.027*
Early SUV mean 3.4 2.8 0.120 3.3 3.5 0.812
Late SUVmean 5.5 4.4 0.06 5.0 4.7 0.242
Retention index (%) 62 44 0.131 49 39 0.421
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27, 28]. The lack of significance could be explained by a 
reduced number of participants.

In the current study, we observed a significant but moder-
ate correlation between K1 and early SUVmean. This result 
is consistent with the results from the study of Verwer et al. 
who recently reported showing poor correlation between K1 
and SUV (r = 0.30) [26]. Furthermore, Takesh et al. showed 
also a poor correlation between K1 and SUVmean (r = 0.28) 
[20]. In the same way, Choi et al. did not show any signifi-
cant correlation between K1 with other PET imaging param-
eters [17]. This poor correlation between kinetic and static 
parameters could explain the difference of correlation with 
GS for these two kinds of PET parameters. These results 
confirm that kinetic parameters may provide different meta-
bolic information from static parameters.

Concerning PSA level at the time of FCH PET/CT 
examination, results showed that K1, early SUVmean and 
late SUVmean are correlated with PSA level. Many stud-
ies already showed correlations between static parameters 
and PSA level concerning FCH PET/CT for patients with 
recurrence of PC [17, 29–31]. That could explain why FCH 
PET/CT studies showed a low sensitivity to detect lesions 
in patients referred for recurrent PC with PSA level < 1 ng/
mL [29, 32].

Then, it is relevant to notice in our study that prostatic 
tumors showed a median retention index as 50%. These 
results are consistent with dual-phase FCH PET/CT stud-
ies [27, 33], showing higher retention for cancers than for 
benign lesions. However, our results indicate that K1 val-
ues were not significantly correlated with retention index. 
These results confirm that retention index and K1 represent 
two different molecular interactions. Indeed, Takesh et al. 
supposed that FCH uptake at later time points is linked to 
choline kinase activity whereas K1 is linked to perfusion 
[20]. In the current study, perfusion through K1 is correlated 
with GS, whereas choline kinase activity through the reten-
tion index is not. Further studies are needed to investigate 
the eventual correlation of K1 with angiogenesis and, under 
this suggestion, to assess if K1 could be a tool to predict the 
tumor aggression.

The current study presents limitations. First, an imag-
ing-derived arterial input function was used for the kinetic 
modeling instead of a conventional plasma-derived input 
function. In traditional kinetic modeling, a plasma-derived 
input function is usually obtained from arterial sampling 
with a metabolite correction, which is relatively invasive and 
complex to perform in a routine clinical setting. However, 
Verwer et al. recently reported that the use of an imaging-
derived plasma input function was feasible for a kinetic 
analysis [26]. Second, an easy homogenous time sampling 
(20 frames of 30 s) for dynamic PET data was preferred to 
be adapted for clinical assessment. This time sampling is not 
optimized for the imaging-derived plasma input function, 

but kinetic parameters were compared in patients who per-
formed the same FCH PET/CT protocol.

Conclusions

The results of this study showed that FCH influx index K1 
seems to be related to GS. Further analyses are required to 
confirm that K1 could distinguish well-differentiated from 
least-differentiated and could be a non-invasive tool to gain 
further information concerning tumor aggressiveness. FCH 
PET/CT is useful in detecting metastases in patients with 
biochemical recurrence, but it may play an important role 
also in initial tumor staging similar to and in conjunction 
with MRI-supported biopsy and potentially improve patient 
management with dose escalation for PC lesions with higher 
K1 using intensity-modulated radiotherapy.
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