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Abstract
Droughts are among the most hazardous and costly natural disasters and are hard to quantify and characterize. Accurate 
drought forecasting reduces droughts' devastating economic effects on ecosystems and people. Eastern Anatolia is the larg-
est and coldest geographical region of Türkiye. Previous studies lack drought forecasting in the Eastern Anatolia (Upper 
Mesopotamia) Region, where agriculture is limited due to being under snow most of the year. This study focuses on the 
Euphrates basin, specifically the Tercan and the Tunceli meteorological stations of the Karasu River sub-basin, a vital Eastern 
Anatolia Region water resource. In this context, time series of 1-, 3-, 6-, 9-, and 12-month Standardized Precipitation Index 
(SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) values were created. The Tuned Q-factor Wavelet 
Transform (TQWT) method and Univariate Feature Ranking Using F-Tests (FSRFtest) were used for pre-processing and 
feature selection. Several models were created, such as stand-alone, hybrid, and tribrid. Machine Learning (ML) methods 
such as Artificial Neural Networks (ANN), Gaussian Process Regression (GPR), and Support Vector Machine (SVM) were 
conducted for the time series analyses. The GPR approach was concluded to perform better than the ANN and SVM at the 
Tercan station. In other words, GPR performs better in 80% of cases than SVM and ANN models. At the Tunceli station 
for the SPI output, SVM, which had a superior performance in 60% of the cases, demonstrated a performance comparable 
to GPR. At the same time, ANN once again exhibited an inferior performance. Similarly, for the SPEI output at the Tunceli 
station, no clear superiority was observed between the GPR and ANN methods. Because both methods were successful 
in 40% of cases. This study contributes by introducing a third concept to the stand-alone and hybrid model comparison 
of drought forecasting, adding tribrid models. It has been detected that the Hybrid and Tribrid ML methods lead to a 91% 
and 64% decrease relative root mean square error percentage compared stand-alone ML methods for SPEI and SPI in two 
stations. While the hybrid model at Tercan station was more successful in 80% of the cases, the hybrid model at Tercan sta-
tion was more successful in 90% of the cases. While hybrid models were observed to be superior, tribrid models not only 
demonstrated performance close to the hybrid models but also provided advantages such as reducing computational load 
and shortening calculation time.
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Introduction

The environment is constantly affected by the rapidly 
increasing population rate and technological progress (Kil-
inc and Yurtsever 2022). Climate change, which directly 
affects all living things in both the short and long term, has 
emerged as one of the foremost environmental challenges 
of our age (Katip 2018), especially gaining importance in 
recent years with the increasing awareness of environmental 
issues. Climate change is a statistically significant change 
in the average state or variability of the climate over an 
extended period, which can occur both due to changes in 
natural climate dynamics and external factors resulting from 
human actions. Various potential future scenarios, such as 
changing rainfall patterns, higher temperatures, and rising 
sea levels, could result from increasing climate change influ-
ences, the consequences of which could play a significant 
role in ecosystems, societies, and economies (IPCC 2014). 
Increasing temperatures, irregularities in precipitation, and 
changes in the frequency of extreme events change the total 
and seasonal water supply, and when these changes are com-
bined with land use, they significantly affect hydrological 
processes at the basin level (Wang et al. 2019; Zhang et al. 
2019; Alivi et al. 2021). This situation may stand out as 
considerable evidence about the effects of climate change. 
Therefore, it is vital to determine and implement manage-
ment strategies compatible with climate change for the sus-
tainable use of water resources today.

The Intergovernmental Panel on Climate Change (IPCC) 
Report on extreme events, which supports the targets of the 
United Nations Framework Convention on Climate Change, 
has acknowledged drought as a significant extreme climatic 
event requiring mitigation to minimize its adverse impacts 
(Field 2012; Deo et al. 2017b). Drought is a persistent and 
recurrent natural disaster on a global scale, often linked to 
climate change (Mohammed et al. 2018; Naumann et al. 
2018). Drought forecasting is critical to combating drought 
natural disasters and is vital for risk management and miti-
gating the drought management process (Mishra and Singh 
2010, 2011; Belayneh et al. 2016; Deo et al. 2017b). Addi-
tionally, drought forecasting accurately helps to lessen their 
catastrophic economic effects on ecosystems and people (Mo 
et al. 2009). It is challenging to forecast when a drought will 
start because it might appear out of nowhere, move swiftly, 
and have several outcomes (Wilhite 2000). Droughts are 
agricultural, hydrological, meteorological, and socioeco-
nomic (Katip 2018; Evkaya and Kurnaz 2021). Most other 
natural disasters are not like droughts in many aspects, espe-
cially when it comes to the degree of difficulty in forecasting 
the drought's start, end, and severity (McKee et al. 1993).

Türkiye, situated in a semi-arid environment, is vul-
nerable to the disastrous effects of droughts (Aibaidula 

et al. 2022). Therefore, forecasting the possible impacts of 
future droughts is vital. This study, specifically focusing 
on the Euphrates basin, aims to develop a more accurate 
and efficient method for drought forecasting. However, tra-
ditional stochastic models have limitations in forecasting 
nonlinear data.

Drought indices are crucial for continuously monitoring 
drought events in terms of their temporal and spatial extent, 
assessment of their severity and spatial dimension quantita-
tively, and early identification, i.e., predicting drought and 
enabling the development of management strategies under 
current climate conditions. Drought assessment plays a 
significant role in the planning and management of water 
resources. Among these drought indices, the Standardized 
Precipitation Index (SPI) and the Standardized Precipita-
tion Evapotranspiration Index (SPEI) are widely used in the 
literature due to their ability to be utilized at multiple time 
scales, represent various types of droughts, and better reflect 
changes in drought characteristics (severity, duration, fre-
quency, and spatial extent) (Mishra and Singh 2010). SPI 
and SPEI are commonly used in global research and cal-
culated at various time scales such as 1-, 3-, 6-, 12-, 24-, 
and 48-months to represent droughts. The frequency of dry 
periods is exceptionally high at brief time scales, but as the 
time scale increases, the frequency of dry periods decreases. 
Therefore, while drought frequency decreases at longer time 
scales, increases in its severity and duration are observed. 
Depending on the type of water source available, response 
times to drought conditions vary significantly. In order to 
define the system response period, (McKee et al. 1993) 
proposed the notion of the drought timescale. For exam-
ple, short time scales (1 to 3 months) are mainly related to 
soil water content and river discharge in headwater areas, 
medium time scales (3 to 12-months) are related to reser-
voir storage and discharge in the medium course of the riv-
ers, and longtime scales (12 to 24-months) are related to 
variations in groundwater storage. As a result, different time 
scales can be used to observe drought conditions in differ-
ent hydrological subsystems (Vicente-Serrano et al. 2010).

In recent years, ML algorithms have spurred significant 
advancements in drought prediction (Felsche and Ludwig 
2021; Piri et al. 2023; Danandeh Mehr et al. 2023). A variety 
of ML algorithms have been developed and employed for 
this purpose, encompassing random forest, k-nearest neigh-
bors, artificial neural networks, support vector machines, 
Gaussian Process Regression, adaptive neuro-fuzzy infer-
ence systems, decision trees, multivariate adaptive regres-
sion splines, M5 Trees, including long short-term memory, 
extreme learning machine, and extreme learning machines 
(Deo et al. 2017a; Kisi et al. 2019; Yaseen et al. 2021; 
Kikon and Deka 2022; Docheshmeh et al. 2022; Lotfirad 
et al. 2022; Moghaddasi et al. 2024; Lalika et al. 2024). 
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Katip (2018) applied a standardized precipitation index 
(SPI) to the Marmara region. Neural Network (NN) mod-
els were utilized. Five models, among six were successful 
(Katip 2018). Özger et al. (2020) applied the self-calibrated 
Palmer Drought Severity Index (sc-PDSI) to the Mediter-
ranean region. Models were created via Empirical mode 
decomposition (EMD) and Wavelet decomposition (WD). 
WD was more successful (Özger et al. 2020). (Mehr et al. 
2020) applied the SPI to the Ankara Province, Turkey. This 
paper presents a new hybrid model called ENN-SA for spati-
otemporal drought estimation. In ENN-SA, an Elman neural 
network (ENN) is combined with simulated annealing (SA) 
optimization and support vector machine (SVM) classifica-
tion algorithms for standardized precipitation index (SPI) 
modeling across multiple stations. In the study, research-
ers have shown that ENN-SA is promising and effective for 
multi-station SPI estimation. Altunkaynak and Jalilzadn-
ezamabad (2021) applied the Palmer drought severity index 
(PDSI) to the Marmara region. Models were created via Dis-
crete Wavelet Transform (DWT), fuzzy, k-Nearest Neigh-
bourNeighbor (kNN), and Support Vector Machine (SVM). 
The hybrid models outperformed stand-alone ones (Altun-
kaynak and Jalilzadnezamabad 2021). Evkaya and Kurnaz 
(2021) applied univariate drought index (UDI) and SPI to the 
Marmara region. External Input (NARX) type NN models 
were created. It was found that the drought index forecast-
ing capacity could be increased using (NARX-NN) (Evkaya 
and Kurnaz 2021). Başakın et al. 2021a, b applied the self-
calibrated Palmer Drought Severity Index (sc-PDSI) to the 
Mediterranean region. They proposed a new hybrid model 
via an adaptive neuro-fuzzy inference system (ANFIS) and 
EMD, namely EMD-ANFIS and stand-alone ANFIS. The 
hybrid model outperformed (Başakın et al. 2021a). Citako-
glu and Coşkun (2022) applied SPI to Marmara region. Both 
stand-alone and hybrid models were created via ANFIS, 
Gaussian process regression (GPR), k-nearest neighbors 
(KNN), NN, and support vector machine regression (SVM). 
Hybrid GPR and NN models outperformed (Citakoglu and 
Coşkun 2022). Gholizadeh et al. (2022) applied SPEI to 
the Central Anatolia region. They proposed a new hybrid 
model via the Bat optimization algorithm and extreme 
learning machine (ELM), namely Bat-ELM. The proposed 
model improved the forecasting accuracy (Gholizadeh et al. 
2022). Kilinc and Yurtsever (2022) proposed a grey wolf 
algorithm (GWO) based gated recurrent unit (GRU) hybrid 
approach for the Mediterranean region. GWO-GRU model 
was successful (Kilinc and Yurtsever 2022). Gul et al. (2023) 
applied SPI to the Aegean region. They proposed Extreme 
Gradient Boosting (XgBoost), Adaptive Boosting, and Gra-
dient Boosting. XgBoost outperformed (Gul et al. 2023). 
Reihanifar et al. (2023) presented a new model named multi-
objective multi-gene genetic programming (MOMGGP), 
compared with genetic programming and multi-gene genetic 

programming. The same forecasting accuracy was obtained 
from MOMGGP (Reihanifar et al. 2023). Soylu Pekpostalci 
et al. (2023) evaluated 71 drought monitoring and forecast-
ing studies from 2010 to 2022 in Türkiye. The application of 
ML for short-term hydrological and meteorological drought 
forecasting was trending upward (Soylu Pekpostalci et al. 
2023). Danandeh Mehr et al. (2023) applied SPEI to the 
Central Anatolia. They proposed a new hybrid model via 
convolutional neural network (CNN) and long short-term 
memory (LSTM), namely convolutional long short-term 
memory (CNN-LSTM). The proposed model improved 
the forecasting accuracy (Danandeh Mehr et al. 2023). In 
addition, researchers have recently tried to suggest various 
hybrid models that can be used on in hydrological forecast-
ing (Yuan et al. 2018; Adnan et al. 2021, 2022, 2023; Ikram 
et al. 2023; Mostafa et al. 2023; Mohammadi 2023).

There are various drought studies regarding the Euphra-
tes basin in the literature. For example, (Katipoglu et al. 
2020) compared SPI, SPEI, Statistical Z-Score Index (ZSI), 
Precipitation Anomaly Index (RAI), and Reconnaissance 
Drought Index (RDI) on a 3-month and 12-month time scale. 
(Katipoglu et al. 2021) mapped the SPI, ZSI, RAI, SPEI, 
and RDI using Kriging, Radial Basis Function (RBF), and 
Inverse Distance Weighting (IDW) methods at three and 
12-month time scales. As seen in these studies from Türkiye, 
no existing studies predict the drought of the Euphrates basin. 
(Katipoğlu and Acar 2022). Calculated trends were calcu-
lated using Mann Kendall (MK) and Modified Mann Kendall 
(MMK) tests of the Standardized flow (SRI) index at three 
and 12-month time scales. Their studies also mapped drought 
trends using Kriging, RBF, IDW, Local Polynomial Inter-
polation (LPI) and Global Polynomial Interpolation (GPI) 
methods. (Katipoğlu et al. 2022) calculated and compared the 
trends with MK and MMK tests of SPI, SPEI, ZSI, RAI and 
RDI at three and 12-month time scales time scales. (Esit et al. 
2023) calculated and compared the trends of SPI, SPEI and 
the standardized streamflow index (SDI) with MK, Spear-
man Rho, and innovative trend analysis tests at a 12-month 
time scale. As seen in these studies from Türkiye, no existing 
studies have predicted the drought of the Euphrates basin 
using ML methods. In addition, although drought prediction 
studies have been carried out in many geographical regions 
of Türkiye, no current study has been found in the Euphrates 
basin, the coldest and largest geographical region. Therefore, 
this study aims to close this gap by estimating SPI and SPEI 
values obtained from existing stations in the Euphrates basin 
in Türkiye using ML methods.

This study selected the application units of two meteoro-
logical measurement stations in the Euphrates Basin, spe-
cifically for the Karasu sub-basin in the Eastern Anatolia 
region. Within the scope of the study, 1965–2022 monthly 
precipitation and temperature data of existing stations were 
used. Monthly SPI values (SPI-1, SPI-3, SPI-6, SPI-9, and 
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SPI-12) and SPEI values (SPEI-1, SPEI-3, SPEI-6, SPEI-
9, and SPEI-12) were generated for 1, 3, 6, 9 and 12-time 
scales. SPI and SPEI outputs were utilized separately to 
monitor and describe the development of temporal variations 
of meteorological drought events over various time scales. 
A forecasting process was conducted using three different 
approaches: (i) Simple ML methods (ANN, GPR, SVM), (ii) 
Hybrid ML methods (TQWT-ANN, TQWT-GPR, TQWT-
SVM) and (iii) Tribrid ML methods (TQWT-FSRFtest-
ANN, TQWT-FSRFtest-GPR, TQWT-FSRFtest-SVM). 
Another critical purpose of this study, along with these 
three different approaches, was to develop high-performance 
drought prediction models and to reveal the advantages and 
disadvantages of the models by comparing the performances 
of simple, hybrid, and tribrid approaches. This study will 
contribute to the literature by offering a third alternative to 
the single-hybrid comparison.

Material & method

Study area and data

This study was conducted in the River Karasu, a sub-basin 
of the Euphrates Basin, which is situated between lati-
tudes 40°20'–38°23' N and longitudes 37°17'–41°34' E. 
The Euphrates River, one of the most significant rivers 
in the Middle East, is in the most mountainous part of 
eastern Türkiye. The Karasu, on the other hand, is one of 
the primary tributaries contributing to the formation of the 
Euphrates River. The Karasu River Basin has an approxi-
mate surface area of 37,339 km2, representing about 4.77% 
of Türkiye's total surface area and 30.70% of the Euphrates 
Basin. The Karasu River Basin is surrounded by moun-
tainous areas consisting of volcanic masses. It is the most 
mountainous part of the Euphrates Basin, with a maximum 
altitude of 3,537 m in the eastern and interior areas and a 
minimum altitude of 800 m in the south. While 57.4% of 
the Basin has steep and very steep topography, 10.9% has 
relatively flat terrain. The basin's land structure consists of 
0.7% urban areas, 14.2% agricultural land, 42.6% pasture-
land, 2.2% water masses, and the remaining portion is bare 
land (SYGM 2021). The most important agricultural lands 
of the basin are the Tercan, Erzurum, and Sarısu plains. 
The prevailing climate in the study sub-basin Karasu is 
continental and stands out for its harshness according to 
the central basin that the area belongs to, the Euphrates 
Basin. The basin experiences the highest rainfall during 
winter, while the least rainfall occurs in summer. Because 
of climate change, there is an anticipated rise in the fre-
quency, severity, and spatial distribution of natural disas-
ters, particularly those sensitive to changes in the water 
cycle, such as drought, across the country. In specific river 

basins, a decrease in rainfall and a significant increase in 
temperature are observed, and consequently, a tendency 
for reduced water flow is observed. Research indicates that 
the Euphrates Basin is one of the basins witnessing a nota-
ble water deficit (Alivi et al. 2021). In this study, Tercan 
and Tunceli meteorological stations existing in the Karasu 
sub-basin were selected. Figure 1 presents an overview of 
the basin and the locations of the stations.

Monthly mean temperature and monthly total precipita-
tion data measured at Tercan and Tunceli meteorological sta-
tions for 58 years from 1965 to 2022 were acquired from the 
General Directorate of Meteorology of Türkiye. The method 
used to estimate missing data is the Inverse Distance Method 
(IMD). This method assigns weights to neighboring stations 
inversely proportional to their distance from the target sta-
tion. This means that distant stations are given lower weight, 
while closer stations are given more weight. The basic prin-
ciple of this approach is the assumption that closer stations 
correlate better with the target station than distant stations 
(Mohamed Salleh et al. 2021). This study used the IMD 
to complete the stations' missing monthly precipitation and 
temperature data. While using the method, the four closest 
stations in the vicinity with high correlation were selected, 
and the missing data were tried to be completed using this 
station's data. Figure 2 illustrates temporal changes in the 
annual mean temperature and precipitation for the two 
selected meteorological stations in the basin.

Precipitation data analysis reveals that the long-term 
annual mean precipitation is approximately 430.7 mm at 
the Tercan station, below the country average, and 845.6 mm 
at the Tunceli station, above the country average. The 
recorded maximum and minimum annual mean precipita-
tion was 684.2 mm in 1979 and 185.3 mm in 2022 in Tercan, 
521.2 mm in 1989, and 1992.8 mm in 1967 in Tunceli. At 
the Tercan station, 65% of the annual precipitation occurred 
during autumn and spring, while approximately 22% and 
13% occurred during winter and summer, respectively. At 
the Tunceli station, 77% of the annual precipitation occurred 
during winter and spring, while approximately 20% and 3% 
occurred during autumn and summer, respectively. Tem-
perature data analysis indicated that the annual mean tem-
perature is about 8.5 °C at the Tercan station and 12.9 °C at 
the Tunceli station. The highest and lowest recorded annual 
temperatures were observed at 11.4 °C in 2010 and 5.4 °C 
in 1992 in Tercan, 15.0 °C in 2018, and 10.1 °C in 1992 in 
Tunceli. Furthermore, the monthly mean temperature var-
ies from 21.4 °C to 27.2 °C in August and from -1.7 °C to 
-10.6 °C in January at Tercan and Tunceli stations, respec-
tively. In conclusion, it has been observed that the different 
geographical locations and hydrological conditions, such as 
altitude and high topographic conditions, of the study areas, 
significantly influence the amount of precipitation and tem-
perature in the region. Table 1 presents geographical and 
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hydrological statistics characteristics related to monthly 
temperature and precipitation data between 1965 and 2022.

The selected stations have various climatic characteristics 
such as elevations ranging from 981 to 1,429 m., monthly 
mean precipitation from 35.9 to 70.5 mm., monthly mean 
temperature from 8.5 to 12.9  °C, standard deviation of 
monthly mean precipitation from 28.8 to 69.5 mm., and 
standard deviation of monthly mean temperature from 
10.1 to 10.2 °C. On the other hand, the precipitation's Cv 
ranges from 101.3% to 124.7% for the selected stations, 
while temperature varies between 84.0% and 126.5%. The 
Cv coefficient of the temperature and precipitation data is 
considerably higher than zero. Therefore, it can be stated 
that available temperature and precipitation data are not 
homogeneously distributed around the arithmetic mean. 
In other words, these parameters indicate high variability 
in the probability density function. Only the temperature 
data of the Tercan station, which has the lowest Cv, shows a 
homogeneous distribution around the arithmetic mean. The 
precipitation data's Ck indicates a distribution with posi-
tive kurtosis, signifying a flatter distribution. On the other 

hand, the Ck of the temperature data is negative, indicating 
a distribution with sharper peaks. For both stations, the pre-
cipitation data exhibit a right-skewed distribution (positive 
skewness), as evidenced by Cs greater than zero. Conversely, 
the temperature data demonstrate a left-skewed (negative 
skewness) distribution.

Standardized Precipitation Index (SPI)

SPI is a commonly utilized meteorological drought index. 
A dimensionless index standardizes precipitation data 
(Akturk et al. 2022; Aktürk et al. 2024). SPI reflects the 
precipitation deficit for a specific time frame and place. 
SPI can be calculated for various time scales, from short-
term (e.g. one-month) to long-term (e.g. 24-months) 
(Svoboda et al. 2012). The index offers a comprehensive 
understanding of precipitation patterns by being applied 
to many time scales. Below-average precipitation is indi-
cated by negative SPI readings, which may signal drought 
conditions. Positive SPI readings imply wetter circum-
stances since they show above-average precipitation 

Fig. 1   General view of the study area
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(Smakhtin and Hughes 2004). Precipitation data are 
assumed to have a gamma distribution for SPI purposes 
(McKee et al. 1993; Naumann et al. 2018). Precipita-
tion's statistical characteristics can be described thanks 
to the gamma distribution (Guttman 1998; Zeybekoğlu 
and Aktürk 2021). SPI levels are frequently understood 
in terms of the length and severity of wet or dry condi-
tions (Dabar et al. 2022). The measure helps track and 
contrast the intensity of droughts in various climatically 

diverse areas. SPI is especially helpful in managing water 
resources, evaluating the effects of climate variability, 
and in agriculture (Tsesmelis et al. 2023). Early warn-
ing systems utilizing SPI can assist communities and 
policymakers in being ready for the possible effects of a 
drought. SPI is versatile enough to assess drought condi-
tions for short-term agricultural impacts and long-term 
water resource management (Wilhite 2000; Loukas and 
Vasiliades 2004; Alemaw et al. 2013).

Fig. 2   Annual mean tem-
perature and precipitation time 
series for Tercan and Tunceli 
stations

(a) Tercan station 

(b) Tunceli station 

Table 1   Descriptive statistics of the selected stations

Station Name Tercan Tunceli

Geographic 
Character-
istics

Longitude (E) 40°23′26" 39°32′27"
Latitude (N) 39°46′36" 39°06′21"
Elevation (m) 1,429 981
Data Precipitation (mm) Temperature (˚C) Precipitation (mm) Temperature (˚C)

Hydrological 
Statistics 
(1965–2022)

Min 0 -16.40 0 -10.20
Max 140.70 24.90 540.20 29.70
Mean 35.89 8.47 70.46 12.89
Standard Deviation (Sd) 28.77 10.09 69.55 10.19
Kurtosis (Ck) 0.46 -1.06 3.91 -1.22
Skewness (Cs) 0.89 -0.26 1.45 -0.08
Coefficient of Variation (Cv), (%) 124.74 83.97 101.32 126.46
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Standardized Precipitation Evapotranspiration 
Index (SPEI)

SPEI is a hydro climatic drought index. SPEI incorporates 
precipitation and possible evapotranspiration to evalu-
ate water availability (Stagge et al. 2014). SPEI consid-
ers the atmospheric demand for moisture, in contrast to 
SPI, which considers precipitation (Reyniers et al. 2023). 
SPEI is, therefore, versatile, considering both arid and 
humid environments, making it suitable for various cli-
mates. SPEI estimates the difference between precipita-
tion and potential evapotranspiration, standardizing it for 
various locations and periods. SPEI is particularly useful 
in regions where evapotranspiration significantly influ-
ences water availability. SPEI considers the combined 
probability distribution of possible evapotranspiration 
and precipitation. Log-logistic distribution is frequently 
employed to simulate potential evapotranspiration in SPEI 
computations (Kumanlioglu 2020). SPEI can capture the 
effects of climate variability on water availability and is 
sensitive to temperature fluctuations. The susceptibility of 
ecosystems to water availability variations can be evalu-
ated using SPEI. The SPEI can be used to evaluate how 
regional water balances are affected by climate change. 
SPEI calculation is based on the water balance concept and 
incorporates the difference between precipitation (P) and 
weekly or monthly potential evapotranspiration (PET) as 
critical input parameters to determine the degree of humid-
ity or aridity in a given area (Vicente-Serrano et al. 2010; 
Tirivarombo et al. 2018). This difference, denoted as D, 
describes the excess or shortage of water for a certain time 
interval, (i). The calculation of this difference can be iden-
tified mathematically as follows:

PET values can be calculated using the Thornthwaite 
Equation (Thornthwaite 1948). The specified meteorologi-
cal station must provide this equation's monthly average 
temperature and latitude data.

(1)Di = Pi − PETi

Pre‑processing and Feature Selection (FS)

ML-based studies require classification, decomposition 
into components, and extraction of meaningless data, 
namely noise removal, from the observed input data. 
Applying inputs obtained through sub-band decomposi-
tion methods that reveal different data features can enhance 
the forecasting performance of ML models. The TQWT 
method is widely used for its advantages in separating 
oscillation components, tuning frequencies, representing 
data, and sensitivity (Selesnick 2011). The TQWT trans-
form allows for the efficient examination of oscillating 
signals by adjusting the Q factor. There are three input 
variables in the TQWT method. These are the Q factor 
symbolized as Q, the redundancy factor represented by r, 
and the number of decomposition levels (Selesnick 2011). 
The TQWT subband decomposition method uses non-
rational transfer functions, making it simple to utilize in the 
frequency domain. Q determines how often the wavelets 
oscillate, while r represents the frequency overlap. Mul-
tilevel decomposition can be performed by periodically 
applying two-band low-pass and high-pass filter banks to 
the lower-band and upper-band signals in TQWT (Sele-
snick 2011; Latifoğlu and Özger 2023).

The signal with sampling frequency fs is decomposed into 
a high pass subband (HPS) signal with sampling frequency 
βfs and a low pass subband (LPS) signal with sampling fre-
quency αfs at each level. These high and low-frequency sub-
band signals are combined to form the final signal. The α 
scaling parameter for the low pass filter (F0(ω)) and the β 
scaling parameter for the high pass filter (F1(ω)) are used. A 
single-level TQWT filter bank and how the signals are com-
bined at the output of the single-level TQWT filter bank is 
shown in Fig. 3:

1-	 The HPS and LPS signals are computed separately at 
each level.

2-	 Subsequently, the HPS and LPS signals are appropri-
ately scaled and added together. This scaling process uses 
scale factors determined by parameters such as α and β.

Fig. 3   Single-level TQWT filter bank
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3-	 As a result, the combined signal from the HPS and LPS 
subbands is obtained. This combined signal constitutes 
the output of the TQWT and represents the processed 
data.

The Q and r-values decide the passband width of each 
filter. In addition, the wavelet is well localized in the time 
domain due to the oversampled filter bank feature. J + 1 
subband signals are obtained for the J-Level TQWT-based 
decomposition approach.

The process of determining the most effective components 
among input features is FS, which aims to reduce the com-
plexity of models and enhance their performance. FSRFtest 
is widely used among FS methods for its advantages, such 
as statistical reliability, ability to measure differences, and 
consideration of between-group discrimination (Ferrari and 
Yang 2015). FSRFtest evaluates the significance of each pre-
dictor individually by using an F-test. Each F-test analyzes 
the hypothesis of whether the response values, grouped by 
predictor variable values, come from the same population 
mean and proposes the alternative hypothesis that the popu-
lation means are not all the same. A small p-value of the test 
statistic indicates that the corresponding predictor is signifi-
cant. The output scores are -log(p); thus, a higher score value 
indicates the significance of the corresponding predictor.

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are computer models 
designed for machine learning tasks, inspired by the struc-
ture and function of the human brain (Taye 2023). ANNs 
consist of interconnected nodes arranged in three layers: 
input, hidden, and output. During training, the network 
adjusts the weights assigned to each connection to learn 
from the data. The feedforward process transforms and 
propagates information through the network's layers, driven 
by mathematical operations and activation functions.

In this process, each hidden layer node computes its acti-
vation based on the weighted sum of inputs plus a bias term, 
as shown in Eq. (2):

where, hj is the activation of node j , wij is the weight between 
input node i and hidden node xi is the input from node,bj is 
the bias term, and � is the activation function. This process 
continues through each layer until the output layer generates 
the final predictions. ANNs can model complex patterns in 
data using activation functions that introduce non-linearity. 
A key training technique is backpropagation, which updates 
weights based on the error gradient (Citakoglu et al. 2014). 
Optimization involves hyperparameter tuning, including 

(2)hj = �

(

∑n

i=1
wijxi + bj

)

learning rates and batch sizes, weight regularization to 
prevent overfitting, and normalization to stabilize training 
(Haykin 1998).

Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a non-parametric 
Bayesian approach used for regression tasks, such as time 
series forecasting and spatial modeling (Xu and Zhang 
2023). GPR models the relationship between input and out-
put variables using a distribution of functions, providing 
uncertainty estimates by offering a distribution over poten-
tial functions rather than a single prediction. The GPR model 
is formulated as:

where f (x) is the latent function, m(x) is the mean function 
representing the expected value, and k(k, x�) is the kernel 
function capturing similarities between input points. The 
kernel function's hyperparameters, such as amplitude and 
length scales, are optimized during training. The choice of 
kernel significantly impacts the model's performance, with 
Bayesian model comparison aiding in selecting the most 
suitable kernel. For detailed insights into GPR, refer to (Ras-
mussen and Williams 2005).

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a versatile supervised 
learning algorithm used for both regression and classifica-
tion tasks across various domains, including bioinformatics 
and text classification (Uncuoglu et al. 2022). SVM aims to 
find the hyperplane that best separates data points in a high-
dimensional space.

The core objective is to maximize the margin between 
classes, represented as:

where, w represents the weight vector, x denotes the input 
vector, and b is the bias term. The sign of the dot product 
between w and x determines the classification decision. SVM 
employs various kernel functions, like sigmoid, polynomial, 
linear, and radial basis functions, to handle different data dis-
tributions. Kernel trick allows implicit data transformation 
to higher dimensions, enhancing versatility and efficiency.

For regression, SVM uses a loss function, such as epsilon-
insensitive loss, to predict continuous outputs. Preprocessing 
techniques like feature scaling ensure stable performance. 
SVM's convex optimization ensures a globally optimal solu-
tion, with support vectors setting the decision boundary. For 
detailed insights into SVM, refer to (Hearst et al. 1998).

(3)f (x) ∼ GP(m(x), k(k, x�)

(4)wTx + b = 0
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The hyper parameters of the ANN, SVM, and GPR mod-
els of this study were tuned via the Bayesian Optimization 
Algorithm.

Performance criteria

Relative Root Mean Square Error (RRMSE) evaluates 
model accuracy by comparing predictions with true values, 
expressed as a percentage, facilitating cross-dataset com-
parison (Uvidia-Cabadiana et al. 2023). Lower RRMSE 
values indicate better performance, with 0% representing a 
perfect match (Bayram and Çıtakoğlu 2023). The coefficient 
of determination (R2) measures how much of the variance 
in the dependent variable is explained by independent vari-
ables, ranging from 0 (no explained variability) to 1 (per-
fect match), and assesses a regression model's goodness of 
fit (Figueiredo et al. 2011). Kling-Gupta Efficiency (KGE) 
offers a comprehensive performance evaluation consider-
ing correlation, bias, and variability, ranging from -∞ to 1, 
with higher values indicating superior performance (Knoben 
et al. 2019; Bayram and Çıtakoğlu 2023). The Overall Index 
(OI) of Model Performance combines multiple criteria to 
evaluate a model's efficacy, where higher values indicate a 
more robust model (Citakoglu 2015; Bayram et al. 2016). 
Mean Absolute Error (MAE) measures the average error size 
between predicted and observed values, treating all errors 
equally and indicating better performance with lower values 
(Jierula et al. 2021; Schneider and Xhafa 2022). RRMSE, 
MAE, R2, KGE, and OI are calculated as follows:

(5)RRMSE =

1
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√
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While selecting the performance criteria mentioned 
above, criteria with different variables and, therefore, differ-
ent units were considered as much as possible. RRMSE and 
MAE measure prediction errors, while R-squared assesses 
the explanatory power of the model. KGE provides a com-
prehensive performance evaluation by considering correla-
tion, bias, and variability. OI combines multiple criteria to 
evaluate the overall effectiveness of the model, offering a 
more holistic performance analysis. This approach is thought 
to be vital in evaluating the results obtained from the models.

Application of the models

Model 1 (stand‑alone approach, ML)

For Model 1, the SPI and SPEI data were split into training 
and test data, with 70% allocated for training and 30% for 
testing. In the study, the number of training and test data 
instances is given in Table 2. The training data consisted 
of lagged inputs ranging from 1 to 4, combined with the 
corresponding output (Monfort and Peña 2008; Irandoust 
2019; Jiménez-Gómez and Flores-Márquez 2023). After 
experimenting with different lagged inputs, it was observed 
that utilizing up to 4 lagged inputs provided optimal results, 
achieving an R2 value exceeding 0.99. Therefore, the analy-
sis was focused on these 4-lagged data points to balance 
computational complexity and model performance.

The training data was then used to train ANN, SVM, 
and GPR models. Subsequently, these trained models 
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Table 2   The number of training and testing data

TERCAN, TUNCELİ

SPI, SPEI Data

Train Data Number 
(70%)

Test Data Num-
ber
(30%)

Total 
Data 
Number

SPI1 487 209 696
SPI3 485 209 694
SPI6 483 208 691
SPI9 481 207 688
SPI12 479 206 685
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were applied to the test data for evaluation. The input-
output configurations for Model 1 are summarized in 
Table 3, and the workflow is depicted in Fig.  4. Fig-
ure 4 illustrates the process of developing and applying 
machine learning models (Model1) using SPI and SPEI 
data for drought prediction. The data is divided into 70% 
for training and 30% for testing. In the training phase, 
input data (historical SPI and SPEI values) and output 
data (target variables) are used to train machine learning 
models, including ANN, SVM, and GPR. The input and 
output variables are defined as follows: for SPI, input 
data includes lagged values up to four-time steps (e.g., 
SPI(t-1) to SPI(t-4)), and the output data is SPI(t); for 
SPEI, the same lagging approach is applied. These mod-
els learn the patterns in the data to make accurate predic-
tions. In the testing phase, the trained models are applied 
to test data to evaluate their performance by comparing 
predicted values with actual observations. This systematic 
approach ensures unbiased model evaluation and lever-
ages advanced machine learning techniques to capture 
complex patterns in the data.

Model 2 (tribrid approach, TQWT‑ FSRFtest‑ML)

In Model 2, similar to Model 1, the SPI and SPEI data were 
divided into training and test data, with 70% allocated for 
training and 30% for testing. However, a novel approach 
involving the TQWT method was employed for feature 
extraction (FE). The data were decomposed into six sub-
bands using the TQWT method, and the obtained data was 
used as features for the prediction considering lagged inputs 
ranging from 1 to 4 (Latifoğlu 2022). To enhance the mod-
el's efficiency and effectiveness, FS was performed using the 
FSRFtest method to retain features contributing to 95% or 
more of the model's performance. A single ML algorithm 
was trained using the extracted features to estimate the data 
comprehensively. The input-output configurations for Model 
2 are presented in Table 4, with an illustrative example for 
SPI1 data. A similar approach was adopted for predicting 
other SPIs and SPEIs, albeit not included in the table due to 
space constraints.

The selection of the TQWT method and FSRFtest for pre-
processing and feature selection was driven by their specific 

Table 3   Input and output 
variables of Model 1 SPI Input Data SPI Output Data

 1 Lagged Model SPI(t-1) SPI(t)
 2 Lagged Model SPI(t-2), SPI(t-1) SPI(t)
 3 Lagged Model SPI(t-3) SPI(t-2), SPI(t-1) SPI(t)
 4 Lagged Model SPI(t-4) SPI(t-3) SPI(t-2), SPI(t-1) SPI(t)
SPEI Input Data SPEI Output Data
 1 Lagged Model SPEI(t-1) SPEI(t)
 2 Lagged Model SPEI(t-2), SPEI(t-1) SPEI(t)
 3 Lagged Model SPEI(t-3) SPEI(t-2), SPEI(t-1) SPEI(t)
 4 Lagged Model SPEI(t-4) SPEI(t-3) SPEI(t-2), SPEI(t-1) SPEI(t)

Fig. 4   Flowchart for Model 1
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advantages in handling the characteristics of SPI/SPEI data 
and enhancing model performance in the proposed study.

The TQWT was chosen for its ability to effectively 
decompose time-series data into subbands with different 
frequency components. This method is particularly advanta-
geous for analyzing SPI/SPEI data, which often exhibit non-
stationary and multi-scale characteristics. TQWT allows for 
the extraction of meaningful features from various frequency 
bands, capturing both short-term fluctuations and long-term 
trends in the data. This decomposition aids in better under-
standing and modeling the underlying patterns, leading to 
improved prediction accuracy.

The Univariate Feature Ranking Using F-Tests (FSRFt-
est) was selected for feature selection due to its simplic-
ity and effectiveness in identifying the most relevant fea-
tures. FSRFtest evaluates the significance of each feature 
individually by comparing the variance between different 
groups, thus ranking features based on their importance. 
This method is computationally efficient and helps in reduc-
ing the dimensionality of the input data by selecting only 
the most informative features. By focusing on these key 
features, the models can be trained more effectively, result-
ing in enhanced performance and reduced computational 
complexity.

The combination of TQWT for data decomposition and 
FSRFtest for feature selection leverages the strengths of both 

methods to address the specific challenges posed by SPI/
SPEI data, ultimately leading to more accurate and efficient 
machine learning models.

If we were to explain an example from the provided data 
in Table 4, for instance, in the 2 lagged model, 12 features 
were extracted from the 6 sub-bands and 2 lagged inputs, 
resulting in 12 features (6 × 2 = 12). Of these 12 features, 
7 were selected for SPI1 data using F-Test. These selected 
features are: TQWT6(t-2), TQWT1(t-2), TQWT2(t-1), 
TQWT6(t-1), TQWT3(t-1), TQWT5(t-2), and TQWT4(t-2) 
in order of its effiency. The lengths of the input and output 
signals in Model 2 are provided in Table 5, and the workflow 
is depicted in Fig. 15 in the Appendix.

Model 3 (hybrid approach, TQWT‑ML)

In Model 3, the SPI and SPEI data were again divided into 
training and test data, with 70% allocated for training and 
30% for testing. Utilizing the TQWT method, the data were 
decomposed into six sub-bands. Unlike Model 2, where 
each sub-band was individually predicted and aggregated, 
Model 3 involved predicting each sub-band separately using 
ML methods. The forecasted sub-band signals were then 
summed to obtain the final prediction.

The input-output configurations for Model 3 are outlined 
in Table 6 and the workflow is depicted in Fig. 16 in the 

Table 4   Input and output variables of Model 2 for Tunceli Station, SPI1 data

SPI Input Data SPI Output Data

Model Subband Data Selected Features

1 Lagged Model TQWT1(t-1), TQWT2(t-1), TQWT6(t-1), TQWT1(t-1),
TQWT5(t-1), TQWT4(t-1)

SPI(t)
TQWT3(t-1), TQWT4(t-1),
TQWT5(t-1), TQWT6(t-1)

2 Lagged Model TQWT1(t-1), TQWT1(t-2), TQWT6(t-2), TQWT1(t-2),
TQWT2(t-1), TQWT6(t-1),
TQWT3(t-1),TQWT5(t-2), TQWT4(t-2)

SPI(t)
TQWT2(t-1), TQWT2(t-2),
TQWT3(t-1), TQWT3(t-2),
TQWT4(t-1), TQWT4(t-2),
TQWT5(t-1), TQWT5(t-2),
TQWT6(t-1), TQWT6(t-2)

3 Lagged Model TQWT1(t-1), TQWT1(t-2), TQWT1(t-3), 
TQWT2(t-1), TQWT2(t-2), TQWT2(t-3), 
TQWT3(t-1), TQWT3(t-2), TQWT3(t-3), 
TQWT4(t-1), TQWT4(t-2), TQWT4(t-3), 
TQWT5(t-1), TQWT5(t-2), TQWT5(t-3), 
TQWT6(t-1), TQWT6(t-2), TQWT6(t-3)

TQWT6(t-3), TQWT1(t-3), TQWT2(t-2), 
TQWT6(t-2), TQWT4(t-1), TQWT3(t-1), 
TQWT3(t-2), TQWT5(t-3), TQWT6(t-1), 
TQWT4(t-3), TQWT5(t-1)

SPI(t)

4 Lagged Model TQWT1(t-1),TQWT1(t-2), TQWT1(t-
3),TQWT1(t-4), TQWT2(t-1),TQWT2(t-2), 
TQWT2(t-3), TQWT2(t-4), TQWT3(t-1), 
TQWT3(t-2), TQWT3(t-3), TQWT3(t-4), 
TQWT4(t-1), TQWT4(t-2), TQWT4(t-3), 
TQWT4(t-4), TQWT5(t-1), TQWT5(t-2), 
TQWT5(t-3), TQWT5(t-4), TQWT6(t-1), 
TQWT6(t-2), TQWT6(t-3), TQWT6(t-4)

TQWT6(t-4), TQWT2(t-3), TQWT1(t-4), 
TQWT6(t-3), TQWT2(t-1), TQWT4(t-2), 
TQWT3(t-2), TQWT3(t-3), TQWT5(t-1), 
TQWT5(t-4), TQWT6(t-2), TQWT4(t-1), 
TQWT4(t-4), TQWT5(t-2), TQWT6(t-1)

SPI(t)
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Appendix, emphasizing SPI and SPEI data. Like the previ-
ous models, lagged inputs ranging from 1 to 4 were consid-
ered for prediction. The research flowchart for this study is 
depicted in Fig. 5. Pseudo code for the proposed methods is 
given in Tables 12 and 13 in the Appendix.

Both models utilize the TQWT (Tunable Q-factor Wavelet 
Transform) method to decompose SPI/SPEI data into sub-
bands. The tribrid model focuses on feature selection from 
these subbands, using the selected features to train a single 
machine learning model (ANN, SVM, GPR) for direct predic-
tion. Conversely, the hybrid model involves separately mod-
eling each subband with machine learning models and then 
summing the individual subband predictions to form the final 
forecasted data. The key difference lies in the approach: tribrid 
models use feature selection to develop one comprehensive 
model, simplifying the process, while hybrid models entail 
training multiple models for each subband and aggregating 
their outputs, capturing detailed subband-specific patterns.

The specific advantages of tribrid models in reducing 
computational load and shortening calculation time com-
pared to hybrid models are as follows:

Firstly, Tribrid model in this study employs feature 
selection from the decomposed subbands to identify the 
most relevant features for model training. This reduces 
the dimensionality of the input data, leading to a more 
efficient training process and faster computation times.

Secondly, only one machine learning model (ANN, 
SVM, GPR) is trained using the selected features. This 
contrasts with hybrid models, which require separate mod-
els to be trained for each subband. Training a single model 
significantly reduces the overall computational load and 
time required for model development.

Thirdly, during the testing phase, tribrid model uses the 
single trained model to make predictions directly, while 
hybrid model in this study must aggregate predictions 
from multiple subband-specific models. This aggregation 
step in hybrid models adds additional computational com-
plexity and time.

Finally, proposed tribrid model handle fewer data points 
during training and testing due to the feature selection 
process. This reduction in data handling contributes to 
faster calculations and lower computational requirements.

Table 5   The lengths of the 
input signal and the output 
signal in Model 2

Before
FE

After
FE

Length of Out-
put Signal

Before
FE

After
FE

Length 
of Output 
Signal

TRAINING DATA​
One time lag Two time lag

SPI1 6 × 486 4 × 486 1 × 486 12 × 485 8 × 485 1 × 485
SPI3 6 × 484 4 × 484 1 × 484 12 × 483 7 × 483 1 × 483
SPI6 6 × 482 2 × 482 1 × 482 12 × 481 4 × 481 1 × 481
SPI9 6 × 480 2 × 480 1 × 480 12 × 479 3 × 479 1 × 479
SPI12 6 × 478 1 × 478 1 × 478 12 × 477 2 × 477 1 × 477

Three-time lag Four-time lag
SPI1 18 × 484 12 × 484 1 × 484 24 × 483 15 × 483 1 × 483
SPI3 18 × 482 11 × 482 1 × 482 24 × 481 13 × 481 1 × 481
SPI6 18 × 480 6 × 480 1 × 480 24 × 479 10 × 479 1 × 479
SPI9 18 × 478 6 × 478 1 × 478 24 × 477 9 × 477 1 × 477
SPI12 18 × 476 3 × 476 1 × 476 24 × 475 4 × 475 1 × 475

TESTING DATA​
One time lag Two time lag

SPI1 6 × 208 4 × 208 1 × 208 12 × 207 8 × 207 1 × 207
SPI3 6 × 208 4 × 208 1 × 208 12 × 207 7 × 207 1 × 207
SPI6 6 × 207 2 × 207 1 × 207 12 × 206 4 × 206 1 × 206
SPI9 6 × 206 2 × 206 1 × 206 12 × 205 3 × 205 1 × 205
SPI12 6 × 205 1 × 205 1 × 205 12 × 204 2 × 204 1 × 204

Three time lag Four time lag
SPI1 18 × 206 12 × 206 1 × 206 24 × 205 15 × 205 1 × 205
SPI3 18 × 206 11 × 206 1 × 206 24 × 205 13 × 205 1 × 205
SPI6 18 × 205 6 × 205 1 × 205 24 × 204 10 × 204 1 × 204
SPI9 18 × 204 6 × 204 1 × 204 24 × 203 9 × 203 1 × 203
SPI12 18 × 203 3 × 203 1 × 203 24 × 202 4 × 202 1 × 202
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Findings

Evaluation of drought analyses

During this phase of the study, meteorological drought 
events that occurred in the Karasu River basin between 
1965 and 2022 were examined using SPI and SPEI val-
ues obtained from the data of the Tercan and Tunceli sta-
tions. This study focuses on moderate, severe, and extreme 
droughts, and the classification of droughts for SPI and SPEI 
is considered as extreme drought (≤ -2), severe drought 
(-2 ~ -1.5), and moderate drought (-1.5 ~ -1). This section 
of the study aims to monitor and assess the development 
of these meteorological drought events at one-, three-, six-, 
nine- and twelve-month time scales.

Temporal variation of meteorological drought events

SPI and SPEI outputs were utilized separately to monitor 
and describe the development of temporal variations of 
meteorological drought events over various time scales at 
selected stations within the basin. The temporal evolutions 

of dry and wet periods computed at one-, three-, six-, nine- 
and twelve-month time scales for Tunceli and Tercan sta-
tions are presented in Figs. 6 and 7. According to the SPI 
and SPEI outputs obtained from two selected stations, with 
the increase in the time scale, the drought trend has generally 
become more evident, and also, a decrease in the frequency 
of dry periods and an increase in drought durations and mag-
nitudes have been observed relatively.

As seen in Figs. 6 and 7, for both stations, the wet 
and dry periods, which were relatively unclear at one- 
and three-month time scales, started to become clearer 
starting from the six-month time scale. In addition, it 
was noteworthy that since the 2000s, there has been a 
significant increase in drought durations and magni-
tudes, especially in the Tercan station rather than the 
Tunceli station, and that this increase has progressively 
become more noticeable at six-month and longer time 
scales. When SPI and SPEI values were compared at 
the selected time scales, although the temporal develop-
ment of the two indices is similar, there were slight dif-
ferences in the characteristic features of drought periods 
(frequency, magnitude, and intensity). The differences 

Table 6   Input and output variables of Model 3

SPI Input Data SPI Output Data
  1 Lagged Model SPI_TQWT1(t-1), SPI_TQWT2(t-1), SPI_TQWT3(t-1), SPI_TQWT4(t-1), SPI_TQWT5(t-1), SPI_

TQWT6(t-1)
SPI(t)

  2 Lagged Model SPI_TQWT1(t-2), SPI_TQWT2(t-2), SPI_TQWT3(t-2), SPI_TQWT4(t-2), SPI_TQWT5(t-2), 
SPI_TQWT6(t-2), SPI_TQWT1(t-1), SPI_TQWT2(t-1), SPI_TQWT3(t-1), SPI_TQWT4(t-1), 
SPI_TQWT5(t-1), SPI_TQWT6(t-1)

SPI(t)

  3 Lagged Model SPI_TQWT1(t-3), SPI_TQWT2(t-3), SPI_TQWT3(t-3), SPI_TQWT4(t-3), SPI_TQWT5(t-3), 
SPI_TQWT6(t-3), SPI_TQWT1(t-2), SPI_TQWT2(t-2), SPI_TQWT3(t-2), SPI_TQWT4(t-2), 
SPI_TQWT5(t-2), SPI_TQWT6(t-2), SPI_TQWT1(t-1), SPI_TQWT2(t-1), SPI_TQWT3(t-1), SPI_
TQWT4(t-1), SPI_TQWT5(t-1), SPI_TQWT6(t-1)

SPI(t)

  4 Lagged Model SPI_TQWT1(t-4), SPI_TQWT2(t-4), SPI_TQWT3(t-4), SPI_TQWT4(t-4), SPI_TQWT5(t-4), 
SPI_TQWT6(t-4), SPI_TQWT1(t-3), SPI_TQWT2(t-3), SPI_TQWT3(t-3), SPI_TQWT4(t-3), 
SPI_TQWT5(t-3), SPI_TQWT6(t-3), SPI_TQWT1(t-2), SPI_TQWT2(t-2), SPI_TQWT3(t-2), 
SPI_TQWT4(t-2), SPI_TQWT5(t-2), SPI_TQWT6(t-2), SPI_TQWT1(t-1), SPI_TQWT2(t-1), SPI_
TQWT3(t-1), SPI_TQWT4(t-1), SPI_TQWT5(t-1), SPI_TQWT6(t-1)

SPI(t)

SPEI Input Data SPEI Output Data
  1 Lagged Model SPEI_TQWT1(t-1), SPEI_TQWT2(t-1), SPEI_TQWT3(t-1), SPEI_TQWT4(t-1), SPEI_TQWT5(t-1), 

SPEI_TQWT6(t-1)
SPEI(t)

  2 Lagged Model SPEI_TQWT1(t-3), SPEI_TQWT2(t-3), SPEI_TQWT3(t-3), SPEI_TQWT4(t-3), SPEI_TQWT5(t-3), 
SPEI_TQWT6(t-3), SPEI_TQWT1(t-2), SPEI_TQWT2(t-2), SPEI_TQWT3(t-2), SPEI_
TQWT4(t-2), SPEI_TQWT5(t-2), SPEI_TQWT6(t-2), SPEI_TQWT1(t-1), SPEI_TQWT2(t-1), 
SPEI_TQWT3(t-1), SPEI_TQWT4(t-1), SPEI_TQWT5(t-1), SPEI_TQWT6(t-1)

SPEI(t)

  3 Lagged Model SPEI_TQWT1(t-3), SPEI_TQWT2(t-3), SPEI_TQWT3(t-3), SPEI_TQWT4(t-3), SPEI_TQWT5(t-3), 
SPEI_TQWT6(t-3), SPEI_TQWT1(t-2), SPEI_TQWT2(t-2), SPEI_TQWT3(t-2), SPEI_
TQWT4(t-2), SPEI_TQWT5(t-2), SPEI_TQWT6(t-2), SPEI_TQWT1(t-1), SPEI_TQWT2(t-1), 
SPEI_TQWT3(t-1), SPEI_TQWT4(t-1), SPEI_TQWT5(t-1), SPEI_TQWT6(t-1)

SPEI(t)

  4 Lagged Model SPEI_TQWT1(t-4), SPEI_TQWT2(t-4), SPEI_TQWT3(t-4), SPEI_TQWT4(t-4), SPEI_TQWT5(t-4), 
SPEI_TQWT6(t-4), SPEI_TQWT1(t-3), SPEI_TQWT2(t-3), SPEI_TQWT3(t-3), SPEI_
TQWT4(t-3), SPEI_TQWT5(t-3), SPEI_TQWT6(t-3), SPEI_TQWT1(t-2), SPEI_TQWT2(t-2), 
SPEI_TQWT3(t-2), SPEI_TQWT4(t-2), SPEI_TQWT5(t-2), SPEI_TQWT6(t-2), SPEI_
TQWT1(t-1), SPEI_TQWT2(t-1), SPEI_TQWT3(t-1), SPEI_TQWT4(t-1), SPEI_TQWT5(t-1), 
SPEI_TQWT6(t-1)

SPEI(t)
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in the fluctuation value and continuity properties of the 
mentioned drought indices, representing the drought fea-
tures, decreased as the time scale increased.

Recent research on drought in Türkiye reveals that 
significant drought periods occurred in the early 1970s 
and the 1980s, 1990s and 2000s (Türkeş and Tatlı 2009; 
Akbaş 2014; Kurnaz 2014; Kumanlioglu 2020; Patel 
2021), and at the same time, projection values propose 
that, under the assumption of climate change scenarios, 
the severity and frequency of droughts will increase 
across the country (Sen et al. 2012; Afshar et al. 2020; 
Danandeh Mehr et  al. 2020; Soylu Pekpostalci et  al. 
2023). Despite their differences, SPI and SPEI were gen-
erally successful in accurately identifying the same pri-
mary drought years.

As a result of the evaluation of SPI and SPEI anal-
ysis performed on the twelve-month time scale, it was 
observed that significant drought events occurred at Ter-
can station between 1970–1971, 1983, 1985, 1989–1990, 
1993–1994, 1999–2001, 2008, 2012–2018, 2020–2022 
and at Tunceli station between 1970–1973, 1974–1975, 
1982–1983, 1984–1986, 1989–1991, 1994, 1999–2001, 
2007–2008, 2013–2014, 2016–2018, 2020–2022. Accord-
ing to the results obtained from both stations, it was 
concluded that the region was seriously affected by the 
droughts occurring throughout Türkiye.

Frequency analysis of drought indices

Frequency analysis results of SPI and SPEI values obtained 
at the selected time scales for Tercan and Tunceli stations 
were computed, and the relative frequency results are given 
in Table 7 and Fig. 17 in the Appendix. It was only clas-
sified based on the dry category. Based on all frequencies, 
drought in Tercan ranged from 13.9% to 15.9% for SPI 
and from 15.7% to 19.7% for SPEI. Similarly, in Tunceli, 
drought varied from 11.4% to 12.8% for SPI and from 
13.4% to 17.2% for SPEI. Upon detailed examination, as the 
results of SPI analysis at Tercan station, the maximum rela-
tive frequency in the moderate drought class was obtained 
as 9.5% at the 12-month time scale, while the minimum 
relative frequency in the extreme drought class was 2.6% 
at the 1-month time scale. As the results of SPEI analysis 
at Tercan station, the maximum relative frequency in the 
moderate drought class was 13.4% at the twelve-month time 
scale, while the minimum relative frequency was 0.9% at 
the 1-month time scale.

At the same time, at Tunceli station, the results of SPI 
analysis demonstrated that the maximum relative fre-
quency was obtained as 8.7% at the 3-month time scale 
in the moderate drought class, while the minimum rela-
tive frequency was 0.1% at the 12-month time scale in the 
extreme drought class. Furthermore, at the Tunceli station, 

Fig. 5   Research flowchart of the study
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the results of the SPEI analysis revealed that the maximum 
relative frequency was obtained as 11.5% at the 12-month 
time scale in the moderate drought class, while the mini-
mum relative frequency was 1.0% at the 1-month time 
scale in the extreme drought class. When the relative fre-
quency percentages of all drought classes were compared, 
the relative frequency in the moderate drought class was 
more dominant than the relative frequencies in the severe 
and extreme drought classes. Findings obtained from the 
selected station showed that moderate drought events were 
mainly experienced in the basin.

Correlation of drought indices

The correlation coefficients between SPI and SPEI values 
of meteorological stations at 1-, 3-, 6-, 9- and 12-month 
time scales were computed, and the relationships between 
drought indices at different time scales were examined. 
The distribution of correlation coefficients calculated for 
this purpose was visualized in Fig. 8. The drought indices 
for both stations exhibited an extremely high correlation 
at the same time scale, indicating that the selected indices 
have a strong relationship. For example, the correlation 

(a) SPEI1 and SPI1 

(b) SPEI3 and SPI3 

(c) SPEI6 and SPI6 

(d) SPEI9 and SPI9 

(e) SPEI12 and SPI12 

Fig. 6   The temporal evolution of the SPIs and SPEIs at 1-, 3-, 6-, 9- and 12-month timescales in the Tercan stations between 1965–2022
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value of SPI-1 with SPEI-1 was obtained as r = 0.92 at 
Tercan station, and the correlation value of SPI-12 with 
SPEI-12 was obtained as r = 0.94 at Tunceli station. When 
comparing the same time scales, the highest correlations at 
Tercan and Tunceli stations (r = 0.95 and r = 0.96, respec-
tively) were observed at a 6-month time scale, and the 
lowest correlations (r = 0.92 and r = 0.87, respectively) 
were observed at 1-month time scale. All this means that 
these indices consistently assess drought conditions over 
specific periods.

Performance of machine learning models

This study forecasts drought data from Tercan and Tunceli 
meteorological stations using stand-alone, hybrid, and tribrid 
different model (version) structures. To evaluate the perfor-
mance results of these models, (i) classical performance crite-
ria, (ii) scatter and trajectory plots, (iii) Taylor diagrams, and 
(iv) violin and error-box plots were utilized. In the final stage, 
the Kruskal–Wallis test investigated the relationship between 
the calculated and forecasted drought values' average.

(a) SPEI1 and SPI1 

(b) SPEI3 and SPI3 

(c) SPEI6 and SPI6 

(c) SPEI9 and SPI9 

(e) SPEI12 and SPI12 

Fig. 7   The temporal evolution of the SPIs and SPEIs at 1-, 3-, 6-, 9- and 12-month timescales in the Tunceli stations between 1965–2022
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The MAE and R2 criteria for the forecast results 
obtained for each lag in these three different models are 
provided in Figs. 9 and 10. The ML method that outper-
formed each version, depending on lag numbers, was also 
presented for SPI and SPEI indices of the Tercan and 

Tunceli stations in these figures. As seen in Fig. 9, for 
the SPEI1 value of the Tercan station, version 1 with 4 
lags via GPR method (V1-4GPR), version 2 with 3 lags 
via GPR method (V2-3GPR), and version 3 with 4 lags 
via GPR method (V3-4GPR) were selected as the most 

Table 7   Relative frequency of 
meteorological drought events 
in the Tercan and Tunceli 
stations

Time Scales

Index 1 3 6 9 12

TERCAN Moderate Drought SPI 9.5% 7.5% 6.1% 6.1% 6.1%
SPEI 13.4% 9.4% 9.1% 11.0% 13.3%

Severe Drought SPI 3.6% 4.3% 3.6% 3.8% 2.9%
SPEI 4.3% 4.9% 5.2% 6.1% 5.1%

Extreme Drought SPI 2.6% 4.0% 4.2% 4.5% 5.1%
SPEI 0.9% 1.4% 1.4% 1.3% 1.3%

TUNCELİ Moderate Drought SPI 6.5% 7.3% 8.0% 8.7% 8.5%
SPEI 11.5% 10.5% 9.7% 5.7% 6.6%

Severe Drought SPI 1.6% 3.3% 3.0% 2.9% 2.8%
SPEI 4.7% 2.7% 3.2% 5.5% 4.5%

Extreme Drought SPI 3.6% 2.2% 1.6% 0.9% 0.1%
SPEI 1.0% 2.2% 2.5% 2.2% 3.1%

Fig. 8   Correlations coefficients 
between drought indices at 
different time scales for Tercan 
and Tunceli stations

(a) Tercan 

(b) Tunceli 
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successful combinations. As seen in Fig.  10, on the 
other hand, for the SPEI1 value of the Tunceli station, 
versions 1, 2, and 3 with 4 lags via the ANN method 
(V1-4ANN, V2-4ANN, V3-4ANN) were selected as the 

most successful combinations. The most successful com-
binations for the remaining time criteria of the SPEI index, 
besides all-time scales of the SPI index, are indicated in 
Tables 8 and 9. The optimum hyperparameters of each 

(a) SPEI1  

(b) SPEI3  

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

a

Fig. 9   a All combinations of three different versions of Tercan Station's SPEI indexes for test data. b All combinations of three different versions 
of Tercan Station's SPI indexes for test data
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best model for the SPI and SPEI indices of Tercan and 
Tunceli stations are given in Tables 14, 15, 16 and 17 
in the Appendix. Separate performance criteria tables are 
given for training and testing data. Performance criteria 

for training data are given in Tables 18 and 19 in the 
Appendix.

Classical performance criteria were utilized in the first 
stage of evaluating the results. For Tercan and Tunceli 

(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

b

Fig. 9   (continued)
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stations, RRMSE, MAE, R2, KGE, and OI criteria for fore-
casting SPI and SPEI indices at all time scales were provided 
in Tables 8 and 9. As seen in Table 8, for Tercan Station, 
the combination V2-3GPR for SPEI1 index, V3-3GPR for 

SPEI3 index, V3-4GPR for SPEI6 index, V3-4GPR for 
SPEI9 index, and V3-4ANN for SPEI12 index provided the 
lowest RRMSE and MAE; and the highest R2, KGE, and 
OI, making them as the most successful combinations. The 

(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

a

Fig. 10   a All combinations of three different versions of Tunceli Station's SPEI indexes for test data. b All combinations of three different ver-
sions of Tunceli Station's SPI indexes for test data
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combination V3-4GPR for the SPI1 index, V2-4GPR for the 
SPI3 index, V3-4GPR for the SPI6 index, V3-4ANN for the 
SPI9 index, and V3-3GPR for the SPI12 index were iden-
tified as the most successful models. The RRMSE values 
for SPEI1, SPEI3, SPEI6, SPEI9, and SPEI12 indices were 

calculated as 36.40, 11.34, 5.31, 6.07, and 5.01, respectively. 
The RRMSE values for SPI1, SPI3, SPI6, SPI9, and SPI12 
indices were also calculated as 24.90, 17.08, 9.93, 9.94, and 
7.39, respectively. According to (Bayram and Çıtakoğlu 
2023); RRMSE values greater than 30% are considered poor, 

(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

b

Fig. 10   (continued)
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between 20–30% are considered fair, between 10–20% are 
considered good, and less than 10% are considered excellent.

Therefore, for the RRMSE values of Tercan station, the 
SPEI1 index is considered poor, the SPI1 index is fair, the 
SPEI3 and SPI3 indices are good, and the SPEI6, SPEI9, 
SPEI12, SPI6, SPI9, and SPI12 indices are considered excel-
lent forecasts. Moreover, a perfect forecast is made when 
the R2 criterion is greater than 0.8 and the KGE criterion is 
greater than 0.7 (Bayram and Çıtakoğlu 2023). Thus, it can 
be emphasized that the forecast results for the SPI and SPEI 
indices at all time scales for the Tercan station are perfect 
according to the R2 and KGE criteria. While the RRMSE 
was obtained fair for the SPEI1, SPEI3, SPI1, and SPI3 indi-
ces of the Tercan station, the R2 and KGE are interpreted as 
excellent. On the other hand, as the time scale increases, the 
RRMSE and R2 and KGE support each other.

As seen in Table 9 for Tunceli Station, based on the clas-
sical performance criteria, the combination V3-4ANN for 
the SPEI1 index, V3-4SVM for the SPEI3 index, V3-3GPR 

for the SPEI6 index, V3-4ANN for the SPEI9 index, and 
V2-4GPR for the SPEI12 index were identified as the most 
successful models. Based on the classical performance crite-
ria, the combination V3-3GPR for the SPI1 index, V3-4GPR 
for the SPI3 index, and V3-4SVM for the SPI6, SPI9, and 
SPI12 indices were determined as the most successful mod-
els. The RRMSE values for SPEI1, SPEI3, SPEI6, SPEI9, 
and SPEI12 indices were calculated as 77.43, 30.95, 20.93, 
15.53, and 7.65, respectively. According to (Bayram and 
Çıtakoğlu 2023), in terms of the RRMSE values of Tunceli 
station, the SPEI1, SPEI3, SPI1, and SPI3 indices are con-
sidered poor, the SPEI6 and SPI6 indices are fair, the SPEI9 
and SPI9 indices are good, and the SPEI12 and SPI12 indi-
ces are considered excellent forecasts. It was also determined 
that the forecast results for the SPI and SPEI indices at all-
time scales for the Tunceli station are excellent according 
to the R2 and KGE criteria. Except for the SPEI12, SPEI9, 
SPI9, and SPI12 indices, while the RRMSE was obtained 
as fair in other drought indices of the Tunceli station, the R2 

Table 8   The most successful 
methods of three different 
versions of Tercan Station and 
the performance criteria of 
these methods for test data

V1 V2 V3 V1 V2 V3

SPEI1 4GPR 3GPR 4GPR SPI1 4GPR 4GPR 4GPR
368.02 36.40 44.22 658.56 116.2 24.90 RRMSE
0.853 0.065 0.096 0.83 0.14 0.03 MAE
0.042 0.99 0.99 0.048 0.97 0.999 R2

-0.191 0.98 0.967 -9.575 0.950 0.986 KGE
0.509 0.986 0.982 0.447 0.969 0.996 OI

SPEI3 4SVM 3GPR 3GPR SPI3 4SVM 4GPR 3GPR
161.67 23.57 11.34 264.46 17.08 24.02 RRMSE
0.53 0.058 0.04 0.56 0.03 0.05 MAE
0.578 0.991 0.998 0.580 0.998 0.997 R2

0.705 0.975 0.992 0.501 0.995 0.992 KGE
0.802 0.987 0.995 0.773 0.996 0.994 OI

SPEI6 3SVM 4ANN 4GPR SPI6 2ANN 4GPR 4GPR
89.79 49.42 5.31 142.52 52.30 9.93 RRMSE
0.34 0.19 0.02 0.40 0.14 0.02 MAE
0.801 0.939 0.999 0.784 0.971 0.999 R2

0.853 0.952 0.993 0.807 0.981 0.996 KGE
0.898 0.956 0.997 0.876 0.972 0.996 OI

SPEI9 2SVM 4GPR 4GPR SPI9 2GPR 4ANN 4ANN
61.34 41.54 6.08 91.67 65.65 9.94 RRMSE
0.27 0.18 0.03 0.30 0.21 0.03 MAE
0.884 0.946 0.999 0.891 0.944 0.999 R2

0.923 0.966 0.995 0.910 0.961 0.996 KGE
0.930 0.958 0.995 0.925 0.953 0.995 OI

SPEI12 3SVM 3GPR 4ANN SPI12 2ANN 4ANN 4GPR
51.720 33.068 5.010 78.17 47.30 7.39 RRMSE
0.232 0.133 0.022 0.25 0.16 0.02 MAE
0.904 0.960 0.999 0.914 0.968 0.999 R2

0.926 0.975 0.997 0.909 0.978 0.995 KGE
0.942 0.967 0.996 0.940 0.970 0.997 OI
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and KGE are interpreted as excellent. On the other hand, as 
the time scale increases, the RRMSE, R2, and KGE support 
each other.

Visual criteria such as scatter and trajectory plots were 
utilized in the second stage of evaluating the results. Scatter 
and trajectory plots for all time scales of SPEI and SPI indi-
ces for Tercan and Tunceli stations are presented in Figs. 11 
and 12. Figure 11 indicates for SPEI1 and SPI1 indices that 
version 1 was mediocre, while version 2 and version 3 were 
similar. For SPEI3, SPI3, and SPI6 indices, improvement 
was observed in version 1 forecasts, while version 2 and ver-
sion 3 were similar. For SPEI6, SPEI9, SPEI12, SPI9, and 
SPI12 indices, version 1 and version 2 were similar, while 
version 3 was the most successful method. The trajectory 
plots of Figs. 11 and 12 indicate that the calculated SPEI 
and SPI values and the forecasted SPEI and SPI values for 
version 2 and version 3 are remarkably close.

In the third stage of evaluating the results, the Taylor dia-
grams, widely used recently to visualize, were employed. 

Taylor diagrams for all time scales of SPEI and SPI indi-
ces for the Tercan and Tunceli stations are provided in 
Figs. 13 and 14. Figure 13 presents for the SPEI1 index 
that the SPEI1 value calculated with the V2-3GPR combi-
nation was selected as the most successful model since it is 
the closest to the calculated SPEI1 value. According to the 
Taylor diagrams for the Tercan station, the most successful 
combinations were selected as follows: V3-3GPR for SPEI3 
and SPI12 indices, V3-4GPR for SPEI6, SPEI9, SPI1, and 
SPI6 indices, V3-4ANN for SPEI12 and SPI9 indices, and 
V2-4GPR for SPI3 index. Moreover, Fig. 14 indicates for 
Tunceli station that the most successful combinations were 
V3-4ANN for SPEI1 and SPEI9 indices, V3-4SVM for 
SPEI3, SPI6, SPI9, and SPI12 indices, V3-3GPR for SPEI6 
and SPI1 indices, and V3-4GPR for SPEI12 and SPI3 indi-
ces. The results obtained from the Taylor diagrams support 
the classical performance criteria.

In the fourth stage of evaluating the results, visual cri-
teria of violin and error-box plots were utilized. Violin and 

Table 9   The most successful 
methods of three different 
versions of Tunceli Station and 
the performance criteria of 
these methods for test data

V1 V2 V3 V1 V2 V3

SPEI1 4ANN 4ANN 4ANN SPI1 4ANN 3GPR 3GPR
556.34 192.44 77.43 610.32 140.13 85.58 RRMSE
0.76 0.25 0.11 0.71 0.12 0.08 MAE
0.017 0.881 0.981 0.003 0.964 0.985 R2

-0.207 0.912 0.969 -89.409 -2.710 -0.563 KGE
0.463 0.915 0.978 0.405 0.964 0.982 OI

SPEI3 4GPR 4GPR 4SVM SPI3 4GPR 4GPR 4GPR
303.65 42.11 30.95 676.97 147.10 35.73 RRMSE
0.52 0.07 0.05 0.50 0.11 0.03 MAE
0.429 0.989 0.994 0.372 0.970 0.998 R2

0.548 0.980 0.983 0.544 0.965 0.995 KGE
0.698 0.986 0.990 0.633 0.972 0.996 OI

SPEI6 4ANN 4GPR 3GPR SPI6 2ANN 3GPR 4SVM
213.12 56.77 20.84 294.32 85.95 29.38 RRMSE
0.39 0.11 0.04 0.35 0.10 0.04 MAE
0.595 0.970 0.996 0.591 0.965 0.996 R2

0.732 0.973 0.985 0.735 0.966 0.993 KGE
0.782 0.972 0.992 0.770 0.969 0.993 OI

SPEI9 3GPR 4ANN 4ANN SPI9 4SVM 4GPR 4SVM
158.38 86.36 15.54 206.65 70.14 19.72 RRMSE
0.31 0.19 0.03 0.26 0.09 0.03 MAE
0.749 0.925 0.998 0.740 0.970 0.998 R2

0.844 0.920 0.991 0.821 0.959 0.993 KGE
0.853 0.942 0.994 0.837 0.968 0.993 OI

SPEI12 1SVM 4GPR 4GPR SPI12 4GPR 4ANN 4SVM
135.42 7.65 11.77 153.35 99.16 13.27 RRMSE
0.25 0.01 0.03 0.19 0.14 0.02 MAE
0.812 0.999 0.999 0.831 0.929 0.999 R2

0.866 0.995 0.993 0.890 0.934 0.980 KGE
0.888 0.997 0.996 0.892 0.945 0.996 OI
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Fig. 11   a Scatter and trajectory 
plots of three different versions 
of Tercan Station's SPEI indexes 
for test data. b Scatter and 
trajectory plots of three different 
versions of Tercan Station's SPI 
indexes for test data

(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(a) SPI12 

a
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

bFig. 11   (continued)
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Fig. 12   a Scatter and trajectory 
plots of three different versions 
of Tunceli Station's SPEI 
indexes for test data. b Scatter 
and trajectory plots of three dif-
ferent versions of Tunceli Sta-
tion's SPI indexes for test data

(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

a
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12

bFig. 12   (continued)
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error-box plot graphs for all time scales of SPEI and SPI 
indices for Tercan and Tunceli stations are presented in 
Figs. 18, 19, 20, 21, 22, 23 and 24. According to the violin 

diagrams for Tercan station, version 2 model forecasts lower 
severity drought values for SPEI1, SPEI6, and SPEI9 indi-
ces. These results, however, were not visible in the scatter 

Fig. 13   a Taylor diagrams for 
Tercan Station's SPEI indexes 
for test data. b Taylor diagrams 
for Tercan Station's SPI indexes 
for test data
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and trajectory plots for SPEI1, SPEI6, and SPEI9 indices. 
The violin diagrams for all time scales of SPEI and SPI indi-
ces for the Tercan and Tunceli stations indicated that version 

2 and version 3 were similar. In the error-box plot graphs for 
all time scales except SPEI1, SPEI3, and SPI3 for the Tercan 
station, the error range of version 3 was lower than the other 

  

 3IPS )b( 1IPS )a(

  

 9IPS )d( 6IPS )c(

 

(a) SPI12 

bFig. 13   (continued)
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versions. However, for the SPEI1 and SPI3 indices for the 
Tercan station and SPEI3 and SPEI6 indices for the Tunceli 
station, the error ranges of versions 2 and 3 were quite close. 
The violin diagrams and scatter and trajectory plots for the 

Tercan and Tunceli stations provided supportive results. In 
the error-box plot for Tercan and Tunceli stations, findings 
supporting the classical performance criteria and Taylor dia-
gram were observed.

Fig. 14   a Taylor diagrams for 
Tunceli Station's SPEI indexes 
for test data. b Taylor diagrams 
for Tunceli Station's SPI indexes 
for test data
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In the final stage, a Kruskal-Wallis test was conducted to 
determine whether there is a correlation between the fore-
casted SPEI and SPI indices and the calculated average of the 

SPEI and SPI indices. Tables 10 and 11 present the results 
for all time scales of SPEI and SPI indices for the Tercan and 
Tunceli stations. Table 10 shows that for the Tercan station, 

3IPS)a(1IPS)a(

9IPS)a(6IPS)a(

 

(a) SPI12 

bFig. 14   (continued)
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the p-value is greater than 5% for all indices except SPEI1, 
which leads to the rejection of the null hypothesis (H0). This 
implies that the averages of the forecasted drought indices are 
the same as those of the calculated drought indices. However, 
for SPEI1 at Tercan station, the analysis results did not pass 
the Kruskal–Wallis test for version 1. Table 11 shows that for 
the Tunceli station, the p-value is greater than 5% for all indi-
ces, leading to the rejection of the H0. Thus, it was concluded 
that the averages of the forecasted and calculated values were 
the same. These test results confirm that the usability of ML 
has been demonstrated.

The utilized numerical and visual criteria point out that the 
GPR method provides superior results for the SPEI and SPI 
indices of the Tercan station at ‘all-time scales’ compared to 
the ANN and SVM. Additionally, for the Tercan station, it was 
observed that the hybrid model (version 3) was more success-
ful than the stand-alone and tribrid models (versions 1 and 2) 
for the SPEI and SPI indices at all-time scales. For Tunceli sta-
tion, the GPR and ANN methods were determined as the most 
successful method in the SPEI index twice each, and the SVM 
method was determined as the most successful method once. 
As can be seen from the results, different machine-learning 

methods were successful in five different time scales of the 
SPEI index at Tunceli station. This is due to the descriptive sta-
tistics of the Tunceli station given in Table 1., because the rain-
fall data of the Tunceli station is flatter, and the temperature 
data is more variable. For Tunceli station, the GPR method 
was the most successful twice in the SPI index, while the SVM 
method was the most successful three times. While the GPR 
method was the most successful at the Tercan station in the 
SPI index, the SVM method was the most successful at the 
Tunceli station. While Tunceli station is rainier, Tercan station 
is colder, and the climate characteristics of these two stations 
are different. Lag numbers from 1 to 4 have been considered 
input data, and for both Tercan and Tunceli stations, 4 lags at 
most have provided the best forecast results. These results are 
significant according to autocorrelation graphs.

Discussion

The concepts underlying the SPI and the SPEI share simi-
larities, yet there are distinct variations in their calcula-
tion parameters. The SPI solely accounts for precipitation, 

Table 10   Kruskal-Wallis test for 
Tercan Station's SPEI and SPI 
indexes for test data

V1 V2 V3

p-value H0 p-value H0 p-value H0

SPEI1 0.0037 Accept 0.9671 Reject 0.9950 Reject
SPEI3 0.3247 Reject 0.9977 Reject 0.9804 Reject
SPEI6 0.4339 Reject 0.9344 Reject 0.9879 Reject
SPEI9 0.6782 Reject 0.9747 Reject 0.9821 Reject
SPEI12 0.6725 Reject 0.9017 Reject 0.9980 Reject
SPI1 0.5415 Reject 0.9824 Reject 0.9757 Reject
SPI3 0.4857 Reject 0.9957 Reject 0.9890 Reject
SPI6 0.6509 Reject 0.9993 Reject 0.9826 Reject
SPI9 0.7585 Reject 0.9255 Reject 0.9828 Reject
SPI12 0.8340 Reject 0.9782 Reject 0.9694 Reject

Table 11   Kruskal-Wallis test for 
Tunceli Station's SPEI and SPI 
indexes for test data

V1 V2 V3

p-value H0 p-value H0 p-value H0

SPEI1 0.0905 Reject 0.9759 Reject 0.9913 Reject
SPEI3 0.5812 Reject 0.9625 Reject 0.9786 Reject
SPEI6 0.6683 Reject 0.9592 Reject 0.9882 Reject
SPEI9 0.9654 Reject 0.8532 Reject 0.9894 Reject
SPEI12 0.8224 Reject 0.9908 Reject 0.9983 Reject
SPI1 0.6038 Reject 0.9094 Reject 0.9709 Reject
SPI3 0.8911 Reject 0.9344 Reject 0.9772 Reject
SPI6 0.9632 Reject 0.9956 Reject 0.999 Reject
SPI9 0.7622 Reject 0.9846 Reject 0.9716 Reject
SPI12 0.9866 Reject 0.9818 Reject 0.9470 Reject
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offering simplicity in computation and robust adaptability 
across temporal and spatial scales (Zhou et al. 2013; Tao 
et al. 2014; Pei et al. 2020). Conversely, the SPEI incor-
porates the cumulative disparity between precipitation and 
potential evapotranspiration, comprehensively depicting 
alterations in surface water equilibrium (Zhang et al. 2015). 
Nevertheless, the escalation of evaporation attributed to 
warming presents a non-negligible factor in accurately eval-
uating drought conditions amidst global warming concerns. 
While the SPEI stands out as notably superior to the SPI in 
drought monitoring due to its consideration of evapotranspi-
ration (Shaowei et al. 2013; Shi et al. 2019), its applicability 
in arid regions may face constraints. Furthermore, despite 
the advantages of the SPEI, the SPI continues to enjoy wide-
spread usage globally (Zhou et al. 2013; Yuan et al. 2016; 
Mohammed et al. 2018; Sobral et al. 2019; Li et al. 2021).

There is an increasing potential related to the cru-
cial impact of signal processing techniques on achieving 
enhanced accuracy in drought modeling. For instance, 
various forms of wavelet transformations, such as CWT 
(Özger et  al. 2020), DWT (Altunkaynak and Jalilzadn-
ezamabad 2021; Achite et al. 2023), EMD (Özger et al. 
2020; Başakın et  al. 2021a), and VMD (Citakoglu and 
Coşkun 2022; Ekmekcioğlu 2023) algorithms have been fre-
quently employed. However, the literature review indicates 
drought studies do not commonly utilize the TQWT tech-
nique. (Latifoğlu and Özger 2023) considered the TQWT 
technique, emphasizing its success over other signal pro-
cessing methods due to its lower computational load and 
shorter processing time. Given the abundance of surface 
and groundwater and the presence of irrigable flat land, 
this study integrated the TQWT sub-band decomposition 
technique with ANN, GPR, and SVM for the Tunceli and 
Tercan Stations. The results of this study confirm similar 
findings of (Latifoğlu and Özger 2023) that the TQWT sub-
band decomposition technique yields successful outcomes.

An evaluation in terms of the index used indicates 
that (Altunkaynak and Jalilzadnezamabad 2021) utilized 
thePDSI for the Marmara region; (Özger et al. 2020) and 
(Başakın et al. 2021a) employed the sc-PDSI for the Medi-
terranean region; (Katipoğlu 2023) introduced the SDI for 
the Yeşilırmak basin; (Evkaya and Kurnaz 2021) utilized the 
SPI for the Marmara region; (Citakoglu and Coşkun 2022; 
Coşkun and Citakoglu 2023) applied SPI for the Marmara 
region; (Gholizadeh et al. 2022; Danandeh Mehr et al. 2023) 
used the SPEI) for the Central Anatolia region; (Gul et al. 
2023) employed SPI for the Aegean region; (Reihanifar et al. 
2023) conducted SPI for the Mediterranean region, using 
various ML methods. Previous studies have not addressed 
the drought indices forecast for the Eastern Anatolia region 
in Türkiye. Despite being the coldest geographical region 
in Türkiye, the Eastern Anatolia region remains under snow 
for most months of the year, which limits the agricultural 

window. Given the significant temperature variations, 
drought forecasting for the Eastern Anatolia region is cru-
cial. This study is the first to forecast two different drought 
indices in Turkish studies since previous research focused 
on a single one. This study evaluated the performance of 
various stand-alone, hybrid, and tribrid machine-learning 
methods via different drought indices. The current study 
is considered original in this respect. While previous stud-
ies have generally been confined to a single time scale, the 
current research provides a comprehensive perspective by 
considering five different scales in addressing the problem.

Turkish-origin previous drought forecast studies have 
not investigated the accuracy of model results. However, 
in some studies, the forecasting results have been meticu-
lously examined and evaluated regarding statistical signifi-
cance. For instance, they utilized the Kolmogorov-Smirnov 
test to assess whether the obtained forecasts were statisti-
cally acceptable, comparing the observed and forecasted 
time series to determine their accuracy (Özger et al. 2020; 
Başakın et al. 2021a, b; Coşkun and Citakoglu 2023).

The performance superiority between any ML techniques 
is something that researchers have not yet determined in pre-
vious studies. The studies (Liu et al. 2017; Mokhtarzad et al. 
2017; Moghaddasi et al. 2024) suggest that SVM outper-
forms ANN in certain contexts. Depending on the specific 
application of these techniques, it remains unclear which 
one is definitively superior to the other. However, what is 
evident from this study is that the GPR model surpasses both 
ANN and SVM, although they remain competitive during 
model training.

Previous studies have underscored the potential of ML 
models in elucidating intricate relationships between mete-
orological and hydrological variables and drought occur-
rence (Mishra and Desai 2005; Morid et al. 2006; Bacanli 
et al. 2009; Marj and Meijerink 2011). Among the array of 
models employed in research endeavors, the GPR model has 
showcased commendable efficacy across numerous studies 
(Sihag et al. 2017; Mishra and Kushwaha 2019; Shabani 
et al. 2020; Ghasemi et al. 2021), consistently delivering 
high performance, as in this study.

In this study, as the time scale increases, the performances 
of the RRMSE, KGE and R2 criteria in the most success-
ful ML models support each other. In other words, as the 
time scale increases, the predictive power of the ML models 
is included in the perfect prediction classification. Except 
for some time scales, there is a decrease in the RRMSE 
and MAE criteria as the time scale increases. The results 
obtained from this study support the findings of the study 
conducted by (Anshuka et al. 2019). (Anshuka et al. 2019) 
also found that the performance criteria decreased with the 
increase in the time scale.

This study validated the results of the ANN, GPR, and 
SVM approaches, which were used within stand-alone, 
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hybrid, and tribrid models, using Kruskal-Wallis tests. 
Although the highest forecast performance was achieved in 
the recommended hybrid models (version 3), it was observed 
that the forecast performance of the recommended tribrid 
models (version 2) was close to that of hybrid models and 
performed well. Besides, the hegemony of hybrid models 
over stand-alone models (version 1 in this study) has been 
proven again, as expressed in the literature review. Moreo-
ver, using a FS approach in the tribrid models could reduce 
the computational load and shorten the processing time by 
selecting the most compelling features instead of forecasting 
each sub-band separately. Thus, the superiority of tribrid 
models was demonstrated quantitatively in the literature and 
qualitatively in terms of reduced computational load and 
processing time in this study.

Conclusion

This study focuses on drought forecasting in the Eastern 
Anatolia region of Türkiye, referred to as Upper Mesopo-
tamia, which is a geographically significant area not inves-
tigated in previous research. The data utilized in the study 
comes specifically from two different meteorological meas-
urement stations in the Karasu sub-basin of the Euphrates 
Basin. Various ML models, including stand-alone, hybrid, 
and tribrid approaches, are evaluated to develop high-perfor-
mance drought forecasting models, and their performances 
are compared across different time scales.

Analyses were conducted using two widely accepted 
drought indices, namely the SPI and the SPEI, at different 
time scales (1-, 3-, 6-, 9-, and 12-months). Three different 
approaches were employed for forecasting: stand-alone ML 
methods (ANN, GPR, SVM), hybrid ML methods (TQWT-
ANN, TQWT-GPR, TQWT-SVM), and tribrid ML methods 
(TQWT-FSRFtest-ANN, TQWT-FSRFtest-GPR, TQWT-
FSRFtest-SVM). The temporal variation of meteorological 
drought events was assessed through SPI and SPEI outputs, 
revealing an increase in drought trends, durations, and mag-
nitudes, especially since the 2000s. Frequency analysis of 
drought indices indicated that the East Anatolia Region 
mainly experienced moderate drought events.

ML models were applied to forecast the drought indi-
ces, including stand-alone, hybrid, and tribrid versions. The 
evaluation of these models involved classical performance 
criteria (such as R2, RRMSE, MAE, etc.), visual criteria 
(scatter and trajectory plots), Taylor diagrams, violin, and a 
statistical test (Kruskal-Walli’s test). The results showed that 
the hybrid and tribrid models, particularly those utilizing the 
TQWT sub-band decomposition technique, performed high 
forecasting accuracy.

The analysis concluded that the GPR approach out-
performed the ANN and SVM methods for SPEI and SPI 

outputs at the Tercan station. Conversely, for the Tunceli sta-
tion, the GPR and ANN methods were identified as the most 
successful approaches for SPEI output twice each, while the 
SVM method achieved this designation once. Thus, no clear 
superiority was observed between the GPR and ANN meth-
ods for the SPEI output at the Tunceli station. Regarding 
the SPI output at the Tunceli station, the GPR method was 
identified as the most successful approach twice, whereas 
the SVM method achieved this designation three times. Con-
sequently, the SVM method emerged as the most successful 
approach for the SPI output at the Tunceli station.

This study contributes to the existing literature by focus-
ing on high-performance drought forecasting, proposing 
hybrid and tribrid modeling and traditional approaches, and 
emphasizing the efficiency of the TQWT sub-band decom-
position technique. The findings underscore the significance 
of considering multiple time scales and utilizing advanced 
ML methods for accurate drought forecasting, provid-
ing valuable insights for tackling climate change, efficient 
water resource management, and environmental planning in 
the Eastern Anatolia region and similar semi-arid climatic 
zones.

This study can be characterized by the following seven 
fundamental limitations: (i) Utilization of two meteorologi-
cal stations specific to the Eastern Anatolia Region, where 
agriculture is limited. (ii) Utilization of 58 years of data. 
(iii) Variation in precipitation and temperature conditions 
for the Tercan station ranging from 0 to 140.7 mm and -16.4 
to 24.9 °C, respectively, and for the Tunceli station ranging 
from 0 to 540.2 mm and -10.2 to 29.7 °C, respectively. (iv) 
Calculation of two different drought indices, namely SPI 
and SPEI. (v) Calculation of temporal scales including 1-, 
3-, 6-, 9-, and 12-months. (vi) Utilization of three ML meth-
ods, namely ANN, GPR, and SVM, as well as the TQWT 
sub-band decomposition method. (vii) Employment of the 
FSRFtest for selecting effective input parameters for drought 
prediction.

In future studies, drought prediction in the Eastern Ana-
tolia Region can be enhanced by employing other sub-band 
decomposition methods and different ML models available 
in the literature. Drought prediction models can be increased 
with ML methods by calculating different drought indices 
of other stations in the Eastern Anatolia Region and making 
comprehensive analyses. Different climate and hydrological 
data can increase the accuracy of drought models for local 
and regional predictions with the help of different indices 
used. This study demonstrates the capability of the TQWT 
sub-band decomposition method to address such problems. 
Utilizing the TQWT method for similar analyses in differ-
ent regions and predicting different drought indices can pro-
vide valuable insights. Moreover, using the FSRFtest can 
contribute to effectively selecting input variables in various 
problems.
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Fig. 15   Flowchart for Model 2
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Fig. 16   Flowchart for Model 3

(a) SPEI for Tercan station 

(b) SPI for Tercan station 

(c) SPEI for Tunceli Station 

(d) SPEI for Tunceli Station 

Fig. 17   Relative frequency of meteorological drought events in the Tercan and Tunceli stations
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(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

Fig. 18   Violin diagram for Tercan Station's SPEI indexes for test data
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(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

Fig. 19   Error-box plot for Tercan Station's SPEI indexes for test data
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

Fig. 20   Violin diagram for Tercan Station's SPI indexes for test data
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

Fig. 21   Error-box plot for Tercan Station's SPI indexes for test data
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(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

Fig. 22   Violin diagram for Tunceli Station's SPEI indexes for test data
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(a) SPEI1 

(b) SPEI3 

(c) SPEI6 

(d) SPEI9 

(e) SPEI12 

Fig. 23   Error-box plot for Tunceli Station's SPEI indexes for test data
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

Fig. 24   Violin diagram for Tunceli Station's SPI indexes for test data
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(a) SPI1 

(b) SPI3 

(c) SPI6 

(d) SPI9 

(e) SPI12 

Fig. 25   Error-box plot for Tunceli Station's SPI indexes for test data
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Table 12   Pseudo Code for 
Hybrid Model Initialize variables and parameters

For each machine learning model (ANN, SVR, GPR):
  Set the model name based on the loop iteration
  For each SPI data type (SPI1, SPI3, SPI6, SPI9, SPI12):
  For each lag value (1 to 4):
    Read data from the file
    Set SPI data based on the selected type
    Split the data into training (70%) and testing (30%) sets
     Normalize the training and testing data:
      Detect and handle outliers in the training data:
      Use a method (e.g., z-score) to identify outliers
      For each outlier, replace it with the average of its previous and next values
    Apply TQWT to decompose the training and testing data into subbands
    For each subband:
      Prepare the input and output data for training and testing based on the specified lag
      Train the model using the training data and optimize hyperparameters
      Save the best hyperparameters for the model
      Predict the output for the training and testing data using the trained model
      Denormalize the predictions:
      Calculate performance metrics (MSE, MAE, correlation coefficient, R-squared) for the model predic-

tions
      Plot and save the observed and forecasted data for each subband
    Aggregate the predictions from all subbands to obtain the final forecasted data
    Calculate performance metrics for the aggregated predictions
    Plot and save the observed and forecasted data for the aggregated predictions
      Save the performance metrics and results

End
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Table 13   Pseudo Code for Tribrid Model

Initialize variables and parameters
For each machine learning model (ANN, SVR, GPR):

  Set the model name based on the loop iteration
  For each SPI data type (SPI1, SPI3, SPI6, SPI9, SPI12):
    For each lag value (1 to 4):
      Read data from the file
      Set SPI data based on the selected type
      Split the data into training (70%) and testing (30%) sets
      Normalize the training and testing data:
        Detect and handle outliers in the training data:
        Use a method (e.g., z-score) to identify outliers
        For each outlier, replace it with the average of its previous and next values
      Apply TQWT to decompose the training and testing data into subbands
      Prepare the input and output data for training and testing based on the specified lag for each subband
      Combine the prepared data from all subbands
      Select features using FSRFtest:
        Rank features based on their statistical significance
        Select top features that contribute to 95% of the total importance
      Train the model using the selected features and optimize hyperparameters
      Save the best hyperparameters for the model
      Predict the output for the training and testing data using the trained model
      Denormalize the predictions:
      Multiply the predicted values by the standard deviation and add the mean of the original training data to obtain the actual values
      Calculate performance metrics (MSE, MAE, correlation coefficient, R-squared) for the model predictions
      Plot and save the observed and forecasted data for the aggregated predictions
      Save the performance metrics and results

End
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Table 14   Optimized Hyperparameters for Machine Learning Models for Tunceli station SPI data

SPI Model Hyperparameters

SPI1 ModelV3-3GPR Subband1: Sigma: 0.00010036, BasisFunction: linear, KernelFunction: matern32, KernelScale: 0.023595, Standard-
ize: true

Subband2: Sigma: 0.093995, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-
ardize: false

Subband3: Sigma: 0.030197, BasisFunction: none, KernelFunction: ardrationalquadratic, KernelScale: -, Standard-
ize: true

Subband4: Sigma: 0.037382, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-
ardize: false

Subband5: Sigma: 0.006064, BasisFunction: linear, KernelFunction: rationalquadratic, KernelScale: 0.0042276, 
Standardize: true

Subband6: Sigma: 0.054773, BasisFunction: linear, KernelFunction: exponential, KernelScale: 1.6811, Standardize: 
true

SPI3 ModelV3-4GPR Subband1: Sigma: 2.4181, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Standardize: 
true

Subband2: Sigma: 0.00010878, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, 
Standardize: true

Subband3: Sigma: 0.23979, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.023405, Standardize: 
false

Subband4: Sigma: 0.14109, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Standard-
ize: true

Subband5: Sigma: 0.00021258, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, 
Standardize: true

Subband6: Sigma: 0.00022727, BasisFunction: none, KernelFunction: ardrationalquadratic, KernelScale: -, Stand-
ardize: true

SPI6 ModelV3-4SVM Subband1: BoxConstraint: 62.899, KernelScale: -, Epsilon: 0.012722, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband2: BoxConstraint: 240.34, KernelScale: -, Epsilon: 0.0022281, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband3: BoxConstraint: 4.0754, KernelScale: -, Epsilon: 0.00012636, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband4: BoxConstraint: 79.502, KernelScale: -, Epsilon: 9.6547e-05, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband5: BoxConstraint: 61.096, KernelScale: -, Epsilon: 0.00017696, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband6: BoxConstraint: 72.131, KernelScale: -, Epsilon: 0.014428, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

SPI9 ModelV3-4SVM Subband1: BoxConstraint: 997.77, KernelScale: -, Epsilon: 0.0096886, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband2: BoxConstraint: 0.1828, KernelScale: -, Epsilon: 0.0014426, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband3: BoxConstraint: 130.31, KernelScale: -, Epsilon: 0.0040077, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband4: BoxConstraint: 3.7081, KernelScale: -, Epsilon: 0.0027411, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband5: BoxConstraint: 270.17, KernelScale: -, Epsilon: 0.00075659, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband6: BoxConstraint: 37.077, KernelScale: -, Epsilon: 0.0013042, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true
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Table 14   (continued)

SPI Model Hyperparameters

SPI12 ModelV3-4SVM Subband1: BoxConstraint: 973.6, KernelScale: -, Epsilon: 9.0973e-05, KernelFunction: polynomial, Polyno-
mialOrder: 3, Standardize: false

Subband2: BoxConstraint: 1.3232, KernelScale: -, Epsilon: 0.001128, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband3: BoxConstraint: 913.18, KernelScale: -, Epsilon: 0.00012501, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false

Subband4: BoxConstraint: 205.42, KernelScale: -, Epsilon: 0.0020522, KernelFunction: polynomial, Polyno-
mialOrder: 3, Standardize: false

Subband5: BoxConstraint: 0.5319, KernelScale: -, Epsilon: 0.00024295, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband6: BoxConstraint: 205.71, KernelScale: -, Epsilon: 0.0085808, KernelFunction: linear, PolynomialOrder: -, 
Standardize: false
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Table 15   Optimized Hyperparameters for Machine Learning Models for Tunceli station SPEI data

SPI Model Hyperparameters

SPEI1 ModelV3-4ANN Subband1: NumLayers: 1, Activations: relu, Standardize: true, Lambda: 2.6214e-05, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 1, Layer_2_Size: -, Layer_3_Size: -

Subband2: NumLayers: 2, Activations: none, Standardize: true, Lambda: 9.5443e-05, LayerWeightsInitializer: he, 
LayerBiasesInitializer: ones, Layer_1_Size: 42, Layer_2_Size: 1, Layer_3_Size: -

Subband3: NumLayers: 1, Activations: none, Standardize: true, Lambda: 8.8991e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: ones, Layer_1_Size: 6, Layer_2_Size: -, Layer_3_Size: -

Subband4: NumLayers: 2, Activations: tanh, Standardize: false, Lambda: 4.6464e-07, LayerWeightsInitializer: he, 
LayerBiasesInitializer: zeros, Layer_1_Size: 1, Layer_2_Size: 41, Layer_3_Size: -

Subband5: NumLayers: 2, Activations: none, Standardize: false, Lambda: 1.6448e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 12, Layer_2_Size: 271, Layer_3_Size: -

Subband6: NumLayers: 1, Activations: relu, Standardize: false, Lambda: 5.8551e-06, LayerWeightsInitializer: he, 
LayerBiasesInitializer: zeros, Layer_1_Size: 15, Layer_2_Size: -, Layer_3_Size: -

SPEI3 ModelV3-4SVM Subband1: BoxConstraint: 42.452, KernelScale: -, Epsilon: 0.00019191, KernelFunction: linear, PolynomialOrder: 
-, Standardize: false

Subband2: BoxConstraint: 259.76, KernelScale: -, Epsilon: 0.0053228, KernelFunction: linear, PolynomialOrder: 
-, Standardize: false

Subband3: BoxConstraint: 0.65564, KernelScale: -, Epsilon: 0.00097464, KernelFunction: linear, Polyno-
mialOrder: -, Standardize: true

Subband4: BoxConstraint: 182, KernelScale: -, Epsilon: 0.010144, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

Subband5: BoxConstraint: 9.7561, KernelScale: -, Epsilon: 0.0011977, KernelFunction: polynomial, Polyno-
mialOrder: 2, Standardize: true

Subband6: BoxConstraint: 21.729, KernelScale: -, Epsilon: 0.0050129, KernelFunction: linear, PolynomialOrder: -, 
Standardize: true

SPEI6 ModelV3-3GPR Subband1: Sigma: 0.081961, BasisFunction: linear, KernelFunction: ardmatern52, KernelScale: -, Standardize: 
false

Subband2: Sigma: 0.5997, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Standard-
ize: false

Subband3: Sigma: 0.0001292, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0039853, Stand-
ardize: true

Subband4: Sigma: 0.30387, BasisFunction: linear, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband5: Sigma: 0.0025498, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0011036, Stand-

ardize: true
Subband6: Sigma: 0.025046, BasisFunction: none, KernelFunction: ardmatern32, KernelScale: -, Standardize: 

false
SPEI9 ModelV3-4ANN Subband1: NumLayers: 2, Activations: sigmoid, Standardize: true, Lambda: 3.3861e-07, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 1, Layer_2_Size: 43, Layer_3_Size: -
Subband2: NumLayers: 2, Activations: none, Standardize: true, Lambda: 4.4021e-08, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: ones, Layer_1_Size: 4, Layer_2_Size: 55, Layer_3_Size: -
Subband3: NumLayers: 1, Activations: tanh, Standardize: false, Lambda: 2.2429e-08, LayerWeightsInitializer: he, 

LayerBiasesInitializer: zeros, Layer_1_Size: 2, Layer_2_Size: -, Layer_3_Size: -
Subband4: NumLayers: 2, Activations: none, Standardize: true, Lambda: 2.4968e-07, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 47, Layer_2_Size: 115, Layer_3_Size: -
Subband5: NumLayers: 1, Activations: relu, Standardize: false, Lambda: 3.202e-07, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: ones, Layer_1_Size: 121, Layer_2_Size: -, Layer_3_Size: -
Subband6: NumLayers: 2, Activations: none, Standardize: false, Lambda: 2.1172e-08, LayerWeightsInitializer: he, 

LayerBiasesInitializer: ones, Layer_1_Size: 4, Layer_2_Size: 144, Layer_3_Size: -
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Table 15   (continued)

SPI Model Hyperparameters

SPEI12 ModelV2-4GPR Sigma: 0.001036, BasisFunction: pureQuadratic, KernelFunction: exponential, KernelScale: 2.9023, Standardize: 
true

ModelV3-4GPR Subband1: Sigma: 0.2897, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-
ardize: false

Subband2: Sigma: 0.056197, BasisFunction: linear, KernelFunction: ardmatern32, KernelScale: -, Standardize: 
false

Subband3: Sigma: 0.0039347, BasisFunction: linear, KernelFunction: rationalquadratic, KernelScale: 0.26083, 
Standardize: true

Subband4: Sigma: 0.0063754, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.00076651, 
Standardize: true

Subband5: Sigma: 0.0005224, BasisFunction: linear, KernelFunction: matern32, KernelScale: 0.091704, Standard-
ize: false

Subband6: Sigma: 1.2321, BasisFunction: pureQuadratic, KernelFunction: matern52, KernelScale: 0.13398, Stand-
ardize: false
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Table 16   Optimized Hyperparameters for Machine Learning Models for Tercan station SPI data

SPI Model Hyperparameters

SPI1 ModelV3-4GPR Subband1: Sigma: 0.081961, BasisFunction: linear, KernelFunction: ardmatern52, KernelScale: -, Standardize: false
Subband2: Sigma: 0.5997, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Standardize: 

false
Subband3: Sigma: 0.0001292, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0039853, Stand-

ardize: true
Subband4: Sigma: 0.30387, BasisFunction: linear, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband5: Sigma: 0.0025498, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0011036, Stand-

ardize: true
Subband6: Sigma: 0.025046, BasisFunction: none, KernelFunction: ardmatern32, KernelScale: -, Standardize: false

SPI3 ModelV2-4GPR Sigma: 0.0022595, BasisFunction: linear, KernelFunction: exponential, KernelScale: 1.0345, Standardize: true
SPI6 ModelV3-4GPR Subband1: Sigma: 0.026299, BasisFunction: none, KernelFunction: ardmatern52, KernelScale: -, Standardize: true

Subband2: Sigma: 0.01351, BasisFunction: linear, KernelFunction: ardexponential, KernelScale: -, Standardize: false
Subband3: Sigma: 0.0083267, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.083388, Standard-

ize: true
Subband4: Sigma: 0.00040844, BasisFunction: linear, KernelFunction: ardexponential, KernelScale: -, Standardize: 

false
Subband5: Sigma: 0.15225, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Standard-

ize: true
Subband6: Sigma: 0.0012887, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.89336, Standard-

ize: true
SPI9 ModelV3-4ANN Subband1: NumLayers: 1, Activations: none, Standardize: false, Lambda: 2.3007e-07, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 3, Layer_2_Size: -, Layer_3_Size: -
Subband2: NumLayers: 1, Activations: tanh, Standardize: true, Lambda: 8.1343e-06, LayerWeightsInitializer: glorot, 

LayerBiasesInitializer: zeros, Layer_1_Size: 28, Layer_2_Size: -, Layer_3_Size: -
Subband3: NumLayers: 1, Activations: tanh, Standardize: true, Lambda: 5.4029e-05, LayerWeightsInitializer: he, 

LayerBiasesInitializer: zeros, Layer_1_Size: 3, Layer_2_Size: -, Layer_3_Size: -
Subband4: NumLayers: 2, Activations: none, Standardize: false, Lambda: 4.6831e-08, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 4, Layer_2_Size: 103, Layer_3_Size: -
Subband5: NumLayers: 1, Activations: sigmoid, Standardize: true, Lambda: 1.6234e-06, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 48, Layer_2_Size: -, Layer_3_Size: -
Subband6: NumLayers: 2, Activations: sigmoid, Standardize: false, Lambda: 2.104e-08, LayerWeightsInitializer: 

glorot, LayerBiasesInitializer: ones, Layer_1_Size: 8, Layer_2_Size: 33, Layer_3_Size: -
SPI12 ModelV3-4GPR Subband1: Sigma: 0.00010762, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.037874, Standard-

ize: true
Subband2: Sigma: 0.075587, BasisFunction: linear, KernelFunction: squaredexponential, KernelScale: 0.032323, 

Standardize: false
Subband3: Sigma: 0.0041516, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-

ardize: false
Subband4: Sigma: 0.0082025, BasisFunction: none, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband5: Sigma: 0.0082025, BasisFunction: none, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband6: Sigma: 0.00010035, BasisFunction: pureQuadratic, KernelFunction: matern52, KernelScale: 0.39109, 

Standardize: false
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Table 17   Optimized Hyperparameters for Machine Learning Models for Tercan station SPEI data

SPEI Model Hyperparameters

SPEI1 ModelV2-3GPR Sigma: 0.0026904, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0034877, Standardize: true
ModelV3-4GPR Subband1: Sigma: 5.2772, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0035171, Standard-

ize: false
Subband2: Sigma: 0.086128, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0018849, Stand-

ardize: true
Subband3: Sigma: 0.001868, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.0028089, Stand-

ardize: false
Subband4: Sigma: 1.4959, BasisFunction: linear, KernelFunction: rationalquadratic, KernelScale: 0.0030061, 

Standardize: false
Subband5: Sigma: 0.00021076, BasisFunction: constant, KernelFunction: ardmatern52, KernelScale: -, Standard-

ize: false
Subband 6: Sigma: 0.0052899, BasisFunction: linear, KernelFunction: squaredexponential, KernelScale: 0.15722, 

Standardize: true
SPEI3 ModelV3-4GPR Subband 1: Sigma: 0.0077782, BasisFunction: linear, KernelFunction: ardexponential, KernelScale: -, Standardize: 

false
Subband 2: Sigma: 0.18169, BasisFunction: linear, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband 3: Sigma: 0.010885, BasisFunction: linear, KernelFunction: matern32, KernelScale: 0.082801, Standard-

ize: false
Subband 4: Sigma: 0.056423, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.046173, Standard-

ize: false
Subband 5: Sigma: 0.0016388, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.015278, Stand-

ardize: false
Subband 6: Sigma: 0.00033675, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.16067, Standard-

ize: false
SPEI6 ModelV3-4GPR Subband1: Sigma: 0.00010886, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.0050868, Stand-

ardize: false
Subband2: Sigma: 0.045138, BasisFunction: linear, KernelFunction: ardmatern32, KernelScale: -, Standardize: true
Subband3: Sigma: 0.001327, BasisFunction: linear, KernelFunction: exponential, KernelScale: 0.059611, Stand-

ardize: true
Subband4: Sigma: 0.00047403, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Stand-

ardize: true
Subband5: Sigma: 0.00015389, BasisFunction: linear, KernelFunction: matern52, KernelScale: 0.015701, Stand-

ardize: false
Subband6: Sigma: 0.000121, BasisFunction: none, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-

ardize: false
SPEI9 ModelV3-4GPR Subband1: Sigma: 0.063203, BasisFunction: none, KernelFunction: ardsquaredexponential, KernelScale: -, Stand-

ardize: true
Subband2: Sigma: 0.00049638, BasisFunction: linear, KernelFunction: ardsquaredexponential, KernelScale: -, 

Standardize: true
Subband3: Sigma: 0.020183, BasisFunction: linear, KernelFunction: matern32, KernelScale: 0.017979, Standard-

ize: false
Subband4: Sigma: 0.0035356, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Stand-

ardize: true
Subband5: Sigma: 0.0011987, BasisFunction: linear, KernelFunction: ardrationalquadratic, KernelScale: -, Stand-

ardize: false
Subband6: Sigma: 0.00094898, BasisFunction: pureQuadratic, KernelFunction: matern52, KernelScale: 0.38533, 

Standardize: true
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Table 17   (continued)

SPEI Model Hyperparameters

SPEI12 ModelV3-4ANN Subband1: NumLayers: 1, Activations: tanh, Standardize: false, Lambda: 7.412e-06, LayerWeightsInitializer: he, 
LayerBiasesInitializer: ones, Layer_1_Size: 194, Layer_2_Size: -, Layer_3_Size: -

Subband2: NumLayers: 1, Activations: tanh, Standardize: true, Lambda: 2.6982e-05, LayerWeightsInitializer: he, 
LayerBiasesInitializer: ones, Layer_1_Size: 19, Layer_2_Size: -, Layer_3_Size: -

Subband3: NumLayers: 2, Activations: none, Standardize: true, Lambda: 3.7272e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: ones, Layer_1_Size: 57, Layer_2_Size: 157, Layer_3_Size: -

Subband4: NumLayers: 1, Activations: relu, Standardize: false, Lambda: 6.2578e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 264, Layer_2_Size: -, Layer_3_Size: -

Subband5: NumLayers: 3, Activations: tanh, Standardize: false, Lambda: 1.8427e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 64, Layer_2_Size: 139, Layer_3_Size: 26

Subband6: NumLayers: 2, Activations: none, Standardize: false, Lambda: 8.4422e-07, LayerWeightsInitializer: 
glorot, LayerBiasesInitializer: zeros, Layer_1_Size: 92, Layer_2_Size: 15, Layer_3_Size: -

Table 18   The most successful 
methods of three different 
versions of Tercan Station and 
the performance criteria of 
these methods for training data

V1 V2 V3 V1 V2 V3

SPEI1 4GPR 3GPR 4GPR SPI1 4GPR 4GPR 4GPR
25.61 3.43 9.21 4.36 0.04 1.30 RRMSE
0.815 0.104 0.282 0.773 0.007 0.000 MAE
0.030 0.983 0.875 0.032 0.999 0.999 R2

-0.201 0.984 0.901 -0.238 0.999 0.999 KGE
0.425 0.979 0.905 0.425 0.999 1.000 OI

SPEI3 4SVM 3GPR 3GPR SPI3 4SVM 4GPR 3GPR
37.60 1.25 5.87 78.52 7.08 13.87 RRMSE
0.502 0.017 0.079 0.526 0.048 0.095 MAE
0.599 0.999 0.990 0.552 0.996 0.986 R2

-22.685 0.998 0.621 -23.481 0.993 0.746 KGE
0.734 0.998 0.985 0.725 0.994 0.984 OI

SPEI6 3SVM 4ANN 4GPR SPI6 2ANN 4GPR 4GPR
50.81 1.51 30.41 63.99 1.72 21.40 RRMSE
0.350 0.011 0.214 0.377 0.010 0.130 MAE
0.791 0.999 0.925 0.767 0.999 0.974 R2

0.844 0.800 0.256 0.777 0.996 0.981 KGE
0.846 0.998 0.933 0.839 0.999 0.972 OI

SPEI9 2SVM 4GPR 4GPR SPI9 2GPR 4ANN 4ANN
6.56 0.63 3.94 18.55 1.77 11.98 RRMSE
0.290 0.028 0.172 0.303 0.029 0.194 MAE
0.864 0.999 0.951 0.856 0.999 0.940 R2

0.904 0.984 0.965 0.771 0.999 0.955 KGE
0.893 0.996 0.952 0.894 0.996 0.948 OI

SPEI12 3SVM 3GPR 4ANN SPI12 2ANN 4ANN 4GPR
3.41 0.29 2.16 6.20 0.57 3.56 RRMSE
0.241 0.021 0.158 0.238 0.023 0.142 MAE
0.896 0.999 0.958 0.900 0.999 0.967 R2

0.411 0.994 0.970 0.708 0.969 0.977 KGE
0.918 0.997 0.961 0.923 0.997 0.968 OI
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