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40–49 years (n = 64), 2.46 ± 0.35 (1.44–3.15) for 50–59 
years (n = 82), 2.51 ± 0.41 (1.50–3.46) for 60–69 years (n 
= 86), 2.43 ± 0.47 (1.42–3.29) for 70–79 years (n = 86), 
and 2.18 ± 0.45 (1.23–3.03) for 80–89 years (n = 76). 
When we calculated the mean SUV of bilateral testes in 
each patient, there were signifi cant statistical differences 
between those in the age group of 30–39 years and 80–89 
years, 40–49 years and 80–89 years, and 50–60 years and 
80–89 years, when using an unpaired test with Bonfer-
roni correction. The laterality index (|L − R|/(L + R) × 
2) in 203 men was 0.066 ± 0.067 (0–0.522). There was a 
mild correlation between the mean SUV and age (r = 
−0.284, P < 0.001) as well as between the mean SUV and 
mean volume (r = +0.368, P < 0.001). There was no cor-
relation between the mean SUV and glucose blood level 
(r = −0.065, P = 0.358).
Conclusions Some uptake of FDG is observed in the 
normal testis and declines slightly with age. Physiologi-
cal FDG uptake in the testis should not be confused with 
pathological accumulation.

Keywords Testis · 18F-FDG · Physiological uptake · 
PET/CT

Introduction

18F-fl uoro-2-deoxyglucose (FDG) position emission 
tomography (PET) has been widely used for the evalua-
tion of patients with cancer. Although FDG generally 
accumulates in malignant lesions, it can also accumulate 
in normal tissues [1, 2]. Hence, knowledge of the normal 
physiological and variant distribution of FDG is impor-
tant for the proper interpretation of FDG-PET scans. In 
the literature, there have been some reports on normal 
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Abstract
Objective The aim of this study was to assess the physi-
ological uptake of 18F-fl uoro-2-deoxyglucose (FDG) by 
an apparently normal testis with combined positron 
emission tomography–computed tomography (PET/CT) 
and its correlation with age, blood glucose level, and 
testicular volume.
Methods The testicular uptake of 18F-FDG, expressed 
as the standardized uptake value (SUV), was measured 
on PET/CT images in 203 men. The correlation between 
SUV and age, blood glucose level, and testicular volume 
was assessed.
Results The SUV in the total of 406 testes was 2.44 ± 
0.45 (range 1.23–3.85). The SUV was 2.81 ± 0.43 (2.28–
3.85) for 30–39 years (n = 12), 2.63 ± 0.45 (1.77–3.75) for 
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FDG accumulation in various regions such as the gas-
trointestinal tract [3], head and neck [4], endometrium 
and ovary [5, 6], and breast [7]. Kosuda et al. [8] dis-
cussed the physiological uptake in the testis, but testicu-
lar uptake has not been fully evaluated.

Combined PET/computed tomography (CT) scanners 
that enable highly precise localization of the metabolic 
abnormalities seen on PET and high-spatial-resolution 
CT images have been developed [9]. We believe that the 
evaluation of normal tracer uptake in the testis would 
be easier, more precise, and reliable with PET/CT.

In this study, we retrospectively evaluated FDG dis-
tribution in apparently normal testis in a large number 
of subjects and looked into the correlation with age, 
blood glucose level, and testicular volume, using an 
inline PET/CT system.

Materials and methods

Subjects

A total of 360 consecutive men underwent diagnostic 
FDG-PET/CT scans in our PET center between April 
2006 and June 2006. Of these patients, 157 were excluded 
because accumulation in the testis may have been infl u-
enced: 153 men had received chemotherapy earlier for 
various cancers, 2 had received orchiectomy before PET/
CT scan, and 2 showed a blood glucose level of more 
than 160 mg/dl. The remaining 203 men comprised the 
study population and had no history of malignancy in 
the testis and no abnormal fi ndings in the testis on CT 
images of PET/CT and their clinical records. Of the 203 
men, 117 were referred for the evaluation of lung cancer, 
16 for cancer in the head and neck region, 12 for colorec-
tal cancer, 6 for gastric cancer, 5 for melanoma, 4 for 
pancreas cancer, 3 for esophagus cancer, 5 for other 
cancers, and 35 for cancer screening. The 203 men were 
divided into six groups: Group A, 30–39 years (n = 6); 
Group B, 40–49 years (n = 32); Group C, 50–59 years 
(n = 41); Group D, 60–69 years (n = 43); Group E, 70–79 
years (n = 43); and Group F, 80–89 years (n = 38). The 
mean age of the study cohort was 64.5 ± 13.7 years, 
ranging from 36 years to 89 years.

Each subject gave written informed consent before 
scanning as required by our PET center.

FDG-PET/CT study

Whole-body FDG-PET/CT scanning was performed 
with one of the two combined PET/CT scanners (Dis-
covery ST8 and ST16, GE Medical Systems, Waukesha, 
WI, USA). This scanner allows simultaneous acquisition 

of 47 transaxial PET images with interslice spacing of 
3.75 mm in one bed position and provides an image from 
the head to the thigh with 7–8 bed positions. The trans-
axial fi eld of view and pixel size of the PET images 
reconstructed for fusion were 70 cm and 5.47 mm, respec-
tively, with a matrix size of 128 × 128. The CT part was 
either an 8- or 16-detector row helical CT scanner. The 
technical parameters used for CT imaging were as 
follows: a pitch of 6 (high-speed mode), a gantry rotation 
speed of 0.6 s, a table speed of 33.5 mm per gantry rota-
tion, 140 kVp, and 40 mA, 3.75 mm slice thickness and 
no specifi c breath-holding instructions. After at least 
4 h of fasting, patients received an intravenous injection 
of 3.33 MBq/kg body weight of FDG. The blood glucose 
levels were checked in all patients before FDG injection. 
About 50 min later, CT images from the meatus of the 
ear to the mid-thigh for 32 s were obtained. A whole-
body emission PET scan for the same axial coverage was 
performed with 2 min acquisition per bed position using 
the 3D acquisition mode. CT images were used not only 
for image fusion but also to generate an attenuation 
map with the use of measured attenuation correction. 
PET images were reconstructed using an ordered-subset 
expectation maximization iterative reconstruction 
algorithm. PET, CT, and fused PET/CT images were 
generated for a review on a computer workstation 
(eXeleris).

Image analysis

The testis was identifi ed as spherical or discoid-shaped 
soft tissue on axial CT images of PET/CT. For each slice 
showing the testis, a region of interest was placed for the 
testis, and the volume (mm3) was calculated by multiply-
ing area (mm2) by slice thickness (3.75 mm). The total 
volume of the testis was then calculated by summation. 
The testicular uptake of 18F-FDG showing the corre-
sponding regions of interest on axial PET images was 
expressed as the maximal standardized uptake value 
(SUV). SUV was calculated as the ratio of decay-
corrected activity per cubic centimeter of tissue to 
the injected dosage per body weight.

Statistical analysis

We defi ned “laterality index” by calculating (|L − R|/
(L + R) × 2), where L = left testicular SUV, R = right 
testicular SUV, and the mean SUV and volume of bilat-
eral testes in each subject. We assessed the correlation 
between mean SUV and parameters such as age, plasma 
glucose levels, and testicular volume in 203 men as 
well as between mean testicular volume and age using 
Pearson’s correlation coeffi cient test. Moreover, we 
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examined whether there was a signifi cant difference in 
mean SUV among the six age groups, 30–39 years, 40–49 
years, 50–59 years, 60–69 years, 70–79 years, and 80–89 
years, using the t-test with Bonferroni correction. A P 
value of less than 0.05 was regarded as statistically 
signifi cant.

Results

Figure 1 shows pelvic ant-post maximum intensity pro-
jection images, and axial PET and CT images at the tes-
ticular level of a typical subject, representing testicular 
uptake (SUV = 2.82 (L), 2.78 (R), laterality index = 
0.014).

SUV and age

The relationship between uptake of 18F-FDG and age in 
406 testes is summarized in Table 1. The mean ± stan-
dard deviation (minimum–maximum) SUV of 406 testes 

in the 203 men was 2.44 ± 0.45 (1.23–3.85): 2.81 ± 0.43 
(2.28–3.85) in group A (n = 12), 2.63 ± 0.45 (1.77–3.75) 
in group B (n = 64), 2.46 ± 0.35 (1.44–3.15) in group C 
(n = 82), 2.51 ± 0.41 (1.50–3.46) in group D (n = 86), 2.43 
± 0.47 (1.42–3.29) in group E (n = 86), and 2.18 ± 0.45 
(1.23–3.03) in group F (n = 76). When we calculated the 
mean SUV of bilateral testes in each patient, there were 
signifi cant statistical differences between group A and 
group F, group B and group F, and group D and group 
F in comparison with the Bonferroni correction. The 
laterality index (|L − R|/(L + R) × 2) in the 203 men was 
0.066 ± 0.067 (range 0–0.522) with 5% from the top being 
0.193. As shown in Fig. 2, the correlation between the 
mean SUV of bilateral testes and age in the 203 men was 
statistically signifi cant (r = −0.284, P < 0.0001).

SUV and blood glucose level

The blood glucose level before FDG injection in the 203 
men was 111.4 ± 15.6 mg/dl (range 70–159). No subject 
received an insulin injection before the scan. Blood 

a b c

Fig. 1 A maximum intensity projection image (a), and axial posi-
tron emission tomography (b), and computed tomography (c) 
images at the testicular level are shown. Homogenous and moder-

ate uptake is seen corresponding to the bilateral testes with a 
highest standardized uptake value (SUV) of 2.82 in the left and 
2.78 in the right. The laterality index was calculated to be 0.014

Table 1 Testicular 18F-fl uoro-2-deoxyglucose uptake and volume in 406 testes of 203 men

Group Age No. of testes SUV Volume (cm3)

Mean ± SD Range Mean ± SD Range

A 30–39 12 2.81 ± 0.43 2.28–3.85 27.9 ± 6.6 19.2–41.1
B 40–49 64 2.63 ± 0.45 1.77–3.75 24.5 ± 6.9  3.8–41.5
C 50–59 82 2.46 ± 0.35 1.44–3.15 22.8 ± 6.9 12.3–38.1
D 60–69 86 2.51 ± 0.41 1.50–3.46 21.6 ± 6.4  9.6–39.2
E 70–79 86 2.42 ± 0.47 1.42–3.29 21.7 ± 7.9 10.5–35.4
F 80–89 76 2.18 ± 0.45 1.23–3.03 20.0 ± 7.7  8.2–35.7

Total 406 2.44 ± 0.45 1.23–3.85 22.1 ± 6.4  3.8–41.5

SUV, standardized uptake value
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glucose level did not correlate with the mean SUV of 
bilateral testes (r = −0.065, P = 0.358).

Testicular volume and age

The relationship between testicular volume and age in 
406 testes is summarized in Table 1. The mean ± stan-
dard deviation (minimum–maximum) volume of 406 
testes in the 203 men was 22.1 ± 6.4 cm3 (3.8–41.5): 27.9 
± 6.6 (19.2–41.1) in group A (n = 12), 24.5 ± 6.9 (3.8–
41.5) in group B (n = 64), 22.8 ± 6.9 (12.3–38.1) in group 
C (n = 82), 21.6 ± 6.4 (9.6–39.2) in group D (n = 86), 21.7 
± 7.9 (10.5–35.4) in group E (n = 86), and 20.0 ± 7.7 
(8.2–35.7) in group F (n = 76). When we calculated the 
mean SUV of bilateral testes in each patient, there were 
signifi cant statistical differences between group B and 
group F in comparison with the Bonferroni correction. 
As shown in Fig. 3, the correlation between the mean 
volume of bilateral testes and age in the 203 men was 
statistically signifi cant (r = −0.269, P = 0.0001).

SUV and testicular volume

The correlation between the mean SUV and mean 
volume of bilateral testes in the 203 men was statistically 
signifi cant (r = +0.368, P < 0.0001).

Discussion

There has been one report on normal FDG uptake in 
testis [8], which demonstrated a statistically signifi cant 
negative correlation between testicular uptake and age 
over 50 years, and that higher glucose metabolism in the 
testes of younger men might result in higher FDG uptake 

in their testes. According to our results on the basis of a 
larger number of data sets, a weak, but signifi cant nega-
tive correlation between SUV and patient age was 
observed, which was consistent with the earlier report.

As there was a weak negative correlation between 
testicular volume and age, the effect of testicular volume 
was adjusted for. The partial correlation coeffi cient 
between SUV and age adjusted for volume was −0.206 
(P < 0.0005, partial F test). Therefore, a part, but not all 
of the correlation between SUV and age may be attrib-
uted to age-associated atrophy and partial volume effect. 
Because the longitudinal length of the testis at the slice 
where maximal SUV is expressed is more than 20 mm in 
most patients, the partial volume effect may be small.

The laterality of bilateral testicular uptake was low in 
this study, as the laterality index in the 203 men was 
0.066 ± 0.067 (0–0.522) with 95% of the subjects below 
0.193. Laterality above this range may indicate a patho-
logical process and requires further examination.

The testis is divided into the seminiferous tubules and 
interstitial tissue separated by the septum. The seminifer-
ous tubules comprise germinal elements, spermatozoa, 
sertoli cells, and epithelium, and take up 70%–80% of 
the total testicular volume [10]. The interstitial tissue 
comprises Leydig cells producing testosterone, mast 
cells, macrophages as well as nerves and blood and 
lymph vessels, and takes up 20%–30% of the total tes-
ticular volume. In a healthy young man, the ovoid testis 
measures 15 ml to 25 ml [11] or 12 ml to 18 ml [12] in 
volume and has a longitudinal length of approximately 
4.3 cm to 4.6 cm [13]. The volume of total testis is gradu-
ally reduced at ages greater than 50 years because of 
age-related reductions in total volume of seminiferous 
tubules, length of tubules, seminiferous epithelium 
volume, germinal elements [14–16], and the volume and 
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number of Leydig cells [17, 18]. Generally, reduced 
serum testosterone concentration is a hallmark of aging 
[19, 20], and it is known that the decreases in serum tes-
tosterone are accompanied by a constellation of symp-
toms, sometimes termed andropause, that includes 
sexual dysfunction, lack of energy, loss of muscle and 
bone mass, increased frailty, loss of balance, and cogni-
tive impairment [21]. The reduced ability of aged Leydig 
cells of the testis to produce testosterone most likely 
results from defects in the luteinizing hormone (LH) 
signaling pathway leading to reduced cyclic adenosine 
monophosphate [22]. It has been reported by Amrolia et 
al. [23] that Leydig cells can take up glucose to produce 
testosterone by a transport system that appears to be 
similar to the facilitated-diffusion system of glucose 
uptake in most other mammalian cells. Therefore, 
reduced FDG uptake in the testis in elderly men may be 
caused by the reduced production ability of aged Leydig 
cells and also aging which decreases the number of 
Leydig cells. The mechanism by which Leydig cells 
become steroidigenically hypofunctional with age is still 
uncertain, although some researchers documented that 
the mechanism is because of factors such as impaired 
perfusion and metabolism [18, 24] and ineffi cient signal 
transduction [25].

Although there have been two reports on FDG uptake 
of retroperitoneal lymph node in testicular tumor before 
therapy [26, 27], there have been no reports of docu-
menting SUV of testicular tumor before therapy. These 
two reports revealed that SUV of metastatic lymph 
nodes ranged from 1.8 to 17.3. The analysis of FDG 
uptake of testicular tumor before therapy is the next 
important step.

There are some limitations in this study. First, 
although we included only patients in whom no appar-
ent disease of the testis had been detected on CT images 
and by clinical records, the population may have included 
subjects with pathological conditions. However, even if 
pathological testis were included, the percentage should 
be low and would not affect the statistical results. Second, 
only six of the subjects were aged below 40, and there 
were no teenagers or subjects in the 20–29 years age 
group. Although a negative correlation might have 
arisen if there had been more young subjects, we believe 
that this population was quite representative of men who 
are referred for clinical PET.

Conclusions

Some uptake of FDG is observed in the normal testis, 
and faintly declines with age. This physiological FDG 
uptake should not be confused with pathological 
accumulation.
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