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mapping and spatial prediction of forest characteristics 
(Tian et al. 2023). This evolution has been fueled by the 
realization that precise, up-to-date information about for-
ests is crucial for informed decision-making, conservation 
efforts, and mitigating the impacts of climate change.

The measurement and assessment of forest growing stock 
volume (GSV) have emerged as pivotal components in this 
endeavour. GSV is a key indicator of forest health, carbon 
sequestration, and ecosystem vitality. Accurate assessments 
of GSV are indispensable for tracking carbon budgets, 
understanding carbon cycling in forested landscapes, and 
devising strategies to combat climate change (McRoberts et 
al. 2007). The imperative to assess this parameter and sub-
sequently map it lies at the core of modern forest manage-
ment and conservation practices.

Remote sensing has revolutionized the way we gather 
data about our natural environment, particularly in the 

Introduction

Forests are critical ecosystems that play an indispensable 
role in maintaining the health of our planet (Maier et al. 
2021). As the world grapples with climate change and its 
associated challenges, the importance of understanding and 
effectively managing these intricate ecosystems has grown 
exponentially. One significant transformation in forest ecol-
ogy and management is the shift towards the comprehensive 
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Abstract
Understanding the spatial distribution of forest properties can help improve our knowledge of carbon storage and the 
impacts of climate change. Despite the active use of remote sensing and machine learning (ML) methods in forest map-
ping, the associated uncertainty predictions are relatively uncommon. The objectives of this study were: (1) to evaluate 
the spatial resolution effect on growing stock volume (GSV) mapping using Sentinel-2A and Landsat 8 satellite images, 
(2) to identify the most key predictors, and (3) to quantify the uncertainty of GSV predictions. The study was conducted 
in heterogeneous landscapes, covering anthropogenic areas, logging, young plantings and mature trees. We employed 
an ML approach and evaluated our models by root mean squared error (RMSE) and coefficient of determination (R2) 
through a 10-fold cross-validation. Our results indicated that the Sentinel-2A provided the best prediction performances 
(RMSE = 56.6 m3/ha, R2 = 0.53) in compare with Landsat 8 (RMSE = 71.2 m3/ha, R2 = 0.23), where NDVI, LSWI and B08 
band (near-infrared spectrum) were identified as key variables, with the highest contribution to the model. Moreover, the 
uncertainty of GSV predictions using the Sentinel-2A was much smaller compared with Landsat 8. The combined assess-
ment of accuracy and uncertainty reinforces the suitability of Sentinel-2A for applications in heterogeneous landscapes. 
The higher accuracy and lower uncertainty observed with the Sentinel-2A underscores its effectiveness in providing more 
reliable and precise information for decision-makers. This research is important for further digital mapping endeavours 
with accompanying uncertainty, as uncertainty assessment plays a pivotal role in decision-making processes related to 
spatial assessment and forest management.

Keywords Digital mapping · Sentinel · Landsat · Machine learning · Spatial prediction

Received: 27 March 2024 / Accepted: 15 August 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Forest growing stock volume mapping with accompanying 
uncertainty in heterogeneous landscapes using remote sensing data

Azamat Suleymanov1 · Ruslan Shagaliev1 · Larisa Belan1 · Ekaterina Bogdan1 · Iren Tuktarova1 · Eduard Nagaev1 · 
Dilara Muftakhina1

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-024-01457-6&domain=pdf&date_stamp=2024-8-24


Earth Science Informatics

context of forests (Engler et al. 2013;  Caffaratti et al. 2021; 
Li et al. 2020; Sesnie et al. 2023; Uniyal et al. 2022; Hu et 
al. 2016). Traditional field-based methods, while valuable, 
are often costly, time-consuming, and spatially limited. 
Remote sensing, with its ability to capture vast landscapes 
from above, has emerged as a cornerstone tool for mapping 
various forest properties efficiently and accurately. More-
over, remote sensing technologies have provided research-
ers with the means to monitor forests on a global scale (Xie 
et al. 2008), offering insights into their structure, composi-
tion, and dynamics.

In recent years, the fusion of remote sensing data with 
advanced machine learning (ML) approaches has opened 
new horizons in the field of forest science (Ahmadi et al. 
2020; Cho et al. 2023; Grabska et al. 2020; Liu et al. 2020; 
Wang et al. 2023). Among the satellites with high spatial 
resolution, Sentinel and Landsat are popular sources of 
remote sensing data (Singh et al. 2021; Tripathi and Tiwari 
2020). A comparison of Landsat and Sentinel for mapping 
forest properties reveals that both have their strengths. For 
instance, Clark (2020) found that Sentinel-2 demonstrated a 
strong capability for mapping forest alliances, with higher 
overall accuracy than Landsat 8. Similarly, Astola et al. 
(2019) recommended Sentinel-2 as the principal data source 
for forest resource assessment in the boreal region. Simi-
lar results were obtained also for GSV mapping purposes 
(Chrysafis et al. 2017; Mura et al. 2018). These studies col-
lectively suggest that while both satellites have their advan-
tages, Sentinel-2 may be more suitable for certain forest 
mapping applications.

At the same time, the uncertainty assessment of spatial 
predictions for forest characteristics is a critical compo-
nent in understanding the reliability of predictive models. 
One key aspect is the consideration of model input data, 
acknowledging the inherent variability and potential errors 
in data sources. The selection of appropriate modelling tech-
niques and explanatory variables also plays a pivotal role, 

as different approaches may yield varying levels of accu-
racy and uncertainty (Araza et al. 2022; Persson and Ståhl 
2020; Suleymanov et al. 2024). Holdaway et al. (2014) 
emphasized the need to quantify and incorporate measure-
ment error and model uncertainty in plot-based estimates of 
forest carbon stock and carbon change. Transparently com-
municating uncertainty is crucial for facilitating informed 
decision-making and ensuring the responsible application of 
forest management strategies. Ultimately, a rigorous uncer-
tainty assessment enhances the credibility and applicability 
of spatial predictions for forest characteristics.

Despite the increased interest in mapping forest param-
eters using modern ML techniques, taking into account the 
uncertainty of predictions is often overlooked. Accompany-
ing forest mapping with estimates of uncertainty assessment 
is crucial as it provides decision-makers with a realistic 
understanding of the potential variability in predicted out-
comes, enabling more informed and risk-aware forest man-
agement strategies. Therefore, the main objectives of this 
study were: (i) to compare the accuracy of Sentinel-2 A and 
Landsat 8 data for spatial modelling of GSV; (ii) to iden-
tify important explanatory variables; and (iii) to assess the 
uncertainty of spatial predictions.

Materials and methods

Study area

The study area is located in Republic of Bashkortostan 
(Russia), 54° 39′ 10″ N latitude and 54°03′ 50″ E longitude, 
and is a natural park “Kandry-Kul” with an area of about 
5200 hectares (Fig. 1). Within the nature reserve, there is a 
village, a recreational facility, a children’s camp, and camp-
ing zones, all of which have a detrimental impact on the 
environment. Additionally, the territory encompasses agri-
cultural lands and newly planted trees, causing an extremely 

Fig. 1 The location of the study area (a, b) and the location of sampling points (red points)
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heterogeneous landscape. The dominant tree species in the 
study area include birch (Betula pendula) and pine (Pinus 
sylvestris) (Volkov et al. 2023). Forests cover about 1000 
hectares of the park.

The climate in the study area is classified as moder-
ate continental or warm-summer humid continental (Dfb) 
according to the Köppen climate classification (Beck et al. 
2018). Winters are cold, with an average temperature in Jan-
uary of -13.8 °C, reaching an absolute minimum of -50 °C. 
Steady snow cover lasts for about 134 days, with an aver-
age snow height of 28 cm. Winter rainfall averages around 
103 mm. July experiences the highest temperatures, with an 
average of + 18.4 °C and an absolute maximum of + 40 °C. 
The frost-free period in the region spans 123 days.

Field data

The field studies were conducted in the summer of 2018. To 
investigate GSV levels, a single trial plot was set up in each 
forested site. The boundaries and area of each single plot 
were determined by the natural boundaries of forest stands 
that met the following characteristics: uniform in terms of 
tree species composition and age, as well as in terms of den-
sity and forest growth conditions. A total of 217 sites were 
selected. Then, within each sample plot, we measured the 
diameter at breast height diameter, height of trees and tree 
density. These measurements were used to estimate the vol-
ume of individual trees using auxiliary tables from the ref-
erence manual “All-Union Standards for Forest Taxation” 
(Anuchin 1982). We calculated the volume of each tree spe-
cies using diameter and height measurements and summed 
the values of all trees in a plot to estimate the GSV (volume 
of trees per unit area, m3/ha).

Remote sensing data and pre-processing

In the study, cloud-free remote sensing data was utilized for 
the spatial modelling of GSV. The data were acquired from 
Sentinel-2 A and Landsat 8, which were synchronized with 
fieldwork (summer 2018). Sentinel-2 A is equipped with a 
multispectral sensor, capable of capturing data in thirteen 
spectral bands, ranging from visible light to near-infrared 
(NIR) and short-wave infrared (SWIR) regions. The techni-
cal characteristics of Sentinel-2 A include a spatial resolu-
tion of 10 m for visible and NIR bands, 20 m for the SWIR 
bands, and three bands at 60 m spatial resolution. Because 
of the coarse resolution (60 m), bands 1, 9 and 10 were not 
used as explanatory variables.

The Landsat 8 satellite is equipped with the Operational 
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), 
which collectively capture high-resolution imagery across 
visible, near-infrared, and thermal bands. With a revisit time 

of approximately 16 days, Landsat 8 continues the legacy 
of its predecessors by contributing to the long-term record 
of Earth observation data, fostering scientific research, and 
supporting various applications related to natural resource 
management and environmental assessment. The spectral 
bands from both satellites were scaled to surface reflec-
tance by applying the image-based, dark-object subtraction 
(DOS) atmospheric correction (Chavez 1988). Considering 
the uniform and relatively small size of the trial plots, we 
used single pixel extraction of remote sensing data that cor-
responds to the center plot.

Additionally, several spectral indices, including NDVI 
(Normalized Difference Vegetation Index) (Rouse et al. 
1974), GRVI (Green-Red Vegetation Index) (Tucker 1979) 
and LSWI (Land Surface Water Index) (Xiao et al. 2004), 
were computed. To mitigate multicollinearity and redun-
dancy, we intentionally limited the creation of additional 
spectral indices, opting for a focused selection of widely 
used and accepted metrics. This approach not only stream-
lined our analysis but also facilitated comparisons with 
other studies, ensuring the reproducibility and consistency 
of our findings within the broader scientific community. 
Their Eqs. (1–3) are defined as follows:

NDVI = (NIR − Red) / (NIR + Red)  (1)

GRVI = (Green − Red) / (Green + Red)  (2)

LSWI = (Red − SWIR) / (Red + SWIR) (3)

where Red, Green, NIR and SWIR are spectral reflectance 
measurements acquired in red, green, NIR and SWIR 
regions, respectively.

Variable selection

The covariates’ selection procedure was implemented using 
the recursive elimination feature (RFE) algorithm. RFE is 
a powerful tool for feature selection. This process initiates 
with training ML models using the entire set of features in 
the dataset. Subsequently, each feature is assigned an impor-
tance score based on its contribution to the model’s predic-
tive performance. RFE then iteratively eliminates the least 
important feature, retains the model on the reduced feature 
set, and evaluates performance until a predetermined num-
ber of features is reached or performance stabilizes. This 
systematic elimination and retraining process allows RFE 
to identify the most influential features.
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PI90 = Q95− Q5  (4)

where PI90 is 90% prediction interval; Q95 and Q5 are 95th 
and 5th percentiles, respectively.

For the estimation of the prediction uncertainty, we used 
the prediction interval coverage probability (PICP) (Shres-
tha and Solomatine 2006) as presented in Eq. 5. PICP evalu-
ates if the probability assigned to the prediction interval is 
equal to the frequency of empirical test data within the pre-
diction interval. Ideally, in our case, for a 90% prediction 
interval, we desire a PICP of 90%. If PICP is less than the 
confidence level, the uncertainty is underestimated; and if a 
PICP is greater than the confidence level, the uncertainty is 
overestimated.

PICP =
count(Li < Oi < Ui)

n
× 100 (5)

where the numerator is the counts that an observation Oi fits 
within its prediction; Li and Ui are the predicted lower and 
upper limits of GSV, respectively; and n is the number of 
GSV observations.

Model training and evaluation

Validation criteria, including RMSE and coefficient of 
determination (R2) were used to evaluate and determine the 
models’ performance. Their equations are below (Eqs. 6–7):

RMSE =

√∑ n
i=1(Oi−P i)

2

n
 (6)

R2 =




∑ n

i=1 (Oi − Oavg) × (Pi − Pavg)√∑ n
i=1(Oi−Oavg)

2 × (Pi − Pavg)
2





2

 (7)

where Oi and Pi are observed and predicted values of GSV, 
Oavg and Pavg are the average values, and n is the number 
of samples.

The statistical analyses, spatial modelling process and 
validation were performed using the “ranger” and other 
basic packages in R programming language.

Results

Forest growing stock volume

Descriptive statistics of GSV in the study area are presented 
in Table 1. The dataset encompassed a range of GSV val-
ues from a minimum of 30 to a maximum of 340 m3/ha, 

Machine learning approach

We used a random forest (RF) approach for the digital map-
ping of GSV levels. RF algorithm is a powerful ML method 
for classification and regression tasks. Its core principle 
revolves around creating a forest of decision trees and aggre-
gating their predictions to enhance overall accuracy and 
reduce overfitting (Breiman 2001). RF operates as follows: 
First, it randomly selects a subset of the training data (boot-
strapping) and a subset of the features of each tree in the 
forest. Next, multiple decision trees are grown using these 
subsets. These trees are constructed independently and use a 
random subset of features at each split point. When making 
predictions, RF aggregates the results of all the individual 
trees. For regression tasks, this typically involves averag-
ing the outputs of the trees. RF offers several advantages, 
including high predictive accuracy, resistance to overfitting, 
and robustness against noisy data. Also, this algorithm can 
handle large datasets with numerous features.

Model tuning of the RF model was done for the hyper-
parameters ntree (number of trees) as 100, 250, 500 (ranger 
package default), 750 and 1000; and for mtry (number of 
covariates to consider at any given split) as √covariates 
(ranger default), 25, 33.3 and 50% of covariates number. 
The model with the lowest root mean squared error (RMSE) 
after a 10-fold cross-validation procedure was selected for 
the digital mapping of GSV values.

Uncertainty assessment

In our study, we implemented a quantile regression forest 
(QRF) approach for uncertainty assessment in the prediction 
of GSV (Meinshausen 2006). QRF is an ensemble method 
that combines the principles of RF with quantile regression. 
It leverages the strength of decision trees to account for 
complex relationships within the data and adaptively cap-
tures variations at different quantiles of the response distri-
bution. Unlike traditional regression models (such as RF) 
that estimate the conditional mean of the response variable, 
QRF focuses on modelling the entire conditional distribu-
tion, allowing us to capture the variability and uncertainty 
inherent in our predictions.

In our analysis, we calculated the quantiles at 0.05 and 
0.95, representing the lower and upper bounds of the predic-
tion distribution, respectively. This allowed us to derive a 
prediction interval at the 90% confidence level as presented 
in Eq. 4, providing a robust measure of uncertainty around 
our GSV predictions. A 90% prediction interval is a statisti-
cal concept representing a range of values that is anticipated 
to encompass a forthcoming observation with a 90% confi-
dence level.
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The relative importance of Sentinel-2 A explanatory 
variables is shown in Fig. 3. Notably, the variable impor-
tance analysis indicated that NDVI, an index commonly 
used to assess vegetation health and density, emerged as the 
most influential predictor. Following NDVI, spectral index 
LSWI, displayed a high level of importance. Additionally, 
B08 band, corresponding to the NIR spectrum of the Senti-
nel-2 A satellite imagery, featured prominently in the vari-
able importance analysis.

Model performance

The performance of RF models for both remote sensing 
datasets based on the 10-fold cross-validation are shown in 
Table 2. The RF model using Sentinel-2A data yielded an 
RMSE of 56.6 m3/ha and an R2 value of 0.53, which was 
significantly better compared to Landsat 8 data (71.2 m3/ha, 
R2 = 0.23). The scatter plot of observed vs. predicted GSV 
values using Sentinel-2A data is shown in Fig. 4. The esti-
mation of the prediction uncertainty with the PICP revealed 
that both Sentinel-2A and Landsat 8 datasets were underes-
timated the uncertainty associated to GSV predictions (88 
and 83%, respectively).

representing the variation in forest GSV over the observa-
tion period. On average, the GSV was approximately 160 
m3/ha, reflecting the central tendency of the forest’s bio-
mass accumulation. The standard deviation (SD) of 67 m3/
ha highlighted the dispersion and variability in the GSV, 
underscoring the dynamic nature of the forest ecosystem 
within our study area. Furthermore, the coefficient of varia-
tion (CV), calculated at 42%, indicated that the relative vari-
ability in GSV was substantial.

Notes1 Standard deviation; 2 Coefficient of variation.

Variable selection and importance

Since the Sentinel-2 A showed significantly better accu-
racy, we show the optimal number of covariates and rela-
tive importance of variables only for this satellite. Figure 2 
displays the optimal number of covariates used in the RF 
prediction of GSV values. Following the variable selection 
process in the RFE analysis, it was determined that the opti-
mal number of variables to include in the fitted RF model 
was seven, indicating that not all variables contributed to 
the spatial prediction.

Table 1 Descriptive statistics of GSV in the study area (n = 217)
Variable Min Max Mean SD1 CV2

GSV, m3/ha 30 340 160 67 42 %

Fig. 2 RMSE values for different numbers of Sentinel-2 A covariates included in the RF model as determined by the RFE technique
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The uncertainty map (Fig. 5), generated using a 90% 
prediction interval for GSV mapping based on the Senti-
nel-2 A data, provides valuable insights into the variability 
and uncertainty of GSV values across the study area. A 90% 
prediction interval is a range of values that are expected 
to contain a future observation with a probability of 90%. 
The GSV values on the uncertainty map ranged from 90 
to 240 m³/ha, while for Landsat, these values ranged from 
200 to 250 m³/ha. It was expected as a covariate set with 
Sentinel-2 A data resulted in more accurate predictions. 
The analysis revealed that east areas tended to exhibit the 
highest uncertainty, while other parts were characterized by 
less uncertainty. In general, higher uncertainty was associ-
ated with dense vegetation and lower was observed in non-
forested areas, suggesting that uncertainty is related to the 
explanatory variables. Areas with dense vegetation were 

Spatial distribution of GSV and its uncertainty

Figure 5 shows the maps of the predicted GSV concentra-
tions with accompanying uncertainty using the Sentinel-2 A 
data. According to the generated map, predicted GSV values 
ranged from 51 to 302 m3/ha. It is expected that the high-
est GSV values were found in areas with developed vegeta-
tion in the east part, while the smallest concentrations were 
found in anthropogenic areas, as well as in areas without 
forests and shrubs.

Table 2 Performance analysis of RF predictive models using remote 
sensing data
Remote sensing dataset RMSE, m3/ha R2 PICP, %
Sentinel-2 A 56.6 0.53 88
Landsat 8 71.2 0.23 83

Fig. 4 Scatter plot of observed vs. predicted GSV values 
using Sentinel-2 A data. The 1:1 line is indicated in green
 

Fig. 3 Estimation of the impor-
tance of variables in the RF 
model using Sentinel-2 A data
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allowing for finer details and more precise discrimination of 
GSV levels compared to Landsat 8. Similar findings were 
reported in other studies. For instance, a Sentinel-2-based 
model achieved higher accuracy compared to Landsat 8 for 
GSV mapping in Huairou District, China (Zhou and Feng 
2023). Similarly, Korhonen et al. (2017) demonstrated that 
Sentinel-2 was slightly better than Landsat 8 in the estima-
tion of canopy cover and leaf area index.

In heterogeneous landscapes characterized by diverse 
land cover types and varying vegetation patterns, as in 
this study, a higher spatial resolution allowed for a more 
detailed and nuanced representation of the landscape. The 
forest species of the reserve are significantly disturbed, as 
they are partially cut down, and built up with buildings 
and recreational facilities (Volkov et al. 2023). Anthropo-
genic areas often experience significant disturbances and 
land-use changes, such as deforestation, urbanization, and 

expected to have higher uncertainty because accurately field 
measuring the GSV levels became more difficult due to 
increasing of values.

Discussion

Performances of predictions

Choosing suitable explanatory variables for the digital map-
ping of forest properties is an essential step. In our inves-
tigation of GSV mapping, the utilization of Sentinel-2 A 
and Landsat 8 satellite data as separate entities revealed 
notable disparities in accuracy, with Sentinel-2 A demon-
strating superior performance over Landsat 8. The enhanced 
accuracy observed with Sentinel-2 A can be attributed to its 
higher spatial resolution and advanced sensor capabilities, 

Fig. 5 Spatial distribution of 
GSV using Sentinel-2 A data 
(top), and their uncertainty 
(bottom) expressed as the width 
of the 90% prediction intervals 
(PI90). Note that the water sur-
face does not display the GSV 
values and its uncertainty
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highlight the significance of considering spatial resolution 
as a key factor when selecting satellite data for studies in 
diverse and heterogeneous landscapes.

Uncertainty in GSV mapping studies can arise from 
various sources, including the limitation of explanatory 
variables in accuracy and accounting for all variations in 
GSV, potential errors in field measurements, and spatial 
autocorrelation (Gonzalez et al. 2010; Kangas et al. 2018). 
Earlier, Xu et al. (2021) demonstrated that the accuracy of 
classification of tree species increases depending on spatial 
resolution of remote sensing data. Performance was better 
using spatial data with a resolution from 4 to 10 m, while 
with 30 m accuracy fall. It can be explained by the fact, that 
finer spatial resolution allows for better discrimination of 
features, while coarser resolution may lead to mixed pixels 
and reduced accuracy, especially in heterogeneous land-
scapes. We concluded that spatial resolution yielded higher 
prediction accuracy and a more robust estimate of predic-
tion uncertainty. Thus, the increased level of detail provided 
by Sentinel-2 A facilitates better discrimination and char-
acterization of distinct forest features, capturing variations 
within the heterogeneous landscape more effectively. This 
spatial refinement becomes particularly crucial when deal-
ing with complex ecosystems, enabling the identification 
and differentiation of subtle changes in GSV values.

Earlier Chen et al. (2017) demonstrated that a high level 
of anthropogenic disturbances (e.g., high percentage of 
built-up or high degree of tree patch fragmentation) intro-
duced a high variation in forest carbon estimation. Errors in 
field measurements or inconsistencies in ground truth data 
also can propagate uncertainties into the model outputs. 
Moreover, spatial modelling of natural components in the 
urban environment is associated with additional sources 
of uncertainty (Gu and Townsend 2017; Tigges and Lakes 
2017). Thus, Richardson and Moskal (2014) recommended 
collecting large numbers of points to achieve a high degree 
of certainty in complex urban areas. We assume that the 
collection of additional field observations, especially under 
mature dense forests, and the use of ultra-high-resolution 
remote sensing data will lead to more accurate results and, 
consequently, fewer uncertainties.

Conclusion

Accurate GSV mapping is crucial for informed land man-
agement decisions, climate change mitigation, and sustain-
able resource utilization. Moreover, given the importance 
of forests to the world’s health, such investigations are 
necessary to conduct across various geographical regions 
with different species. This study aimed to digital mapping 
with accompanying uncertainty of GSV levels across birch 

agricultural practices. These activities can lead to a frag-
mentation of the natural landscape and disrupt the spatial 
continuity of forested areas. Also, in anthropogenic areas, 
land management practices can be highly variable, lead-
ing to differences in forest composition, density, and age 
structure.

Although the RF model explained 53% of the GSV varia-
tion, according to the RMSE, our research findings slightly 
better align with GSV mapping studies conducted in other 
regions. For instance, Jiang et al. (2020) reported compa-
rable error metrics, with an RMSE of 65.1 m3/ha using a 
stepwise RF approach in Northern China. Similarly, Mauya 
et al. (2019) attained an RMSE of 72.6 m3/ha using ALOS 
PALSAR-2, Sentinel-1 and Sentinel-2 data in Tanzania, 
whereas Suleymanov et al. (2024) obtained RMSE = 76 
m3/ha using Sentinel-2 data and QRF approach in the Ural 
mountains (Russia). In other study, Zharko et al. (2020) 
achieved an RMSE of 91 m3/ha using Sentinel-2 data in the 
Russian Southern Taiga region.

Variable importance analysis

Our findings underscore the critical role of NDVI in the 
ensemble predictive model, suggesting that changes in 
vegetation health and greenness have a substantial impact 
on GSV patterns. Numerous studies have demonstrated 
the importance of NDVI for the spatial modelling of many 
environmental variables, such as soil (Burgheimer et al. 
2006; Singh et al. 2004), vegetation characteristics (Huang 
et al. 2021; Suleymanov et al. 2020), and even living organ-
isms (Pettorelli et al. 2011). NIR bands are known for their 
sensitivity to vegetation characteristics (Astola et al. 2019; 
Tsuchikawa et al. 2022), making the B08 band an essen-
tial contributor to predictive accuracy. Similar results were 
reported in Nasiri et al. (2022), where NDVI and Sentinel 
B08 band were the most important variables in the spatial 
modelling of forest canopy cover using an RF method. 
Moreover, the significant contribution of LSWI index high-
lights the relevance of hydrological information in our pre-
dictive model. These findings collectively emphasize the 
importance of remote sensing data, particularly NDVI and 
NIR spectra, in predicting forest properties.

Uncertainty of predictions

Besides the superior accuracy in GSV mapping, our study 
revealed that the uncertainty associated with predictions 
was reduced when using Sentinel-2 A, although both sen-
sors underestimated the uncertainty. This reduced uncer-
tainty can be also attributed to the finer spatial resolution 
and advanced sensor capabilities of Sentinel-2 A, enabling 
a more accurate representation of GSV. Hence, our findings 
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