ORIGINAL ARTICLE

Influence of region-of-interest determination on measurement of signal-to-noise ratio in liver on PET images

 ${\bf Shinji\ Amakusa^1\cdot Koki\ Mat五a^1\cdot Masayuki\ Kawano^1\cdot Kiyotaka\ Hasegawa^1\cdot}$ **Mio Ouchida¹ · Ayaka Date1 · Tsuyoshi Yoshida2 · Masayuki Sasaki3**

Received: 30 June 2017 / Accepted: 22 September 2017 / Published online: 20 October 2017 © The Japanese Society of Nuclear Medicine 2017

Abstract

Objective On ^{18}F -fluoro-2-deoxy-p-glucose (^{18}F -FDG) positron emission tomography (PET), signal-to-noise ratio in the liver (SNR_{liver}) is used as a metric to assess image quality. However, some regions-of-interest (ROIs) are used when measuring the SNR_{liver} . The purpose of this study is to examine the different ROIs and volumes of interest (VOIs) to obtain a reproducible SNR_{liver} .

Methods This study included 108 patients who underwent ¹⁸F-FDG-PET/CT scans for the purpose of cancer screening. We examined four different ROIs and VOIs; a 3-cm-diameter and a 4-cm-diameter circular ROI and a 3-cm-diameter and a 4-cm-diameter spherical VOI on the right lobe of the patients' livers. The average of SUV (SUV_{mean}), standard deviation (SD) of SUV (SUV_{SD}), $\text{SNR}_{\text{liver}}$ and SD of the SNRliver obtained using ROIs and VOIs were then compared. *Results* Although the SUV_{mean} was not different among the ROIs and VOIs, the SUV_{SD} was small with a 3-cm-diameter ROI. The largest SUV_{SD} was obtained with a 4-cm-diameter spherical VOI. The SNR_{liver} and the SD of the SNR_{liver} with a 4-cm-diameter spherical VOI were the smallest, while those with a 3-cm-diameter circular ROI were the largest. These results suggest that a small ROI may be placed on a relatively homogeneous region not representing whole liver unintentionally.

 \boxtimes Masayuki Sasaki msasaki@hs.med.kyushu-u.ac.jp

- ² PET Imaging and Diagnostic Center, Koga Hospital 21, Kurume, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Conclusion The SNR_{liver} varied according to the shape and size of ROIs or VOIs. A 4-cm-diameter spherical VOI is recommended to obtain stable and reproducible SNR

Keywords FDG-PET · Quality control · Image quality · Signal-to-noise ratio in the liver · Region of interest

Introduction

 $18F$ -fluoro-2-deoxy-p-glucose ($18F$ -FDG) positron emission tomography (PET) has been widely used for detecting malignant tumors, differential diagnosis, determination of therapeutic strategy, monitoring treatment response and also in follow-up examinations $[1–10]$ $[1–10]$ $[1–10]$. Standardized uptake value (SUV) is a parameter used to evaluate $^{18}F-$ FDG accumulation semiquantitatively. In addition, quantitative accuracy and reproducibility of SUV are especially important for differential diagnosis and for monitoring treatment response. Therefore, routine inspection and quality assessment of PET scanners are necessary to maintain accurate quantification during the PET examinations [[11,](#page-4-2) [12](#page-4-3)]. Noise equivalent count (NEC) has been used as a standard metric to assess the performance of a PET scanner [[13](#page-4-4)[–16](#page-5-0)]. NEC describes the equivalent coincidence counts that would have the same noise properties as the net true counts, corrected for random and scattered coincidences. NEC reflects the quality of acquired raw data, and thus does not take into account the impact of reconstruction algorithms or correction methods. Recently, the incorporation of additional information, such as point-spread function and time-of-flight information, into iterative reconstruction algorithm markedly improved the quality of the PET image [[17](#page-5-1)]. Signal-to-noise ratio in the liver (SNR_{liver}) is used as a metric to evaluate image quality

¹ Department of Radiological Technology, Koga Hospital 21, Kurume, Japan

obtained from reconstructed images. SNR_{liver} has been reported to be useful for determining the injection dose of $18F-FDG$ in relation to the patient's body weight and the optimization of the acquisition time [[18–](#page-5-2)[22](#page-5-3)].

However, a poor correlation has also been reported between SNR_{liver} and the result of the visual evaluation of clinical images $[14, 15]$ $[14, 15]$ $[14, 15]$. Because the ¹⁸F-FDG uptake in the liver is not homogeneous, the placement of the regions-of-interest (ROIs) for the liver was considered to affect the stability and reproducibility of the SNR_{liver} [[23\]](#page-5-4). Although the guidelines for the oncology 18 F-FDG-PET/CT data acquisition protocol recommended placing a circular ROI with 3 cm diameter in the right lobe of the liver in a coronal image, various other methods have been also reported [[17–](#page-5-1)[22](#page-5-3), [24](#page-5-5), [25\]](#page-5-6). Furthermore, a spherical volume-of-interest (VOI) with 3 cm diameter for measurement the SUV of the liver has also been reported to be highly reproducible [[26](#page-5-7)]. Therefore, the most appropriate method for placing an ROI, which provides a stable and reproducible SNR_{liver} needs to be established.

The aim of this study is to compare the effects of different ROIs and VOIs on measurement of SNR_{liver}s, and to determine the most reproducible method to measure SNRliver.

Materials and methods

Subjects

This retrospective study was approved by the institutional review board of our hospital, and a written informed consent was waived. This study included 108 patients (67 men and 41 women, mean age 57.2 ± 11.0 years, mean body weight 65.1 ± 12.9 kg, mean body mass index (BMI) 23.7 ± 3.2 kg/m²) who underwent ¹⁸F-FDG-PET/CT scan for the purpose of cancer screening. Patients with abnormal accumulations in the liver, those with a high blood-sugar level more than 110 mg/dL, those with liver

dysfunction and those with a liver too small to place ROIs were excluded from this study.

Scanner description

PET/CT data were acquired using a True Point Biograph 40 scanner (Siemens AG, Munich, Germany). This scanner is comprised of 39 rings, with a total of 144 lutetium oxyorthosilicate (LSO) detectors, covering an axial field of view (FOV) of 16.2 cm and a transaxial FOV of 68.3 cm in diameter. Each LSO crystal is $4 \times 4 \times 20$ mm³.

18F-FDG-PET/CT protocol

The patients fasted for approximately 6 h before 18 F-FDG administration. The dose of 18 F-FDG was 3.7 MBq/kg for patients weighing 70 kg or less and 259 MBq for patients heavier than 70 kg. After the administration of 18 F-FDG, the patient rested in a dimmed room for an hour before the PET/ CT scan was started. The patients were scanned with their arms down. Scan duration of one bed position was 2 min. The overlap ranges of PET data acquisition were 28%. The CT scan for attenuation correction was performed according to the following parameters: 120 kVp, 80 mAs, collimation 24×1.2 mm, pitch 0.8, 0.5 s per one rotation. The diameter of the FOV of CT images was 70 cm. The slice thickness of the reconstructed CT image was 5 mm with a 3 mm interval.

Scatter correction was performed using the single scatter simulation method. PET acquisition data were reconstructed using the method of Fourier rebinning two-dimensional ordered subset expectation maximization (FORE–OSEM) with two iterations and eight subsets, and were then smoothed with a Gaussian filter with a full width at half maximum (FWHM) of 6 mm. The slice thickness of PET images was 5 mm and the interval of slices was 3 mm.

Data analysis

For data analysis, the VOXBASE II fusion viewer (J-mac system, Sapporo, Japan) was used. Circular ROIs with

Fig. 1 Placement of an ROI and a VOI. **a** Circular ROIs with a diameter of 3 cm (dashed line) and 4 cm (solid line) were placed on the right lobe of the liver on consecutive five coronal images. **b** Spherical VOIs with a diameter of 3 cm (dashed line) and 4 cm (solid line) were placed on the right lobe of the liver in three-dimensional volume data five times

a diameter of 3 cm (ROI₃; 6.72 cm²) and of 4 cm (ROI₄; 13.43 cm^2) were placed on the right lobe of the liver on five consecutive coronal images $(i=1-5)$ (Fig. [1a](#page-1-0)). ROIs were carefully placed on the center of the right lobe of the liver, taking care not to include the hepatic portal region and subphrenic region. Spherical VOIs with a diameter of 3 cm (VOI₃; 13.82 cm³) and of 4 cm (VOI₄; 32.83 cm³) were placed on the right lobe of the liver in 3 dimensional volume data (Fig. [1b](#page-1-0)). The VOI placement was repeated five times $(j=1-5)$. The average and standard deviation of SUV within each ROI and VOI were calculated as SUV_{mean} and SUV_{SD} , respectively.

The SNRliver,*ⁱ* with an ROI and the SNRliver,*^j* with a VOI were defined with the following formulae.

$$
SNR_{\text{liver},i} = \frac{SUV_{\text{mean},i}}{SUV_{SD,i}}, \text{ in the case of circular ROIs,}
$$

$$
SNR_{\text{liver},j} = \frac{SUV_{\text{mean},j}}{SUV_{SD,j}}, \text{ in the case of spherical VOIs,}
$$

where *i* and *j* represent the number of an ROI or a VOI on each patient.

SNRliver was calculated by the following formulae using the values of five ROIs or VOIs.

$$
SNR_{\text{liver}} = \frac{1}{5} \left(\sum_{i=1}^{5} SNR_{\text{liver},i} \right), \text{ in the case of circular ROIs,}
$$

$$
SNR_{\text{liver}} = \frac{1}{5} \left(\sum_{j=1}^{5} SNR_{\text{liver},j} \right), \text{ in the case of spherical VOIs,}
$$

SD of the SNR_{liver,*i*} and SNR_{liver,*j*} was also calculated, respectively.

Statistical analysis

Comparisons of the mean of SUV_{mean} , SUV_{SD} and $\text{SNR}_{\text{liver}}$ among different ROIs and VOIs were performed by one-way ANOVA, followed by a post hoc Tukey HSD test. Comparison of the SD of SNR_{liver,*i*} and SNR_{liver,*j*} among ROIs and VOIs was performed in the same way for the purpose of determining the stability of measurement of SNR_{liver} in each ROI. We used a level of significance of $p < 0.05$.

Results

Figure [2](#page-2-0) shows the comparison of the mean $\text{SUV}_{\text{mean}}\text{s}$ among two ROIs and two VOIs. SUV_{mean} s were not significantly different among any ROIs or VOIs. On the other hand, Fig. [3](#page-2-1) shows that the SUV_{SD} s with ROI₃ were

Fig. 2 Comparison of SUV_{mean} among ROIs and VOIs. SUV_{mean}s were not significantly different among any ROIs or VOIs $(p=0.94)$

Fig. 3 Comparison of SUV_{SD} among ROIs and VOIs. The mean value of SUV_{SD} with ROI_3 was significantly lower than those with others. SUV_{SD} with ROI_4 was also significantly lower than that with VOI₄ but was not significantly lower than that with VOI₃ ($p=0.06$). SUV_{SD} s with VOIs did not significantly differ from each other

significantly lower than those with others. SUV_{SD} with $ROI₄$ was also significantly lower than that with $VOI₄$. SUV_{SD} s with VOIs were not significantly different from each other.

Figure [4](#page-3-0) shows the comparison of SNR_{liver} s among two ROIs and two VOIs. SNR_{liver} s with two ROIs and two VOIs were significantly different from each other, and SNR_{liver} s with ROI₃ was the highest, followed by ROI₄, $VOI₃$ and $VOI₄$.

Figure [5](#page-3-1) shows the comparison of the SDs of SNRliver,*ⁱ* and SNRliver,*^j* among two ROIs and two VOIs. The SD of VOI_4 was lower than those of VOI_3 , ROI_4 and ROI_3 in ascending order. Each SD had a significant difference from the others.

Fig. 4 SNRlivers of ROIs and VOIs. SNRlivers with two ROIs and two VOIs were significantly different from each other. SNR_{liver} s with $ROI₃$ was the highest followed by $ROI₄$, $VOI₃$ and $VOI₄$

Fig. 5 The standard deviations of SNRliver of ROIs and VOIs. The SD of $VOI₄$ was lower than those of $VOI₃$, $ROI₄$ and $ROI₃$ in ascending order. Each SD showed a significant difference from the others

Discussions

In this study, we investigated the influence of ROI or VOI determination on the stability and reproducibility of SNR_{liver} to evaluate PET image quality. Although the SUV_{mean} was not different among ROIs and VOIs, the SUV_{SD} was small with a small ROI. Furthermore, a small ROI resulted in a large SNR_{liver} and large SD of SNR_{liver} .

The difference in SUV_{mean} s among ROIs and VOIs were not statistically significant. This suggests that a similar SUV_{mean} of the liver can be obtained when using either the diameter of 3 or 4 cm circular ROIs or spherical VOIs. On the other hand, the SUV_{SD} with ROI_3 was smaller than those

with other ROI and VOIs. This is presumably dependent on the region where the ROI is placed. Manual placement of a small ROI tended to be restricted to homogeneous regions unintentionally. Thus, it may not represent the general variability of the liver SUV. Therefore, the placement of a relatively large ROI is recommended to represent the general FDG uptake and distribution in the liver. SNR_{liver} with $ROI₃$ was the largest, and was followed by those with $ROI₄$, $VOI₃$ and $VOI₄$ in descending order. As the SUV_{mean} was not significantly different among all ROIs and VOIs, the difference of SNR_{liver} among ROIs and VOIs was considered to result from the difference in SUV_{SD} . In our study, the SD of SNR_{liver} with $ROI₃$ was also the largest and was followed by those with $ROI₄$, $VOI₃$ and $VOI₄$. Thus, the SNR_{liver} with $VOI₄$ is considered to be the most reproducible among the ROIs and VOIs. McDermott et al. used a spherical VOI with a diameter of 5 cm and showed a small SD of SNR_{liver} [\[25](#page-5-6)]. From the findings described above, we have concluded that the measurement of SNR_{liver} with a smaller ROI is not reproducible, and that to obtain a reproducible SNR_{liver}, it is necessary to place a sufficiently large VOI.

Concerning the manual placement of an ROI or a VOI, placing a circular ROI has a higher degree of freedom than a spherical VOI. Therefore, the variation of measured values should become larger with circular ROIs. Some methods such as increasing the number of measurements is recom-mended when using a circular ROI [\[17](#page-5-1)]. With a larger diameter of ROI or VOI, the degree of freedom when placing an ROI was low, and then the deviation of measurement of SUV_{SD} became smaller. However, placing ROI or VOI with too large of a diameter may be difficult in some cases in which the patient has a small liver.

In this study, a single researcher performed data analysis. Thus, the variance indicates the intra-observer difference for ROI analysis. Our results showed that the SD of SNR_{liver} , which was an intra-observer variance, was small in both large ROIs and large VOIs. Viner et al. examined the inter-observer agreement of SUV_{mean} normalized with lean body mass in the liver [[26\]](#page-5-7). They used a VOI with a 3 cm diameter and showed a good inter-observer agreement of SUV_{mean} measurements. An inter-observer variance is generally considered to be larger than an intra-observer variance [[27,](#page-5-8) [28\]](#page-5-9). This suggests that using a larger VOI with a 4 cm diameter can be expected to obtain better results. Although we did not examine the inter-observer variance of SNR_{liver} at this time, we predict it would be larger but have a similar tendency to the intra-observer variance of SNR_{liver} . Further examination is required to elucidate the effect of ROIs and VOIs on the inter-observer variance of SNRliver.

 SNR_{liver} itself is considered to be unstable as an index of the image quality. Primarily, the administered dose of $18F-FDG$ is a potential influencing factor in the reliability of SUV [[29\]](#page-5-10). A relatively low administered dose generally

results in impaired image quality due to low count statics. This effect also influences the SNR measurement. We suppose that the SD of SNR measured with a small ROI may be larger than with a larger ROI due to variance of SUV resulting from increasing image noise in the liver. Therefore, we infer that reproducibility of SNR measurement would also be improved with a large ROI in the case of a low administered dose. In addition, as the administered dose in this study was determined based on the patient body weight, the influence of the administered dose on the results should be considered negligible, with the exception of possible calibration errors by the dose calibrator. On the other hand, at institutions where ${}^{18}F$ -FDG is supplied by venders, the administered dose cannot easily be adjusted, which may affect the reliability of SUV, as a result of SNR. Secondly, patients with a large BMI are reported to show high normal organ SUVs due to copious adipose tissue, which does not accumulate 18 F-FDG [[30](#page-5-11)[–32](#page-5-12)]. A lean body mass is recommended when calculating regular tissue SUV due to potentially increased values in patients with a high BMI [[30](#page-5-11)[–32](#page-5-12)]. Moreover, in the case of an obese patient, image quality is deteriorated by increases in the number of random and scattered coincidences, and thus patient body weight influences the SNR measurement. However, the effect of body weight as a normalization factor for calculating SUV is negligible in SNR derived as the ratio of SUV_{mean} to SUV_{SD} . In addition, patient body weight was not considered to be a variable in this study, as no patient was of a weight that could be deemed as having an effect on regular tissue SUV. Third, underestimation of liver SUV near the diaphragm due to respiratory movement sometimes occurs in cases involving a small liver. The SUV in the dorsal region of the right lobe of the liver is frequently low, due to an artifact associated with arm motion. The ROIs or VOIs must be carefully placed to avoid such regions. Fourth, this study did not include patients with liver dysfunction, because the liver FDG uptake in patients with liver dysfunction has been reported to be decreased and heterogeneous, and so the SNR_{liver} of such patients needs to be analyzed in separate investigations [\[23,](#page-5-4) [33\]](#page-5-13).

Conclusion

To obtain a stable and reproducible SNR_{liver}, a 4-cm-diameter spherical VOI is considered as superior to a 3-cm-diameter spherical VOI, a 3-cm-diameter and 4-cm-diameter circular ROI.

Compliance with ethical standards

Conflict of interest No potential conflicts of interest were disclosed

References

- 1. Lindell RM, Hartman TE, Swensen SJ, Jett JR, Midthun DE, Nathan MA, et al. Lung cancer screening experience: a retrospective review of PET in 22 non-small cell lung carcinomas detected on screening chest CT in a high-risk population. Am J Roentgenol. 2005;185:126–31.
- 2. Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.
- 3. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. The size of metastatic foci and lymph nodes yielding falsenegative and false–positive lymph node staging with positron emission tomography in patients with lung cancer. J Thorac Cardiovasc Surg. 2004;127:1087–92.
- 4. Lee JH, Rosen EL, Mankoff DA. The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 1—overview, detection, and staging. J Nucl Med. 2009;50:569–81.
- 5. Lee JH, Rosen EL, Mankoff DA. The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2—response to therapy, other indications, and future directions. J Nucl Med. 2009;50:738–48.
- 6. Kato H, Miyazaki T, Nakajima M, Takita J, Kimura H, Faried A, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer. 2005;103:148–56.
- 7. van Vliet EPM, Heijenbrok-Kal MH, Hunink MGM, Kulpers EJ, Siersema PD. Staging investigations for oesophageal cancer: a meta analysis. Br J Cancer. 2008;98:547–57.
- 8. Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, et al. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med. 2005;46:758–62.
- 9. Bares R, Klever P, Hauptmann S, Hellwig D, Fass J, Cremerius U, et al. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994;192:79–86.
- 10. Bang S, Chung HW, Park SW, Chung JB, Yun M, Lee JD, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40:923–9.
- 11. Belakhlef S, Church C, Hays A, Fraser R, Lakhanpal S. Quantitative assessment of the influence of location, internal temperature, idle time, and normalization on the sensitivity of a mobile PET/CT scanner. J Nucl Med Technol. 2008;36:147–50.
- 12. Watanuki S, Tashiro M, Miyake M, Ishikawa Y, Itoh M, Yanai K, et al. Long-term performance evaluation of positron emission tomography: analysis and proposal of a maintenance protocol for long-term utilization. Ann Nucl Med. 2010;24:461–8.
- 13. de Kemp R, Caldwell C, Farncombe T, McKee B, Wassenaar R, Wells R, et al. PET imaging standards and quality assurance for the multi-center trials of the Ontario Clinical Oncology Group. J Nucl Med. 2006;47:365P.
- 14. Mizuta T, Senda M, Okamura T, Kitamura K, Inaoka Y, Takahashi M, et al. NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol Imaging Biol. 2009;11:480–6.
- 15. Fukukita H, Senda M, Terauchi T, Suzuki K, Daisaki H, Matsumoto K, et al. Japanese guideline for the oncology FDG-PET/ CT data acquisition protocol: synopsis of version 1.0. Ann Nucl Med. 2010;24:325–34.
- 16. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratio using noise equivalent counts. IEEE Trans Nucl Sci. 1990;37:783–8.
- 17. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012;53:1716–22.
- 18. Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med. 2009;50:844–8.
- 19. Nagaki A, Onoguchi M, Matsumoto N. Patient weight-based acquisition protocols to optimize 18F-FDG PET/CT image quality. J Nucl Med Technol. 2011;39:72–6.
- 20. de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen ATM, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3:63.
- 21. Geismar JH, Stolzmann P, Sah BR, Burger IA, Seifert B, Delso G, et al. Intra-individual comparison of PET/CT with different body weight-adapted FDG dosage regimens. Acta Radiol Open. 2015;4:1–9.
- 22. Yan J, Schaefferkoetter J, Conti M, Townsend D. A method to assess image quality for low-dose PET: analysis of SNR, CNR, bias and image noise. Cancer Imaging. 2016;16:26.
- 23. Irie S, Hayashida N, Shinkawa T, Kamasaki T, Matsunaga A, Miyamoto I, et al. Clinical usefulness of ¹⁸F-FDG PET/CT for the screening of metabolic liver disorders. Life Sci J. 2014;11:99–104.
- 24. Chang T, Chang G, Clark JW, Diab RH, Rohren E, Mawlawi OR. Reliability of predicting image signal-to-noise ratio using noise equivalent count rate in PET imaging. Med Phys. 2012;39:5891–900.
- 25. McDermott GM, Chowdhury FU, Scarsbrook AF. Evaluation of noise equivalent count parameters as indicators of adult wholebody FDG-PET image quality. Ann Nucl Med. 2013;27:855–61.
- 26. Viner M, Mercier G, Hao F, Malladi A, Subramaniam RM. Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology. 2013;267:596–601.
- 27. Rudd JHF, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.
- 28. Goh V, Shastry M, Engledow A, Kozarski R, Peck J, Endozo R, et al. Integrated ¹⁸F-FDG PET/CT and perfusion CT of primary colorectal cancer: effect of inter- and intraobserver agreement on metabolic-vascular parameters. AJR. 2012;199:1003–9.
- 29. Chang DW, Ersahin D, Staib LH, Della Latta D, Giorgetti A, d'Errico F. Using SUV as a guide to 18 F-FDG dose reduction. J Nucl Med. 2014;55:1–5.
- 30. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S-20S.
- 31. Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR. 2010;195:310–20.
- 32. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S-150S.
- 33. Abikhzer G, Alabed YZ, Azoulay L, Assayag J, Rush C. Altered hepatic metabolic activity in patients with hepatic steatosis on FDG PET/CT. AJR 2011;196:176–80.