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Abstract
Many landslides occurred every year, causing extensive property losses and casualties in China. Landslide susceptibility 
mapping is crucial for disaster prevention by the government or related organizations to protect people's lives and property. 
This study compared the performance of random forest (RF), classification and regression trees (CART), Bayesian network 
(BN), and logistic model trees (LMT) methods in generating landslide susceptibility maps in Yanchuan County using opti-
mization strategy. A field survey was conducted to map 311 landslides. The dataset was divided into a training dataset and 
a validation dataset with a ratio of 7:3. Sixteen factors influencing landslides were identified based on a geological survey 
of the study area, including elevation, plan curvature, profile curvature, slope aspect, slope angle, slope length, topographic 
position index (TPI), terrain ruggedness index (TRI), convergence index, normalized difference vegetation index (NDVI), 
distance to roads, distance to rivers, rainfall, soil type, lithology, and land use. The training dataset was used to train the 
models in Weka software, and landslide susceptibility maps were generated in GIS software. The performance of the four 
models was evaluated by receiver operating characteristic (ROC) curves, confusion matrix, chi-square test, and other statisti-
cal analysis methods. The comparison results show that all four machine learning models are suitable for evaluating landslide 
susceptibility in the study area. The performances of the RF and LMT methods are more stable than those of the other two 
models; thus, they are suitable for landslide susceptibility mapping.

Keywords Landslide · Susceptibility maps · Machine learning · Comparative analysis · Yanchuan County

Introduction

A landslide is defined as rock or debris sliding down a slope 
(Gudiyangada Nachappa et al. 2019). According to statistics, 
3,876 landslides occurred between 1995 and 2014, causing 

163,658 deaths worldwide (Haque et al. 2019). The fac-
tors causing landslides are complex and diverse, including 
natural factors, such as heavy rain, long continuous rainfall, 
reservoir river erosion, and earthquakes, and human factors, 
such as excavation of slopes, mining of mineral resources, 
and the combination of natural and human factors (Wilde 
et al. 2018). Landslides have significantly affected residents' 
living standards and infrastructure, especially in underdevel-
oped countries (Bovenga et al. 2017; Chen et al. 2019a). The 
occurrence of landslides may increase in the future due to 
rapid economic and population growth, environmental dam-
age, and over-exploitation of natural resources (Gudiyangada 
Nachappa et al. 2019). Crucially, global warming has caused 
a rise in temperatures and a sharp increase in rainfall events 
and rainfall frequency (reduced summer precipitation); thus, 
it contributes to landslides (Kavzoglu et al. 2019).

Landslide susceptibility is the probability of slope 
instability occurring in an area based on geological con-
ditions (Bui et al. 2012). The existing modeling methods 
can be divided into qualitative methods and quantitative 

Communicated by: Hassan Babaie

 * Wei Chen 
 chenwei0930@xust.edu.cn

1 College of Geology and Environment, Xi’an University 
of Science and Technology, Xi’an 710054, China

2 School of Highway, Chang’an University, Xi’an 710064, 
China

3 School of Mining & Civil Engineering Liupanshui Normal 
University, Liupanshui 553000, Guizhou, China

4 Laboratory of Engineering Geology and Hydrogeology, 
Department of Geological Sciences, School of Mining 
and Metallurgical Engineering, National Technical University 
of Athens, 15780 Zografou, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-024-01455-8&domain=pdf


 Earth Science Informatics

methods (Chen and Yang 2023; Saha et al. 2024). The 
qualitative method relies on the subjective opinions of 
experts (Saha et al. 2023b), which may deviate the results 
from reality (Chen and Yang 2023). Quantitative methods 
could be divided into traditional statistical models, deter-
ministic models, and machine learning algorithms (Chen 
and Yang 2023). For example, logistic regression (Bai 
et al. 2010; Ohlmacher and Davis 2003; Zhu and Huang 
2006), weight of evidence (Lee 2013; Othman et al. 2015; 
Wang et al. 2020a), and frequency ratios (FRs) (Chen et al. 
2020a; Hong et al. 2017; Khan et al. 2019) are commonly 
used statistical methods that have also been used as bench-
marks. Although ground-based geotechnical surveys can 
be used to create reliable landslide susceptibility maps, 
this method is time-consuming, costly, and not suitable 
for large areas (Kim et al. 2018). Therefore, researchers 
have proposed numerous statistical and machine learning 
methods for creating landslide susceptibility maps since 
the 1970s (Kavzoglu et al. 2019). Machine learning meth-
ods can learn from data and adapt models by analyzing the 
potential relationships in the data to create analytical mod-
els. In landslide susceptibility analysis, the characteris-
tics of landslide and non-landslide locations are analyzed, 
and advanced algorithms are used to simulate the inher-
ently complex relationship (Kavzoglu et al. 2019). Many 
machine learning methods have been used to conduct 
landslide susceptibility assessments. Examples include 
support vector machines (Ballabio and Sterlacchini 2012; 
Saha et al. 2023a), Bayesian networks (BN) (Lee 2010; 
Song et al. 2012), artificial neural network (ANN) (Cao 
et al. 2023; Saha et al. 2022; Wu et al. 2024), credal deci-
sion trees (He et al. 2019), convolutional neural network 
(CNN) (Aslam et al. 2023; Deng et al. 2024; Ge et al. 
2023), random forest (RF) (Guo et al. 2024; Lagomarsino 
et al. 2017; Rao and Leng 2024; Youssef et al. 2016), clas-
sification and regression trees (CART) (Felicísimo et al. 
2013; Pham et al. 2018), and logistic model trees (LMT) 
(Bui et al. 2016; Truong et al. 2018).

In this context, the present study endeavors to address the 
pressing concerns of landslide susceptibility in Yanchuan 
County, China. By harnessing the capabilities of advanced 
machine learning models including RF, CART, LMT, and 
BN, coupled with a comprehensive array of terrain and envi-
ronmental factors, this study seeks to unveil the intricate 
relationship between these factors and landslide occurrence. 
By doing so, we aim to provide not only a robust predictive 
framework for identifying vulnerable areas but also insights 
that can inform targeted mitigation strategies and emergency 
planning. As the region grapples with the increasing chal-
lenges posed by climate change and rapid urbanization, the 
outcomes of this research promise to contribute meaning-
fully to the ongoing efforts in disaster resilience and sustain-
able land use management.

Study area

Yanchuan County is located in the northeastern part 
of Yan'an City, Shaanxi Province, China (109°36′20″ 
E—110°26′44″ E; 36°37′15 N–37°5′55″ N) (Fig.  1). 
The county extends 70 km from east to west and 39 km 
from north to south and covers an area of 1941  km2. Yan-
chuan County is located in the Loess Plateau. The ter-
rain is undulating, and the loess cliffs have steep slopes. 
The multi-year average evaporation is 1541.7 mm. Heavy 
and continuous rain during the flood season often causes 
geological disasters, such as landslides, collapses, and 
mudslides of different scales, although landslides are the 
predominant disaster type.

Data sources and parameters

The research method has seven steps (Fig. 2): (1) Data col-
lection; (2) landslide inventory mapping and determining 
causes of landslides; (3) establishment of landslide sus-
ceptibility model; (4) optimization of the model training 
parameters; (5) model verification and comparison; (6) 

Fig. 1  Locations of study area and landslides
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landslide susceptibility map generation; (7) selecting the 
optimal model for the study area.

A landslide inventory map is required to analyze the 
landslide susceptibility in the study area and understand the 
causes of landslides (Kim et al. 2018). We identified 311 
landslides in the landslide inventory map. The same number 
of non-landslide points were selected in the study area to 
construct a sample dataset. The dataset was divided into a 
training dataset (218 landslides) and a verification dataset 
(93 landslides) at a ratio of 7:3.

No authoritative criterion exists to select factors contrib-
uting to landslides (Wang et al. 2020b). In the present study, 
16 factors based on the geomorphological characteristics of 
the study area and previous studies, were used including ele-
vation, plan curvature, profile curvature, slope aspect, slope 
angle, slope length, topographic position index (TPI), terrain 
ruggedness index (TRI), convergence index (CI), distance 
to roads, distance to rivers, rainfall, normalized difference 
vegetation index (NDVI), soil type, lithology, and land use. 
A digital elevation model (DEM) with a resolution of 30 m 
was used to extract the profile curvature, plan curvature, 
slope angle, slope aspect, and slope length. The raster files 
of the 16 factors were resampled to the same spatial resolu-
tion (30 × 30 m).

In general, the temperature, rainfall, and gravitational 
energy of landslides differ for different altitudes (Wang et al. 
2016). These factors may affect the stability of the slope 
(Meng et al. 2016). The altitude in the study area has a range 
of 600–1300 m. It was divided into nine categories with 
an interval of 100 m: < 600, 600–700, 700–800, 800–900, 
900–1000, 1000–1100, 1100–1200, 1200–1300, and > 1300 
(Fig. 3a). The plan curvature reflects the shape of the ter-
rain. Positive values represent convex areas, and negative 
values represent concave areas. This parameter has been 
commonly used to analyze the stability of landslides (Zhang 
et al. 2018). Profile curvature is a critical factor because it 

affects the rate of deposition and erosion (Wang et al. 2015). 
The plan curvature and profile curvature values are divided 
into three categories according to the shape of the terrain: 
concave, plane, and convex (Fig. 3b-c). The slope aspect 
affects landslide susceptibility because of the influence of 
sunlight, resulting in different temperature and climatic con-
ditions (Kumar and Anbalagan 2019). Similar to a recent 
study (Pham and Prakash 2017), the aspect values were 
divided into nine categories, as shown in Fig. 3d. The slope 
angle influences the movement of material and the distance 
it moves (Wang et al. 2015). Therefore, the slope should be 
considered in landslide susceptibility studies. We divided the 
slope into 7 categories: < 10, 10–20, 20–30, 30–40, 40–50, 
50–60, and > 60 (Fig. 3e). The slope length is the distance 
from the beginning of overland flow to the location of depo-
sition (Wischmeier and Smith 1978). It controls the water 
flow velocity down the slope and the distance of material 
movement (Gomez and Kavzoglu 2005). The slope length in 
the study area is in the range of 0–923.97 m and was divided 
into five categories: 0–39.86, 39.86–112.33, 112.33–202.91, 
202.91–329.73, and 329.73–923.97 m (Fig. 3f). The TPI 
is the relative height of a pixel based on the neighboring 
terrain (Mokarram et al. 2015). Positive values (TPI > 0) 
indicate terrain higher than the adjacent terrain and vice 
versa (Neuh user et al. 2012). The TPI values were divided 
into five categories: -87.9-(-12.52), (-12.52)-(-4.81), (-4.81)-
2.32, 2.32–10.03, and 10.03–63.45 (Fig. 3g). The TRI is a 
critical factor influencing landslides because it can divides 
the landslides into small groups (Nguyen et al. 2019b). 
The TRI was extracted from the DEM, and the values were 
divided into five categories: 0–5.05, 5.05–8.62, 8.62–12.48, 
12.48–17.82, and 17.82–75.75 (Fig. 3h). The CI describes of 
material or water flows into or out of a grid cell (Neuh user 
et al. 2012). The maximum and minimum values of the CI in 
the study area were 97.05 and -99.34, respectively (Fig. 3i).

Fig. 2  Flowchart of the study
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The construction of roads affects slope stability. Thus, the 
distance to roads is a critical factor affecting the occurrence 
of landslides (Dang et al. 2019). The distance to roads was 
divided into five categories with an interval of 300 m: < 300, 
300–600, 600–900, 900–1200, and > 1200  m (Fig.  3j). 
River erosion can also contribute to landslides (Zhang et al. 
2018). The distance to rivers is a theoretical indicator of the 
extent of river erosion (Manzo et al. 2013). The values of 

this indicator were divided into five categories with 200 m 
intervals: < 200, 200–400, 400–600, 600–800, and > 800 m 
(Fig. 3k). Rainfall is a key factor affecting landslides due to 
runoff and pore water pressure (Yang et al. 2015). Rainfall 
was divided into six categories: < 460, 460–470, 470–480, 
480–490, 490–500, and > 500 mm/yr (Fig. 3i).

The NDVI reflects the surface vegetation cover (Shirzadi 
et al. 2018). It is calculated as (Chapi et al. 2017):

Fig. 3  Thematic maps of the study: a elevation, b plan curvature, c profile curvature, d slope aspect, e slope angle, f slope length, g TPI, h TRI, i 
convergence Index, j distance to roads, k distance to rivers, l rainfall, m NDVI, n soil type, o lithology, p land use
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where Red and NIR are the spectral reflectance values in the 
red and near-infrared regions, respectively. The NDVI value 
of the study area has a range of -0.22–0.51. The NDVI val-
ues were divided into five categories: -0.22–0.1, 0.1–0.15, 
0.15–0.20, 0.20–0.25, and 0.25–0.51.

(1)NDVI =
(NIR(Band 4)) − Red(Band 3)

(NIR(Band 4)) + Red(Band 3)

Different soil types have different structures and proper-
ties, resulting in different impacts on landslides (Pham et al. 
2017a). The area had four soil types: Type A: Calcaric Cam-
bisol (CMc), Type B: Eutric Cambisol (CMe), Type C: Cal-
caric Fluvisol (FLc), and Type D5: Rendzic Leptosol (LPk) 
(Fig. 3n). The lithology also affects slope stability (Kumar and 
Anbalagan 2019). The lithology of the study area is shown 

Fig. 3  (continued)
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in Fig. 2o. There are five categories. Group B comprises the 
largest area (the lower layer is gray, sandy gravel, and the 
upper layer is Malan loess). In addition, there are Group A 
(the lower layer is grayish-yellow sandy gravel, and the upper 
layer is yellow loess-like soil), Group C (the lower layer is 
sandy gravel composed of feldspar sandstone, mudstone, and 
calcareous nodules, and the upper layer is Lishi loess), Group 
D (red-brown silty clay with scattered calcareous nodules; the 
bottom layer is grayish white conglomerate, sandstone, and 
sandy mudstone) and Group E (sandstone, silty mudstone, 
argillaceous siltstone, sandy mudstone, siltstone, carbonaceous 
shale, and oil shale). Previous studies have shown that land 
use is a critical factor in landslide susceptibility analysis (Bui 
et al. 2012; Oh et al. 2018). The land use map was created from 
aerial photographs of the study area. There are six land-use 
types in the study area: farmland, forest land, grassland, water, 
construction land, and unused land (Fig. 3p).

Methodology

Random forest

RF is a machine learning algorithm used for classification 
and prediction problems (Chen et al. 2020b). Each tree in 
an RF depends on the values of independently sampled 
random vectors, and all have the same distribution (Brei-
man 2001). RF has advantages over CART because of the 
fewer number of nodes (Breiman 2001). This method is not 
prone to overfitting because of the law of large numbers 
and is an accurate classification and regression technique 
when suitable randomness is used (Breiman 2001). It uti-
lizes the bagging technique. Samples are selected from 
the training dataset to establish classification or regression 
trees. The remaining samples are used to evaluate the error 

Fig. 3  (continued)
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of the model. Because an RF consists of many classifi-
cation trees or regression trees, resulting in high model 
stability and accuracy (Trigila et al. 2015). The results of 
individual CART are combined (Zhu et al. 2019). A RF 
model has two critical parameters, ntree and mrty, where 
ntree is the number of classification regression trees; mtry 
is the number of node splits. If the ntree value is very 
large, the modeling time is high, and if the ntree value is 
very small, modeling errors occur (Chen et al. 2020b).

Classification and regression trees

Breiman proposed a rule-based binary recursive partition-
ing method called CART (Steinberg 2009). It uses binary 
recursive partitioning to generate a binary tree and divides 
the results of a node into yes/no answers (Felicísimo et al. 
2013). CART produces an overgrown tree that is pruned 
by cross-validation to prevent overfitting (Felicísimo et al. 
2013). Researchers have used CART to construct com-
plex trees to handle complex problems with large datasets 
(Felicísimo et al. 2013). CART is regarded as a modern ver-
sion of a decision tree (Fig. 4) (Mondal et al. 2019).

CART has been applied in many fields, such as medi-
cal research (Temkin et al. 1995), natural disaster predic-
tion (e.g., floods) (Mosavi et al. 2018), and computational 
science (Westreich et al. 2010). It has also been success-
fully applied to landslide prediction research (Pham et al. 
2017b). Landslide susceptibility assessment studies consist 
of constructing trees, pruning trees, and selecting the opti-
mum trees for landslide and non-landslide categories (Pham 
et al. 2018).

Bayesian network

A BN is an inference method to quantity uncertainty. It has 
been used in artificial intelligence to determine probability 
and uncertainty (Larra aga et al. 1996) and model decision-
making processes (Gheisari and Meybodi 2016). BNs have 
been widely used in many fields in recent years for landslide 
stability analysis (Lee 2010). They have two learning sub-
tasks: structure learning and parameter learning (Chen et al. 
2018). Structure learning determines the topology of the net-
work, a critical aspect of BNs. Parameter learning is used to 
define the numerical parameters of a given network topology 
(Gheisari and Meybodi 2016). BNs have many advantages 

(Tingyao and Dinglong 2013). First, they are well suited for 
incomplete data. Second, they can be combined with other 
methods for cause-and-effect analysis. Third, they utilize 
prior knowledge and are not prone to overfitting.

Logistic model trees

LMTs are efficient and flexible for establishing a logical 
model. They use the CART algorithm to determine the 
model error and the model complexity to conduct pruning 
(Landwehr et al. 2005) to prevent overfitting of the LMT. 
LMT have the following characteristics (Landwehr et al. 
2005): (1) They provide more accurate results than the C4.5 
decision tree and independent logistic regression; (2) they 
do not require any parameter tuning.

The purpose of using LMT is to establish a tree model 
and classify the training dataset into two categories: land-
slides have a value of 1, and non-landslide areas have a value 
of 0. The predicted value of the landslide category is used as 
a sensitivity indicator.

The LogitBoost algorithm performs additive logis-
tic regression and least-squares fitting for each type of Ci 
(landslide or non-slide). It is expressed in Eq. (2) (Bui et al. 
2016):

where D is the total number of landslide input factors; bi is 
the logistic coefficient.

Linear logistic regression is used to calculate the pos-
terior probability of the leaf node, as expressed in Eq. (3) 
(Bui et al. 2016). This value is the landslide susceptibility 
index (LSI).

Model performance and comparison

Receiver operating characteristic curves

The area under the ROC curve (AUC) is used to compare 
the performance of the four landslide susceptibility models 
(Saha et al. 2023a; Williams et al. 1999). The ROC curve 
can be used to distinguish two types of events and visualize 

(2)Lc(x) =
∑D

i=1
�ixi + �o

(3)P(C∕x) = exp(Lc(x))∕
∑c

c�=1
exp

(

Lc� (x)
)

Fig. 4  Structure of the CART 
classifier
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the performance of the classifiers (Swets 1988). The ROC 
curve represents the probability of a true positive (correctly 
predicted event response) and a false positive (falsely pre-
dicted event response). In the spatial prediction of landslide 
susceptibility (Gorsevski et al. 2006), the true positive is 
the prediction of the location of the landslide, and the false 
positive is the prediction of the location where the landslide 
will not occur. The ideal model is obtained when P (true 
positive) = 1 and P (false positive) = 0 (the area under the 
ROC curve is 1) (Williams et al. 1999; Zhang et al. 2023).

where TP denotes true positive, TN denotes true negative, 
P is the total number of positives, and N is the total number 
of negatives.

Statistical measures

Other statistical indicators were used to evaluate the model 
performance, including the positive predictive rate (PPR), 
negative predictive rate (NPR), sensitivity, specificity, accu-
racy, F-score, Matthews correlation coefficient (MCC), and 
true skill statistic (TSS). These statistical indicators have 
been used in landslide susceptibility mapping and have been 
explained in detail elsewhere (Hong et al. 2020; Nguyen 
et al. 2019a; Saha et al. 2022, 2023a; Wu et al. 2020). They 
can be calculated using the following equations:

(4)AUC =

∑

TP +
∑

TN

P + N

(5)PPR =
TP

TP + FP

(6)NPR =
TN

TN + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + TP

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)F − score =
2TP

2TP + FP + FN

(11)

MCC =
(TP × TN) − (FP × FN)

√

(TP + FP)(TP + FN)(TN + FP)(TP + FN)(TN + FN)

where the true positive (TP) and true negative (TN) are the 
correctly classified pixels, and the false positive (FP) and 
false negative (FN) are the incorrectly classified pixels. 
PPV represents the accuracy of predicting positive results 
and is the proportion of predictions that accurately repre-
sent the true conditions (Powers 2011). The NPR represents 
the accuracy of the prediction model in predicting missing 
(or non-event) locations (Thai Pham et al. 2019). Sensitiv-
ity, also known as the true positive rate (TPR), represents 
the probability of correctly predicting the positive results 
observed in reality (Rahmati et al. 2019; Saha et al. 2023b). 
Specificity, also known as the true negative rate (TNR), is 
the probability of quantifying the negative factors observed 
in the correct prediction of reality. The accuracy, also known 
as the model efficiency, reflects the overall success of the 
prediction model. The harmonic mean of the precision and 
the recall (F-score) ranges from 0 to 1, where 1 indicates 
the highest accuracy and recall, and 0 indicates the worst. 
The MCC is the correlation coefficient between the observed 
and predicted value. It assumes true and false positive and 
negative values according to the calculated metrics (Rahmati 
et al. 2019). The TSS is used to measure the ability of a pre-
dicted value to distinguish between events and non-events 
(Allouche et al. 2006).

Results

Correlation analysis results and factor selection

It is important to calculate the correlation between landslide 
influencing factors in landslide susceptibility mapping (Chen 
et al. 2017). It is difficult to predict landslides if the factors 
are correlated (Chen et al. 2019b). Therefore, a multicol-
linearity analysis was conducted to determine the correla-
tion between the 16 factors (Bui et al. 2019). The tolerance 
(TOL) and variance inflation factor (VIF) are critical sta-
tistical parameters in multicollinearity analysis (Saha et al. 
2024). They are calculated using Eqs. 13 and 14, respec-
tively (Li and Wang 2019):

where  Ri represents the negative correlation coefficient 
of the ith independent variable. Studies have shown that 
when the TOL is less than 0.1 or the VIF is greater than 10, 

(12)TSS =
TP

TP + FN
+

TN

TN + FP

(13)TOL =
1

VIF

(14)VIF =
1

1 − R2
i



Earth Science Informatics 

multicollinearity exists between the factors (Bui et al. 2016). 
Table 1 shows no multicollinearity occurs between the 16 
landslide susceptibility factors.

The FR is calculated to analyze the relationship between 
the 16 factors and landslide occurrence. Figure 5 shows the 
results. In the land use category, construction land has the 
highest FR value (2.191), followed by farmland (1.069), 
forest land (1.067), and grassland (0.921). The water and 
unused land categories have FR values of 0. The ranking of 
the FR value in the lithology category is Group D (2.192), 
Group E (1.198), Group B (0.892), Group C (0.845), and 
Group A (0.776). The category with the highest FR value 
in the soil type is Type A (1). The minimum value is Type 
D (0.516). The FR values in the NDVI category have a 
range of 0.814–1.177, and the highest FR value occurs in 
the 0.15–0.20 class. In the rainfall category, the FR value is 
the highest in the first class (0–460), and the values decrease 
with a decrease in rainfall. In distance to rivers, the FR value 
for the 0–200 classification is 1.806, followed by 200–400 
(1.644), 600–800 (0.696), 400–600 (0.620), and > 800 
(0.588). In the distance to roads classification, the FR value 
is the highest in the 300–600 category (1.825) and the lowest 
in the 900–1,200 category (0.880). The FR value in the CI 
category is in the range of 0 to 1.209. In the five categories 
of TRI, The FR value of the TRI is the highest in the cat-
egory 17.82–75.75 (2.347). The highest FR value occurs in 
the TPI category -87.9- -12.52 (1.126 The FR values of the 
slope angle in the 10–20, 20–30, 30–40, and 40–50 classes 
are 0.036, 2.286, 2.486, and 2.907, respectively. The FR 
value of the Flat category is 0, and the highest FR value of 
the North category is 1.515 for the aspect. The FR values 

of the Plan curvature and Profile curvature range from 0 to 
1.095 and 0 to 1.067, respectively. The highest FR value for 
elevation occurs in the 1,300–1,392 range (1.535).

Result of parameter optimization

The grid search method was used in parameter optimiza-
tion. The RF model does assume a relationship between the 
explanatory and response variables, enabling the analysis 
of hierarchical and nonlinear interactions in large datasets 
(Kim et al. 2018). Therefore, the RF algorithm was selected 
for landslide susceptibility analysis. The optimal parameters 
of the RF model obtained after parameter adjustment are 
as follows: number of alterations = 60, number of seeds = 7, 
number of decimal places = 2, and batch size = 100 (Fig. 6). 
The LMT model is a popular machine learning model and 
has been widely used in recent years. We chose the LMT 
because it uses decision rules to simplify complex problems 
(Bui et al. 2016). The probability calculation for the LMT 
model was performed in Weka software (Frank et al. 2016). 
The parameters are: batch size = 100, minimum number of 
instances = 15, number of boosting iterations = 8, number of 
decimal places = 2, and weightTrimBeta is 0 (Fig. 7). The 
BN used in this study uses a hill-climbing algorithm con-
strained by the order of variables. It was implemented in 
Weka software, and the alpha parameter was 0.5. The CART 
model is a non-parametric prediction model (Markham et al. 
2000). The main parameters to establish the CART model in 
Weka software are: SValue is 1, batch size is 100, NumFold-
sPruning is 5, and number of seeds is 3 (Fig. 8).

The landslide susceptibility maps were created in GIS 
software (ESRI 2014). We calculated the LSI, ranked it, and 
generated the maps. The landslide susceptibility maps gener-
ated by the RF, CART, LMT, and BN models are shown in 
Fig. 9a-d. Natural breaks were used in GIS software to clas-
sify the landslide susceptibility zones into five classes: very 
low, low, moderate, high, and very high (Zhao and Chen 
2020).

Comparison of model performance

Figure 10 shows the ROC curves of the four models for 
the different datasets. For the training dataset, the AUC 
values of the four models (RF, CART, BN, and LMT) are 
0.875, 0.830, 0.786, and 0.870, respectively. We considered 
the AUC value based on the training dataset for comparing 
and validating the models. The AUC value of the validation 
dataset is equally important. The AUC values of the four 
models are 0.878, 0.880, 0.886, and 0.893, respectively, for 
the validation dataset.

In addition to the AUC value, we calculated the stand-
ard error, 95% confidence interval, and significance level 
(p-value). Tables  2 and 3 list the statistical results. In 

Table 1  Outcomes of multicollinearity analysis

Parameters Parameters

Tolerance VIF

Elevation 0.859 1.165
Plan curvature 0.928 1.078
Profile curvature 0.95 1.053
Slope aspect 0.93 1.075
Slope angle 0.371 2.693
Slope length 0.871 1.149
TPI 0.882 1.134
TRI 0.382 2.616
Convergence Index 0.85 1.176
Distance to roads 0.904 1.106
Distance to rivers 0.827 1.21
Rainfall 0.896 1.116
NDVI 0.805 1.243
Soil type 0.934 1.071
Lithology 0.901 1.11
Landuse 0.813 1.23
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Fig. 5   Frequency ratios of landslide influencing factors
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general, the smaller the standard error, the confidence inter-
val, and the p-value, the better the model performance is 
(Wang et al. 2020b).

Table 4 list the performance of the four machine learning 
models. The LMT model has the highest performance for 
predicting landslides (the sensitivity is 93.6% for the train-
ing data set and 94.6% for the validation data set). The RF 
model has the best performance for classifying non-landslide 
areas for the training data set (specificity = 70. 2%). The RF 
and LMT models have the same specificity for the valida-
tion data set (specificity = 76.3%). The LMT model has the 
highest accuracy (85.5%), the highest F-score value (86.7%), 
the highest MCC (0.772), and the highest TSS (0.710) for 
the validation data set. These results indicate that the LMT 
model has superior performance, followed by the RF model 
and the CART model. The BN model is less stable for the 
training and validation data sets.

A Chi-square test was used to determine if there were 
significant differences between the models (Zhao and Chen 
2020). Table 5 indicates no significant differences between 
the RF and LMT models (the Chi-square value is 0.021, and 
the p-value is 0.885). The other five groups showed signifi-
cant differences.

Discussion

Significant climate change in recent years has produced fre-
quent heavy rainfall, increasing the number of landslides. 
Therefore, an assessment of landslide susceptibility in the 
study area can identify areas susceptible to landslide disas-
ters to enable the government to warn residents and manage 
susceptible areas (Lee et al. 2019). The present study intro-
duces various aspects in the field of landslide susceptibil-
ity assessment. It systematically integrates four advanced 
machine learning algorithms RF, CART, LMT, and BN to 
comprehensively analyze and map landslide-prone areas. 
By evaluating these models and optimizing their param-
eters, the research provides a comparative framework that 
highlights the strengths and weaknesses of each approach. 
After consulting the scientific literature, 16 factors influ-
encing landslide were selected: elevation, plan curvature, 
profile curvature, slope aspect, slope angle, slope length, 
TPI, TRI, CI, distance to roads, distance to rivers, rainfall, 
NDVI, soil type, lithology, and land use. The relationship 
between landslide occurrence and the 16 factors was ana-
lyzed by calculating the FR. The meticulous factor selec-
tion process, guided by a multicollinearity analysis, ensures 
that relevant and non-correlated variables are considered. 
Moreover, the study's emphasis on parameter optimiza-
tion enhances the accuracy and robustness of the models' 
predictions. The investigation of dominant factors through 
variable importance analysis enhances the understanding of 

Fig. 6  Parameter optimization of the RF model

Fig. 7  Parameter optimization of the LMT model

Fig. 8  Parameter optimization of the CART model
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Fig. 9  Landslide susceptibility maps for four models: a RF model, b CART model, c BN model, and d LMT model

Fig. 10  ROC curves for the 
four models: a training data; b 
validation data
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Table 2  Parameters of ROC 
curves using the training data

Training dataset RF model CART model BN model LMT model

ROC Curve Area 0.869 0.83 0.786 0.87
Standard Error 0.017 0.02 0.023 0.017
95% Confidence Interval 0.835–0.902 0.790–0.870 0.742–0.831 0.836–0.904
P-Value  < 0.0001  < 0.0001  < 0.0001  < 0.0001
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local landslide triggers. By generating multiple susceptibil-
ity maps, the research acknowledges the variability of model 
outputs, paving the way for potential integrated modeling 
approaches. The study showcases a systematic and rigorous 
methodology, offering novel insights into effective landslide 
susceptibility assessment techniques that can be adapted and 
extended to diverse geographical settings.

Researchers have proposed various landslide susceptibil-
ity modeling methods in recent years, resulting in high vari-
ability of prediction accuracy (Akgun 2012). Several novel 
machine learning methods have outperformed traditional 
methods (Tien Bui et al. 2012), and these methods have 
been combined with GIS analysis. Therefore, it is critical 
to compare new landslide susceptibility modeling meth-
ods. This study evaluated four machine learning methods 
for landslide susceptibility mapping. The model parameters 
were optimized according to the classification accuracy and 
the area under the ROC curve. However, the model perfor-
mance cannot be evaluated solely based on the AUC value. 
Studies have shown that the AUC value may be high, but 
the prediction accuracy may not necessarily be sufficient 

(Gutiérrez et al. 2013). Therefore, other statistical param-
eters were included to evaluate model performance. It was 
found that the performance of the machine learning models 
was substantially affected by the parameters. The perfor-
mance stability of the RF, CART, and LMT models was 
higher than that of the BN model. The RF and LMT models 
had the best performance and stability in this study. How-
ever, more research is required on the optimization of the 
model parameters because of the large workload of adjusting 
the model parameters and the wide range of factors.

Determining the optimal number of influencing factors 
is a critical problem in landslide susceptibility assessments. 
Different study areas may have different landslide suscep-
tibility factors (Van Westen et al. 2003). No unified stand-
ard has been developed to date to solve this problem. We 
selected 16 landslide susceptibility factors according to the 
literature and the geological characteristics of the study area. 
The variable importance must be considered because of the 
large number of factors influencing landslides. Figure 11 
shows that the slope angle, TRI, and distance to rivers were 
the most important influencing factors of existing landslides 

Table 3  Parameters of ROC 
curves using the validation data

Validation dataset RF model CART model BN model LMT model

ROC Curve Area 0.891 0.88 0.886 0.893
Standard Error 0.024 0.025 0.025 0.024
95% Confidence Interval 0.843–0.938 0.830–0.930 0.843–0.933 0.844–0.940
P-Value  < 0.0001  < 0.0001  < 0.0001  < 0.0001

Table 4  Statistical measures of 
the four models

Parameters Training Validation

RF CART BN LMT RF CART BN LMT

TP 196 193 198 204 82 81 87 88
TN 153 146 140 152 71 72 69 71
FP 65 72 78 66 22 21 24 22
FN 22 25 20 14 11 12 6 5
PPR 0.751 0.728 0.717 0.756 0.788 0.794 0.784 0.800
NPR 0.874 0.854 0.875 0.916 0.866 0.857 0.920 0.934
Sensitivity 0.899 0.885 0.908 0.936 0.882 0.871 0.935 0.946
Specificity 0.702 0.670 0.642 0.697 0.763 0.774 0.742 0.763
Accuracy 0.800 0.778 0.775 0.817 0.823 0.823 0.839 0.855
F-score 0.818 0.799 0.802 0.836 0.832 0.831 0.853 0.867
MCC 0.613 0.568 0.571 0.652 0.650 0.648 0.690 0.722
TSS 0.601 0.555 0.550 0.633 0.645 0.645 0.677 0.710

Table 5  Results of chi-Square 
test of models

Pair RF vs. CART RF vs. BN RF vs. LMT CART vs. BN CART vs. LMT BN vs. LMT

Chi-square 6.697 23.106 0.021 6.291 6.755 31.451
P-Value 0.01  < 0.0001 0.885 0.012 0.009  < 0.0001
Significance Yes Yes No Yes Yes Yes
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in the study area, although the remaining 13 factors also con-
tributed to landslide susceptibility. Many studies have shown 
that the slope angle significantly influenced landslides 
(Pourghasemi and Rossi 2017). Generally, landslides are 
more likely in areas with high slopes than in areas with low 
slopes (Kumar and Anbalagan 2019). In Yanchuan County, 
the undulating terrain and deep valleys contribute to vari-
ations in slope angles, leading to areas with higher angles 
being more prone to landslides. The TRI value reflects the 
degree of surface fluctuation and erosion (Zhang et al. 2019). 
Rivers typically erode the slope foot and adversely affect 
slope stability; thus, the distance to rivers is an important 
factor in the study area. Rivers can significantly impact slope 
stability by eroding the base of slopes and weakening their 
structural integrity. Areas closer to rivers are more vulner-
able to landslides due to increased erosion and potential 
undercutting of slopes. In Yanchuan County, the proximity 
to rivers and their erosional forces likely contributes to the 
heightened susceptibility observed in these areas.

The four machine learning models showed differences in 
stability. Therefore, the landslide susceptibility maps gener-
ated by the four models exhibit differences. In addition, the 
factor selection strategy used in this study is applicable to 
other areas.

The performance evaluation of the four models in this 
study reveals distinct advantages and limitations for each 
other. The RF model demonstrates high stability and com-
petitive accuracy, making it suitable for complex interac-
tions among variables. Its ability to handle large datasets 
and nonlinear relationships contributes to robust predic-
tions. However, its parameter optimization process can be 
time-consuming. The CART model is characterized by its 
simplicity and interpretability, making it useful for identi-
fying dominant factors. Yet, it may suffer from overfitting 
and instability, especially with complex datasets. The LMT 
exhibit remarkable accuracy, particularly in classifying 

positive instances, and their logical structure aids in explain-
ing results. However, they can be sensitive to parameter set-
tings and may require substantial data preprocessing. The 
BN model approach leverages probabilistic relationships, 
incorporating prior knowledge effectively. Still, it can be 
constrained by the assumption of conditional independence 
and may necessitate thorough domain expertise for proper 
structure specification. While RF and LMT offer strong 
overall performance, each model's suitability depends on the 
specific context, data availability, and desired interpretabil-
ity, highlighting the importance of selecting models based 
on trade-offs between accuracy, stability, and simplicity.

Conclusions

The present study systematically examined landslide sus-
ceptibility in Yanchuan County, China, using four machine 
learning models: Random Forest (RF), Classification and 
Regression Trees (CART), Logistic Model Trees (LMT), 
and Bayesian Network (BN). Through a rigorous analysis 
of 16 influential factors and parameter optimization, the RF 
and LMT models emerged as the most stable and accurate 
choices for predicting landslides. The comprehensive anal-
ysis of landslide susceptibility in Yanchuan County high-
lighted the significant importance of slope angle, TPI, and 
distance to rivers as key contributing factors. These factors 
exhibited strong influence on landslide occurrence, reflect-
ing the intricate interplay of terrain characteristics, erosion 
dynamics, and hydrological conditions in shaping the sus-
ceptibility landscape. Their prominent roles underscored 
the critical need for effective management and mitigation 
strategies, as well as the importance of considering localized 
geological and topographical features in landslide suscepti-
bility assessments.

The landslide susceptibility maps generated by RF and 
LMT provided valuable insights for disaster prevention and 
mitigation in the study area. The study highlights the signifi-
cance of data preprocessing, model parameter adjustment, 
and the multifaceted nature of landslide prediction. While 
each model presents distinct advantages and limitations, the 
RF and LMT models stood out for their robust performance 
and applicability to complex scenarios. The research con-
tributes to advancing our understanding of landslide suscep-
tibility assessment and underscores the importance of model 
selection based on accuracy, stability, and interpretability 
considerations.

Despite its valuable contributions, this study has certain 
limitations that should be acknowledged. Firstly, the study 
relies on the assumption that the selected factors are the sole 
contributors to landslide susceptibility, potentially overlook-
ing other unaccounted variables. Secondly, while parameter 
optimization enhances model performance, the process can 

Fig. 11  The prediction capability of landslide susceptibility factors
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be time-consuming and resource-intensive, potentially limit-
ing its practical implementation on larger scales. Addition-
ally, the study employs a single-model approach to generate 
landslide susceptibility maps, which may not fully capture 
the complexity of real-world scenarios that could benefit 
from integrated models. Moreover, the study's focus on Yan-
chuan County's unique geological and environmental con-
ditions might limit the generalizability of findings to other 
regions with distinct characteristics. Lastly, while compre-
hensive evaluation metrics are used, the assessment does 
not consider temporal variations in landslide occurrences, 
which could affect model robustness over time. Recogniz-
ing these limitations provides avenues for future research to 
address these challenges and refine the methodologies for 
more accurate and broadly applicable landslide susceptibil-
ity assessments.

In summary, this study provides a reasonable basis for 
landslide prediction. The conclusions and results of this 
study can be used to prevent landslides and reduce the harm 
caused by landslide disasters in the study area and other 
areas with similar geological environment conditions.
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