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Abstract

Objective We propose a statistical stopping criterion for

iterative reconstruction in emission tomography based on a

heuristic statistical description of the reconstruction process.

Methods The method was assessed for MLEM recon-

struction. Based on Monte-Carlo numerical simulations

and using a perfectly modeled system matrix, our method

was compared with classical iterative reconstruction fol-

lowed by low-pass filtering in terms of Euclidian distance

to the exact object, noise, and resolution. The stopping

criterion was then evaluated with realistic PET data of a

Hoffman brain phantom produced using the GATE plat-

form for different count levels.

Results The numerical experiments showed that com-

pared with the classical method, our technique yielded

significant improvement of the noise-resolution tradeoff for

a wide range of counting statistics compatible with routine

clinical settings. When working with realistic data, the

stopping rule allowed a qualitatively and quantitatively

efficient determination of the optimal image.

Conclusions Our method appears to give a reliable esti-

mation of the optimal stopping point for iterative recon-

struction. It should thus be of practical interest as it

produces images with similar or better quality than clas-

sical post-filtered iterative reconstruction with a mastered

computation time.

Keywords Emission tomography � Iterative

reconstruction � MLEM � Stopping criterion

Introduction

In the medical field, emission tomography is an imaging

technique that seeks to estimate the distribution of a radio-

active tracer confined inside the human body based on a

record of the electromagnetic waves emitted by the tracer in a

given set of directions. Tomographic reconstruction is an

inverse problem that is known to have analytical solution

under certain conditions. However, due to their ability to

incorporate various corrections (geometrical system

response, Compton scattering, and attenuation), it has now

become common practice to exploit algebraic iterative

methods for clinical applications. Many original iterative

algorithms have been proposed since the 1970s in the frame

of emission tomography, among which the algebraic

reconstruction technique ART [1, 2], the iterative least-

square technique ILST [3], the simultaneous iterative

reconstruction technique SIRT [4], the steepest descent

method STP [5], the iterative filtered back-projection [5],

and the simultaneous multiplicative algebraic reconstruction

technique SMART [6, 7]. In 1977, Dempster et al. [8] pro-

posed to rely on the statistical properties of the tomographic

record when defining the functional that has to be minimized

throughout the reconstruction process. Based on the Poisson

nature of the record [9], they derived the maximum likeli-

hood expectation maximization (MLEM) technique. MLEM

is known to converge toward the image that is the most likely

to have produced the record [10]. Rescaled block-iterative

(RBI) methods have been designed in order to fasten the

convergence of MLEM [11, 12], among which the ordered

subset expectation maximization OSEM [13] and the
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row-action maximum likelihood algorithm RAMLA [14].

The power of statistical iterative methods as well as their

advantage over other reconstruction methods has been well

established [15–17]. However, due to the ill-posedness of the

tomographic problem and to the inconsistency of the record,

the noise in the reconstructed image usually increases as

iterations of the algorithm proceed. This noise is composed

of a statistical high-frequency noise, which depends on the

noise in the record, and a deterministic inaccuracy, which

depends on convergence properties of the algorithm, trun-

cation, round-off errors, and imperfection of the model [18,

19]. Consequently, in clinical routine, most users impose the

termination of the reconstruction process after only a few

iterations [20] in order to limit the noise propagation, which

remains a speculative method that leads to uncertain results

[21, 22]. In order to prevent noise propagation, regularized

methods have been proposed that consist in adding some

a priori knowledge regarding the smoothness of the studied

object. In maximum a posteriori (MAP) algorithms, the prior

is usually expressed using a Gibbs energy function penaliz-

ing the likelihood [23–25]. Another classical regularization

technique involves a low-pass filtering of the estimated

object, either after the iterative process or in between each

iteration step [26]. Regularized methods efficiently stem the

noise spreading but inevitably lead to substantial loss of

resolution. Moreover, they generally require the empirical

tuning of some scalar parameters adjusting the desired

amount of smoothing. In this paper, we rely on a heuristic

description of the iterative reconstruction process to define a

stopping criterion based on the statistical properties linking

the exact object with the record. We first show through

numerical Monte-Carlo experiments that our method pro-

vides resulting estimates that are almost as good as the better

estimate reached during the reconstruction in terms of

Euclidian distance. We then assess our method versus a

classical compromise consisting in applying a huge number

of iterations followed by a low-pass filtering of the resulting

image. The comparison is performed using numerical sim-

ulations and involves root mean square (RMS) error and

noise-resolution tradeoff assessment. We finally evaluate

our method with realistic PET data of a Hoffman brain

phantom produced using the GATE platform.

Materials and methods

Context and notations

Emission tomography consists in studying an object h
corresponding to a radioactive distribution confined into

the field of view of a tomographic device. Numerically, this

object can be considered as a function defined over a

Cartesian grid composed of N pixels, i.e. h [ IRN. As the

direct point-wise measurement of the activity is impossible,

one relies on the tomographic process to produce an esti-

mate h of the exact object h. This process can be decom-

posed into two steps. First, the tomographic recording

consists in counting the number of emitted photons for a

given set of detection bins. The record is denoted p [ IRM

with M, the total number of bins. Let us name p [ IRM the

integrals of the exact activity over the lines of response

linked with the detection bins. The integrals p can be

expressed as p ¼ Kh with K [ IRM9N the Radon operator.

Due to the physical properties of the radioactive decay, we

have that p ¼ / pð Þ where / stands for the Poisson noise

operator. The Poisson noise is known to have a dispersion

characterized by E p� pð Þ2
h i

¼ p. Second, the tomo-

graphic reconstruction consists in producing the estimate h
based on the record p. The iterative reconstruction tech-

niques use a step by step error correction procedure in

order to find a solution h such that h is positive and

Kh ¼ p. Some additional regularity constraints may be

imposed on h based on a priori information concerning the

studied object h. The MLEM algorithm seeks the estimate

h as the most likely to produce the record p through the

following procedure (where n denotes the iteration index):

h0
j ¼ cst 8j; hnþ1

j ¼ hn
j

P
i Kij

pi

Khð ÞiP
i Kij

ð1Þ

Heuristic approach—definition of the stopping rule

As the Poisson noise affecting the records is known to be

additive, one can decompose p into two terms:

p ¼ pþ b ð2Þ

where p can be seen as the useful signal and where b is the

noise term which order of magnitude is O
ffiffiffi
p
p
ð Þ. During the

reconstruction process, the algorithm reconstructs both

terms and we hence can consider that, each iteration, the

resulting image is also composed of a useful image and a

noise image as:

hn ¼ ln þ en ð3Þ

with l the useful image and e the noise image. The MLEM

algorithm is designed to converge toward a solution

denoted eh such that:

hn ! eh; Keh ¼ p ð4Þ

This solution may as well be decomposed as:

eh ¼ el þ ee; Kel ¼ p; Kee ¼ b ð5Þ
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where one can legitimately choose el ¼ h. At the first

iteration, as the estimate is initialized as a constant, no

noise has yet been reconstructed and one can write:

h0 ¼ l0; e0 ¼ 0 ð6Þ

We now define two indicators that will help us interpret

the evolution of the reconstruction process throughout the

iterations. The first one is an objective indicator which is

unknown in practice:

RMSn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E hn � h
� �2� �r

ð7Þ

i.e. the root mean square error between the reconstructed

image and the exact object. The behavior of this first

indicator has already been studied. RMSn is known to

decrease until it reaches its minimum and then to increase

[18, 19]. The reconstructed image for which RMSn reaches

its minimum is denoted bh and called ideal estimation. The

second indicator is empirical but may be computed in

practice each iteration:

Jn ¼
P

i pi � Khn
i

� �2

P
i Khn

i

ð8Þ

(where Khi ¼
P

j Kijhj), i.e. the mean of the quadratic

error between the record and the image integrals

normalized with the mean of the image integrals. When

computed using the exact object, this indicator yields due

to the dispersion properties of the Poisson noise:

J ¼
P

i pi � pið Þ2P
i pi

� 1 ð9Þ

At the first iteration, as the constant initial image may be

chosen as small as one wants, we have that h0 ¼ l0 � 1 so

that Kh0 � p and thus J0 [ 1. When n ? ?, the

reconstruction algorithm seeks to build an object whose

projections fit with the recorded data. The indicator Jn will

hence decrease monotonically and ideally tend toward 0 (if

an image eh such that Keh ¼ p is found), i.e.:

Jn ! ~J ¼
P

i pi � Kehn
i

� �2

P
i Khn

i

¼ 0 ð10Þ

Consequently, during the reconstruction, Jn starts from

J0 [ 1 and decreases toward 0 hence having at one

moment a value of 1. The reconstructed image for which

Jn ¼ 1 is denoted h
^

. By virtue of Poisson’s law describing

the statistical uncertainty in the tomographic record, we

will call (physically) realistic an image for which the

indicator J is close to 1. One can also consider that the

more J is close to 1, the more the related image is realistic.

In that sense, h
^

is the most realistic image reached by the

algorithm during the reconstruction. The ensemble of the

realistic images gathers the images for which the record

obeys a Poisson statistics around the image integrals. This

ensemble obviously contains the exact object h. Figure 1

represents schematically the reconstruction process.

Figure 1a displays in two dimensions the evolution of the

estimated image with the useful image in abscissa and the

noise image in ordinate. Each one-dimensional axis stands

for a hyperspace of dimension N. The first iterations

contribute to the reconstruction of the useful image without

reconstruction of noise (zone A) until the estimation

reaches a realistic image for which J ¼ 1. From there, the

algorithm starts to reconstruct the noise (zone B) and

passed a certain point the algorithm only reconstructs the

noise (zone C). Figure 1b shows the evolution of the

(RMS; J) doublet along with the iterations. The key images

of the reconstruction are displayed as well as the exact

object. Zones A and B are delimited by the line J ¼ 1. The

border between zone B and zone C is indicated arbitrarily

(J ¼ a). We denote bJ the value of J when RMS reaches its

minimum, i.e. the value of J associated with the image bh
that is the closest to h in terms of Euclidian distance. As the

ideal estimation bh is reached inside zone B, we know that

bJ 2 a1½ � with a an unknown strictly positive parameter. In

the next section, we show experimentally that, when

working with a perfectly defined system matrix, the value

of bJ is highly stable and very close to 1 whatever the

studied object and the count rate. If we denote Jopt the

mean value of bJ , the condition J� Jopt � 1 can thus be

seen as a natural stopping rule for iterative reconstruction.

Assessment of the method through Monte-Carlo

simulations

The numerically simulated tomographic records were

constituted of 64 projection angles over 180� and 64 pro-

jection bin per angle. The projections were parallel. The

images were reconstructed over a 64 9 64 Cartesian grid.

When simulating the records and reconstructing, we did not

take into account the attenuation or the scatter, and we

assumed a perfect detector response. We considered a

uniform pixel model to build up the system matrix K. The

Poisson noise was simulated using Knuth’s algorithm [27].

Validation of the stopping rule

We generated 500 exact objects constituted of a central uni-

form disk of radius 25 pixels and random activity between 0

and 2, plus several (1–5) additional disks of random radius (2–

10 pixels) activity (0–10) and position (Fig. 2 shows a pos-

sible configuration). For each object, a tomographic record
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was simulated with a random counting statistics comprised

roughly between 5,000 and 140,000 counts. This record was

reconstructed using MLEM and, each iteration, RMSn and Jn

were computed. After 100 iterations (which proved to be

always sufficient), bJ was identified as the value of Jn corre-

sponding to the minimum of RMSn.

Comparison with a classical methodology in terms of RMS

We then assessed our method (MLEM stopped when

J� Jopt � 1) called in the sequel MLEM-STOP with

comparison to the standard method consisting in applying

MLEM with a high number of iterations (here 100) fol-

lowed by a convolution of the resulting estimate with a

Gaussian kernel of full-width at half-maximum (FWHM)

the resolution of the recording device (1 pixel in our con-

figuration), called in the sequel MLEM-CONV. We reis-

sued the experiment carried out in the last section: 500

records corresponding to various exact objects were gen-

erated with counting statistics ranging from 5,000 to

140,000 total counts. Each record was reconstructed and

three indicators were computed:

• RMSMLEM-STOP the root mean square error between the

estimate produced by MLEM-STOP and the exact

object.

• RMSMLEM-CONV the root mean square error between

the estimate produced by MLEM-CONV and the exact

object.

• RMSMIN the minimum root mean square error between

the reconstructed image and the exact object reached

within 100 iterations of MLEM.

Comparison with a classical methodology in terms

of resolution and noise

The study focused on an object constituted of a uniform

background disk (Area 0) of radius 24 pixels and activity 1

(Fig. 3). Inside were disposed three uniform small disks

(Areas 1, 2 and 3) of radius 4, 2 and 1 pixels having a

relative uptake of 10 with respect to Area 0. We defined

around each small disk an annular neighborhood (belong-

ing to Area 0) of radius the double of that of the corre-

sponding area. We generated tomographic records of this

object for 15 levels of counting statistics ranging from

10,000 to 300,000 counts (this range of count rates is in

agreement with routine clinical settings: in our department

of nuclear medicine, the count rates in routine practice

range from about 10,000 events per slice for gated myo-

cardial SPECT to about 150,000 events per slice for MIBG

SPECT. For thorax–abdomen–pelvis PET, the count rate

per 2D slice ranges roughly from 200,000 to 500,000). For

each of the 15 statistic levels, 50 records were generated

Fig. 1 Schematic representation of the reconstruction process.

a Evolution of the reconstructed image in terms of useful and noise

images. b Evolution of the two defined indicators J and RMS

Fig. 2 One possible configuration of the first studied object. Back-
ground radius 25 pixels and relative uptake 1. Area a radius 1.5 pixels

and relative uptake 4. Area b radius 5.5 pixels and relative uptake 2.

Area c radius 8.5 pixels and relative uptake 2. Area d radius 5.5 pixels

and relative uptake 0.5
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123



and reconstructed using MLEM-STOP and MLEM-CONV.

We studied two figures of merit:

• Noise: relative standard deviation of the reconstructed

pixel values inside Area 0 (in %).

• Resolution: relative mean uptake of Areas 1, 2, and 3

with respect to the mean uptake of Area 0 and with

respect to the mean uptake of their own neighborhood.

This relative mean uptake was expected to be as close

as possible to its exact value of 10 but was usually

lower due to partial volume effects affecting the

reconstructed images.

Evaluation of the method using realistic data

In order to evaluate the qualities of our stopping criterion

with realistic data, we studied a Hoffman brain phantom

containing three hot spots. Figure 4 shows the 2D activity

and density maps and Table 1 details the relative uptakes and

attenuation coefficients of the different tissues. The projec-

tion data were produced using the GATE (Geant4 Applica-

tion in Emission Tomography) platform [28]. The numerical

Hoffman phantom employed was an axially invariant 3D

phantom whose 2D activity and density maps were similar to

those displayed on Fig. 4 and defined on a 128 9 128 grid

with a pixel size of 2 mm. The data were simulated using the

specifications of the GEMINI GXL PET scanner (Philips

Healthcare) [29]. Positron range and non-collinearity were

not modeled. The scatter and random annihilations were

corrected using the scatter and random estimations provided

by the software [30, 31]. The system matrix employed for the

reconstructions was built using a uniformly distributed pixel

activity model and corrected for attenuation and detector

sensitivity using the appropriate correction factors provided

by the software. The images were reconstructed on a

128 9 128 grid with a pixel size of 2 mm. Four 3D date sets

were produced with respective total activities of 30, 50, 100,

and 150 MBq (18FDG) and an acquisition time of 60 s. The

mean count levels in the 2D sinograms were, respectively, of

300,000, 500,000, 1 million, and 1.5 million. For each of the

four data sets, the 25 (among 29) central transaxial 2D sin-

ograms were reconstructed using MLEM and stopped using

the described criterion. Furthermore, at each iteration step,

three figures of merit were computed over the 25 recon-

structed images: the bias, the standard deviation, and the

RMS error. These three figures of merit were evaluated over

the entire image and normalized (i.e. expressed in percent of

the total image activity). The computation of the RMS error

allowed to identify the value of bJ corresponding to the

minimal RMS error (RMSMIN). The relative RMS error

increase was computed as the relative difference between the

RMS error of the image produced by the stopping rule and

RMSMIN.

Results

Assessment of the method through Monte-Carlo

simulations

Figure 5 shows the histogram and the dispersion with the

count rate of bJ for the 500 studied objects. The distribution

Fig. 3 Composition of the second studied object

Fig. 4 Hoffman brain phantom used for the GATE PET simulations.

Left activity map and right density map

Table 1 Hoffman phantom composition

Tissue Relative uptake Attenuation (cm-1)

Bone 0 0.15

Gray matter 1 0.1

White matter 0.5 0.1

Cerebrospinal fluid 0.2 0.1

Large tumor 1.5 0.1

Medium tumor 2 0.1

Small tumor 3 0.1

88 Ann Nucl Med (2013) 27:84–95
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Fig. 5 a Histogram of the values of bJ for the 500 studied objects. b Dispersion of the values of bJ with the count rate (black line linear regression,

gray lines 95 % confidence interval)

Fig. 6 Comparison between

RMSMLEM-STOP and RMSMIN.

a Histogram of the ratio.

b Evolution of the ratio with the

count rate (gray line 95 %

confidence interval)

Fig. 7 Comparison between

RMSMLEM-STOP and RMSMLEM-

CONV. a Histogram of the ratio.

b Evolution of the ratio with the

count rate (black line linear

regression, gray lines 95 %

confidence interval)
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of bJ has a mean value of 0.946 and a standard deviation of

0.032, these parameters appearing to stay stable whatever

the counting statistics. The 95 % confidence interval over

the whole statistics range is [0.88 1.01]. The mean value

being quite close to 1 and the relative standard deviation

being very low (3.4 %), one can reasonably use the con-

dition J� 1 as a stopping rule for MLEM reconstruction.

Figure 6 shows the histogram and the dispersion with

the count rate of the ratio (in %) between RMSMLEM-STOP

and RMSMIN. The mean of the ratio is 105 % and the 95 %

confidence interval is [100 % 122 %]. Figure 7 shows the

histogram and the dispersion with the count rate of the ratio

(in %) between RMSMLEM-STOP and RMSMLEM-CONV. The

mean of the ratio is 90.7 % and its standard deviation

12.8 %. Figure 8 (middle row) shows representative

reconstruction provided by MLEM-STOP for the object

described in Fig. 2 and for four count rates (20,000,

40,000, 80,000, and 140,000 counts). For comparison, the

top and bottom rows provide the images obtained for a few

less (top) or more (bottom) iterations.

Figure 9 displays the evolution of the noise figure of

merit along with the statistics level. For each level and for

each of the two tested methods, we show the mean and

standard deviation of the figure of merit. Figure 10 displays

the evolution of the resolution figure of merit along with

the statistics level for each of the three studied areas. Here

again are shown the mean and standard deviation of the

figure of merit. Figure 11 displays representative recon-

structions obtained with MLEM-STOP (top row) and

MLEM-CONV (bottom row) for six count rates (10,000,

20,000, 35,000, 75,000, 150,000, and 300,000 counts).

Evaluation of the method using realistic data

Figure 12 shows the evolution with the iterations of the

mean J value, the bias, the standard deviation, and the

RMS error. On each subplot, the abscissa corresponds to

the J values which decrease with the iterations, and the

ordinate corresponds to one of the three figures of merit

(bias, standard deviation and RMS error). Each round

marker stands for one iteration step. For the four simulated

count rates, bJ was very stable and close to 1. The mean

Fig. 8 Representative

reconstructions provided by

MLEM-STOP for the object

described on Fig. 2 and for four

count rates. From left to right
20,000, 40,000, 80,000 and

140,000 counts simulated.

Middle row images obtained

using MLEM-STOP. Top and
bottom rows images obtained

for a few less (top) or more

(bottom) iterations during the

reconstruction process. The

number of iterations is

mentioned under each slice

Fig. 9 Evolution of the noise figure of merit (mean and standard

deviation) along with the counting statistics for MLEM-STOP and

MLEM-CONV

90 Ann Nucl Med (2013) 27:84–95
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value of bJ over the 25 sinograms was 0.971

(CI95 % = [0.948 0.995]) for the 300,000 count sinograms,

0.977 (CI95 % = [0.955 0.999]) for the 500,000 count

sinograms, 0.998 (CI95 % = [0.989 1.007]) for the 1 mil-

lion count sinograms, and 1.001 (CI95 % = [1.000 1.002])

for the 1.5 million count sinograms. The relative RMS

Fig. 10 Evolution of the

resolution figure of merit (mean

and standard deviation) along

with the counting statistics for

MLEM-STOP and MLEM-

CONV

Fig. 11 Representative reconstructions obtained with MLEM-STOP

(top) and MLEM-CONV (bottom). From left to right 10,000, 20,000,

35,000, 75,000, 150,000, and 300,000 counts simulated. For

MLEM_STOP, the number of iterations after which the stopping

criterion was reached is mentioned under each slice

Ann Nucl Med (2013) 27:84–95 91
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error increase was always low. Its {mean; maximum}

values were, respectively, {1.9 %; 4.5 %} for the 300,000

count sinograms, {1.1 %; 3.2 %} for the 500,000 count

sinograms, {0.06 %; 0.3 %} for the 1 million count sino-

grams, and {0.1 %; 0.2 %} for the 1.5 million count sin-

ograms. Figure 13 shows the reconstructed slices of the

GATE Hoffman phantom for the four studied count levels

(one sinogram chosen arbitrarily over the 25 available for

each count level). The middle framed column corresponds

to the optimal image as defined by our stopping rule. For

comparison, the other columns display the images obtained

for a few less or more iterations.

Discussion

Assessment of the method through Monte-Carlo

simulations

We have first validated the value of the indicator Jopt that

conditions our stopping rule for MLEM. The results shown

on Fig. 5 attest that the values of bJ are highly localized, the

majority being comprised inside the interval [0.9 1] with a

mean of 0.946 and a standard deviation of 0.032. This

localization is weakly dependent on the data statistics as

appreciable from the regression line on Fig. 5b: the linear

regression remains confined between 0.935 and 0.965

while the counting statistics vary from 5,000 to 140,000

counts. It is therefore well founded to rely on the condition

J� Jopt ¼ E bJ
� �

� 1 as a stopping rule for MLEM

reconstruction whatever the studied object and the total

counts in the record.

We have then assessed our method MLEM-STOP in

terms of RMS, noise and resolution versus a classical reg-

ularization approach. Figure 6 shows that terminating the

MLEM algorithm using our stopping rule leads to a

resulting RMS error in the reconstructed image that is in

average 5 % higher than the minimal RMS error reached

during the reconstruction process. This supplementary RMS

error is below 1.7 % for 50 % of the tested objects and

below 22 % for 95 % of them. We also compared in terms

of RMS error the results of MLEM-STOP with those of

MLEM-CONV (100 iterations of MLEM followed by

suitable convolution). The numerical experiment showed

that MLEM-STOP yields an RMS error in the reconstructed

Fig. 12 GATE Hoffman phantom study. From top left to bottom
right are shown the results corresponding to 300,000 counts, 500,000

counts, 1 million counts, and 1.5 million counts. For each count rate

are displayed the evolution with J of (from left to right) the bias, the

standard deviation, and the RMS error. Each round marker corre-

sponds to an iteration step. The gray arrows indicate the iteration step

for which the stopping rule is fulfilled
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images that is in average 9 % less than that obtained with

MLEM-CONV (Fig. 7). For 95 % of the tested objects,

RMSMLEM-STOP is comprised between 65 and 116 % of

RMSMLEM-CONV. The linear regression displayed on

Fig. 7b attests that whatever the statistics (from 5,000 to

140,000) the image reconstructed with MLEM-STOP has

an average RMS error lower than the average RMS error of

the images reconstructed using MLEM-CONV (82 % for

5,000 counts to 97 % for 140,000 counts).

We finally compared MLEM-STOP with MLEM-

CONV in terms of noise and resolution through numerical

simulations using an object constituted of a uniform

background plus three small hot disks. Figure 9 shows that

MLEM-STOP produces images whose noise is in average

Fig. 13 Reconstructions of the GATE Hoffman phantom. From top
to bottom mean count rate of 300,000, 500,000, 1 million, and 1.5

million counts. Middle column images obtained using our stopping

rule. Left and right columns images obtained for a few less (left) or

more (right) iterations during the reconstruction process. The number

of iterations is mentioned under each slice

Table 2 Qualitative appreciation of the advantage of MLEM-STOP over MLEM-CONV depending on the counting statistics range, in terms of

noise, resolution and noise-resolution tradeoff (0 stands for an equality and ? for an advantage)
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always lower than the noise in the images resulting from

MLEM-CONV. However, as appreciable on the figure, due

to the dispersion of the noise figure of merit values, the

advantage of MLEM-STOP over MLEM-CONV becomes

clear starting from a 5,000 count rate. Beyond 200,000

counts, the two methods tend to provide results that are no

longer significantly different. Concerning the resolution,

Fig. 10 shows that, as for the noise, the dispersion of the

figure of merit is always higher using MLEM-STOP.

However, if one focuses on the mean of the resolution figure

of merit, it appears that MLEM-STOP produces images that

are at least as accurate as those provided by MLEM-CONV

for counting statistics higher than 10,000. Beyond 40,000

counts, the advantage of MLEM-STOP over MLEM-

CONV becomes clear whatever the size of the studied disk.

These latest results allow distinguishing roughly three ran-

ges of counting statistics summarized in Table 2:

• From 10,000 to 40,000 counts: sharp advantage for

MLEM-STOP in terms of noise and fairly similar

results for the two methods in terms of resolution.

• From 40,000 to 100,000 counts: significant benefit in

terms of noise and resolution when using MLEM-

STOP.

• Over 100,000 counts: MLEM-STOP produces images

significantly better in terms of resolution with noise

properties that tend to be equivalent to those of the

images obtained using MLEM-CONV.

It appears therefore that, inside the interval [40,000

100,000] counts, MLEM-STOP permits a significant ben-

efit compared with MLEM-CONV regarding both noise

and resolution properties of the reconstructed images.

Outside this interval, MLEM-STOP always allow a sig-

nificant improvement compared with MLEM-CONV,

either concerning noise behavior (for low statistics from

10,000 to 40,000 counts) or resolution performances (for

high statistics over 100,000 counts), hence leading to a

better noise-resolution tradeoff.

Evaluation of the method using realistic data

In order to judge the feasibility of our stopping rule when

working with real data, we reconstructed 2D sinograms of a

Hoffman phantom simulated using the GATE platform for

four different count rates ranging from 300,000 to 1.5

million. The sinograms were corrected for scatter and

random and the system matrix used for reconstruction took

into account the attenuation and detector sensitivity. The

study shows (Fig. 12) that during the iterative process the

bias decreases monotonically whereas the standard devia-

tion increases monotonically. Initially, the resulting RMS

error follows the trend of the bias and decreases. At one

point, the positive slope of the variance becomes larger

than the negative slope of the bias. The RMS reaches a

minimum when the two slopes are equal and then increases

following the trend of the variance. It appears that the

optimal stopping value bJ (corresponding to the RMS error

minimum) is always very close to the theoretical value of

1, whatever the count rate. This confirms that our stopping

rule allows to efficiently target the optimal bias-variance

tradeoff. The consecutive relative RMS error increase

resulting from an abortion of the iterative process once

J� 1 is always mild and never exceeds 5 %. The results

exposed in Fig. 13 confirm from a qualitative point of view

that whatever the count rate the images obtained with our

stopping criterion exhibit a good noise-resolution tradeoff

with comparison to the images obtained for a few less or

more iterations during the reconstruction process.

Conclusion

In this paper, starting from a heuristic description of the

iterative reconstruction process in emission tomography and

based on the statistical properties of the tomographic record,

we proposed a simple stopping criterion which is theoreti-

cally relevant for any iterative reconstruction algorithm.

Using Monte-Carlo simulations, we showed that our crite-

rion allows stopping the reconstruction process for an esti-

mated image that is very close to the optimal estimate in

terms of Euclidian distance. In comparison with post-filtered

MLEM, we proved that our stopping rule behaves signifi-

cantly better in terms of RMS error and noise-resolution

tradeoff for a wide range of counting statistics (10,000 to

300,000 counts) compatible with usual clinical settings. We

then tested our stopping rule on realistic data produced with

the GATE platform for a Hoffman brain phantom. Here

again, the produced images are very close to the optimal ones

in terms of RMS error and hence efficiently target the optimal

bias-variance tradeoff during the iterative process.
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