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villages. Qanat system was successively employed mainly 
in the Middle East, North Africa, southern Spain, and other 
arid and semiarid regions. Qanats provide groundwater 
without energy consumption and extract water by gravity 
(Azari Rad et al. 2018; Naghibi et al. 2018; Samani et al. 
2023a; Sedghi and Zhan 2024). More than economic ben‑
efits, Qanats are groundwater regulators which dewater the 
groundwater level in some areas with high groundwater 
levels. Compared to water well drilling, Qanats have fewer 
limitations in shallow groundwater and aquifers with low 
hydraulic conductivity. Qanats are dried due to extreme cli‑
mate change and groundwater overexploitation (Sedghi and 
Zhan 2020). Despite their importance in the water cycle and 
people’s life in the middle east, little scientific research has 
explored the hydrological and hydrogeological conditions 
of Qanats and, more specifically, modeling methods to pre‑
dict Qanat discharge (QD); which was the pivot motivation 
for the current study.

In standard groundwater research, machine learning 
methods are promising tools for quantitative evaluation 
and predicting hydrogeological conditions and ground‑
water level fluctuations (Cui et al. 2022; Dehghani and 
Torabi Poudeh 2022). For instance, the main goal of mod‑
eling could be considering the Qanat discharge prediction 
based on different hydrologic scenarios and stresses and 

Introduction

Nations in arid and semiarid regions have dealt with the 
severe water scarcity crisis and water supply procedures. 
One such reliable and natural water resources supplier is 
groundwater. Ancient Iranians invented Qanat as a water 
supplier for drinking and agricultural purposes in cities and 
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Abstract
The Qanat (also known as kariz) is one of the significant water resources in many arid and semiarid regions. The pres‑
ent research aims to use machine learning techniques for Qanat discharge (QD) prediction and find a practical model 
that predicts QD well. Gene expression programming (GEP), artificial neural network (ANN), group method of data 
handling (GMDH), least‑square support vector machine (LSSVM) and adaptive neuro‑fuzzy inference system (ANFIS), 
are employed to predict one-, two-, and five-months time-step ahead QD in an unconfined aquifer. QD for one, two, and 
three lag‑times (QDt−1, QDt−2, QDt−3), QD for adjacent Qanat, the main meteorological components (Tt, ETt, Pt) and 
GWL for one, two, and three lag‑times are utilized as input dataset to accomplish accurate QD prediction. The GMDH 
model, according to its best results, had promising accuracy in predicting multi‑step ahead monthly QD, followed by the 
LSSVM, ANFIS, ANN and GEP, respectively.
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evaluating the hydrological effects of nearby Qanats on 
each other (Naghibi et al. 2018). The non‑availability or 
insufficient data could be the most significant limitation of 
the mathematical models, particularly the comprehensive 
complex dataset to simulate the anthropical factors. Based 
on the prior studies, machine learning methods could pro‑
vide a considerable advantage in modeling the pattern of the 
inputs‑outputs datasets (Antonopoulos and Gianniou 2022; 
Pham et al. 2022; Poursaeid et al. 2022; Sun et al. 2022). The 
nonlinear time‑variant behavior of hydrogeological systems 
is complicated enough to be solved with standard statisti‑
cal methods (Najafabadipour et al. 2022). Then, researchers 
have tried to use various machine learning methods such 
as artificial neural networks (ANNs), gene expression pro‑
gramming (GEP), group method of data handling (GMDH), 
adaptive neuro‑fuzzy inference system (ANFIS), least‑
square support vector machine (LSSVM) for groundwater 
level (GWL) prediction (Samani et al. 2013; Bahmani and 
Ouarda 2021; Ghazi et al. 2021a; Kiyani et al. 2022; Mozaf‑
fari et al. 2022; Poursaeid et al. 2022; Tao et al. 2022). The 
overall results of the prior studies revealed the ability of 
the machine learning models to cope with the complicated 
behavior of the hydrogeological systems and provide satis‑
factory results with the less‑required dataset.

The ANN is a significant machine learning (ML) model 
that handles difficult and complex hydrological issues and 
problems based on statistical algorithms. ANN is the most 
applied and practical model for predicting groundwater’s 
quantitative characteristics and conditions due to the archi‑
tecture and codes’ simplicity and availability (Iqbal et al. 
2020; Banadkooki et al. 2020; Ahmadi et al. 2022; Samani 
et al. 2022). Based on the literature review, the studies 
focused on GWL modeling using ANFIS methods have also 
increased. The ANFIS model could provide simulated time 
series with high accuracy and precision for hydrological 
time series with different time steps, i.e., monthly, daily, or 
weekly (Moravej et al. 2020; Sridharam et al. 2021; Saman‑
taray et al. 2022; Tao et al. 2022). The GMDH model is a 
promising tool for finding nonlinear relationships of hydro‑
logical systems. GMDH has been extensively applied in 
various areas of hydrological studies, such as river flow 
prediction, management, and soil and sediment (Lin et al. 
2020; Khodakhah et al. 2022; Jaafari et al. 2022; Mulashani 
et al. 2022; Nadiri et al. 2022). In addition, various stud‑
ies have been performed on groundwater level prediction 
exploiting the GMDH approach (Moghaddam et al. 2021; 
Arya Azar et al. 2022; Tao et al. 2022; Samani et al. 2023b). 
LSSVM has been implemented for predicting GWL and 
reported that this method improves the accuracy compared 
to ANN in predicting GWL (Miraki et al. 2019; Guzman et 
al. 2019; Khedri et al. 2020).

Several works have been reported in the literature regard‑
ing the application of ANN, ANFIS, GMDH and LSSVM in 
hydrogeological issues, civil engineering, soil science and 
water quality (Tayebi et al. 2019; Lin et al. 2020; Tao et al. 
2022; Samantaray and Sahoo 2023; Samantaray et al. 2023 
a and b; Samani 2024; Tao et al. 2024). GEP model has been 
widely used in groundwater modeling (Ghazi et al. 2021b) 
and in other fields such as leak detection of water distri‑
bution networks (Tijani and Zayed 2022), modeling soil 
enzymes (Ebrahimi et al. 2021), simulation of the subgouge 
soil deformation in the sand (Azimi and Shiri 2020), and 
prediction of daily dew point temperature (Mehdizadeh et 
al. 2017).

Despite the critical role of Qanats in providing water 
in arid and semi-arid regions, scientific research has not 
extensively explored the hydrological and hydrogeological 
dynamics specific to Qanats. This gap is significant given the 
pressing challenges posed by climate change and ground‑
water overexploitation, which threaten the sustainability of 
these ancient systems. Furthermore, while machine learning 
methods have been successfully applied to predict ground‑
water levels in various contexts, their application to Qanat 
discharge prediction remains limited. This study aims to 
bridge these gaps by (1) Evaluating the effectiveness of vari‑
ous machine learning models in predicting Qanat discharge, 
which has been less studied compared to other ground‑
water systems; (2) Identifying the most influential hydro‑
logical and hydrogeological parameters affecting Qanat 
discharge, an area not thoroughly investigated in previous 
Qanat studies; (3) Demonstrating the interplay between 
Qanats and adjacent hydrological features, which has not 
been sufficiently modeled or understood in the context of 
Qanat sustainability and efficiency. By focusing on these 
research gaps, this study seeks to advance the understand‑
ing of Qanat systems and improve the predictive capabili‑
ties of hydrological models in arid environments, ultimately 
contributing to better water resource management in these 
vulnerable regions. Figure 1 illustrates the procedural out‑
line of the implemented ML methods.

Methods

The selection of machine learning methods for predict‑
ing Qanat discharge was based on several criteria aimed at 
capturing the complex, non‑linear relationships inherent in 
hydrological data. The chosen methods are known for their 
robustness in handling various types of input data and their 
ability to model complex systems effectively. Here are the 
specific reasons for selecting each method:

Artificial Neural Network (ANN): ANN was chosen due 
to its proven ability in numerous hydrological studies to 
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model complex and non‑linear relationships between inputs 
and outputs. ANNs are flexible and can be trained to learn 
patterns from historical data, making them suitable for pre‑
dicting Qanat discharge which is influenced by a variety of 
hydrological variables.

Adaptive Neuro-Fuzzy Inference System (ANFIS): 
ANFIS combines the learning capabilities of neural net‑
works with the linguistic rule presentation of fuzzy logic. 
This hybrid approach allows it to effectively handle uncer‑
tainty and model the nonlinear relationships between hydro‑
logical parameters. Its success in previous studies involving 
groundwater level prediction under uncertain conditions 
justified its selection.

Gene Expression Programming (GEP): GEP was selected 
for its ability to create models that can evolve over time, 
allowing for better adaptation to changing patterns in data. 
This feature is particularly useful in the context of Qanats, 

where hydrological inputs may change due to environmen‑
tal factors or human activities.

Group Method of Data Handling (GMDH): GMDH is 
known for its self‑organizing capabilities, making it suit‑
able for modeling complex systems where the relationships 
between parameters are not fully understood. It was chosen 
for its ability to generate a model with optimal complexity, 
reducing the risk of overfitting which is crucial in accurately 
predicting Qanat discharge.

Least Square Support Vector Machine (LSSVM): LSSVM 
was included for its robustness in dealing with small datas‑
ets and its effectiveness in solving non-linear regression and 
classification problems. Given the limited data availability 
for Qanats, LSSVM’s capability to provide high accuracy 
with fewer data points is highly advantageous.

These methods were also chosen because of their com‑
plementary strengths, providing a comprehensive approach 
to the modeling process. By comparing their performance, 

Fig. 1 The methodological proce‑
dure of the QD models
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The GEP model was first introduced by Ferreira (2001), 
which is an intelligent evolutionary model. The initial phase 
in the GEP algorithm is the initial population generation 
that could be achieved randomly or with some data about 
the problem. Next, the chromosomes are expressed to cre‑
ate the tree expression. Then, the model results are assessed 
based on a fitness function to define the degree of satisfac‑
tion. If the reasonable model outcomes (desired threshold 
of fitness function or generation) are found, the evolution 
procedure will be interrupted, and the best‑achieved results 
at this step are reported. However, if the stop provisions are 
not found, the best result for the current model generation 
will be maintained. The modeling procedure is repeated 
for several generations until the solution is found (Ferreira 
2001). The structure, input and target variable, and position 
function of the GEP model differ from other ML methods, 
such as ANN. The optimum structure of the GEP model and 
coefficients are defined during the training procedure. The 
nature of the GEP provides further flexibility to the model. 
The overall structure of the GEP method is given in Fig. 2c.

Group method of data handling (GMDH)

Ivakhnenko (1968) introduced the GMDH method, which 
employs a self‑organizing model (SOM) to address intri‑
cate and nonlinear problems, specifically tackling predic‑
tion, classification, and various other challenges. The main 
inputs, the quantity of hidden layers and neurons, and 
network structure are essentially specified in the GMDH 
method. However, the GMDH as a polynomial neural net‑
work resembles ANN models. Mueller et al. (1998) declared 
that statistical analysis and ANN are deductive methods that 
could not uncover complex objects because they need a 
lot of a priori information. Instead, the GMDH model as 
a regression‑based method could combine the advantages 
of both methods (Lemke 1997). Therefore, GMDH could 
cover the deficits of ANN, while statistical neural networks 
could slightly solve them, and all model structures in the 
GMDH model could be specified by default. Nariman-
Zadeh et al. (2002) provided more detailed information 
about the GMDH model. The framework of the GMDH 
model is presented in Fig. 2d.

Least square support vector machine (LSSVM)

Vapnik (1998) introduced the theory and basic concepts of 
the SVM. The SVM’s general outline is better than the ANN 
since it is based on structural risk minimization, whereas the 
ANN employs experimental risk minimization. The SVM’s 
main process consists of the selection of support vectors 
supporting the model structure and identifying the weights. 
A comprehensive mathematical framework of the SVM was 

we aim to identify the most effective model(s) for QD pre‑
diction, contributing to more reliable water resource man‑
agement strategies.

Artificial neural network (ANN)

The ANN model, which is adapted based on brain behavior, 
performs in two stages, (i) obtaining knowledge from the 
environment via a learning procedure and (ii) using the inter‑
neuron link to gather the obtained knowledge (Haykin 2004; 
Patel et al. 2022; Sreelakshmi and Shaji 2022). The whole 
process consists of five phases: choosing the input dataset, 
choosing a proper framework, neural network designing, the 
process of training and testing, and lastly, model evaluation 
(Sahoo and Jha 2013). As the well‑accepted ANN model 
in simulating hydrological phenomena, multilayer percep‑
tron (MLP) was applied in the present work (McGarry et al. 
1999). The MLP model consists of three main layers: input, 
hidden (middle) and output. The quantity of layers and neu‑
rons is crucial to obtaining an optimal model framework. 
In the present study, one hidden layer was utilized since 
it could be adequate for QD prediction based on earlier 
similar studies. The Levenberg‑Marquardt (LM) algorithm 
was applied for the MLP training. MATLAB® (Mathworks 
2014) software package was used to create ML models in 
the present study. The general structures/procedures of the 
developed models are given in Fig. 2a‑e.Adaptive Neuro 
Fuzzy Inference System (ANFIS).

The ANFIS, as a particular ML method, could take advan‑
tage of the ANN and the fuzzy inference system (Jang 1993). 
The ANFIS is a flexible statistical method that could recog‑
nize complex nonlinear and uncertain patterns considering 
ambiguity between variables without completely knowing 
the nature of the problem. The Sugeno system is used in the 
ANFIS, and generally, the ANFIS structure is composed of 
5‑layers (Fig. 2b): fuzzy membership, fuzzification, normal‑
ization, defuzzification, and output (Jang 1993; Wee et al. 
2021). The subtractive clustering (SC) is utilized in the pres‑
ent study to split the input dataset dimension into n‑divided 
specific areas by assessing the n-dimensional input dataset 
to create different specific clusters. The cluster radius could 
be selected from 0 to 1 to optimize the cluster centroid’s 
influence range. Recognizing the optimum cluster radius is 
vital to identifying the clusters’ number, which was obtained 
by the trial‑error procedure in the current paper.

Gene expression programming (GEP)

Koza (1992) proposed Genetic Programming (GP) as a 
generalization of the Genetic Algorithm (GA) (Goldberg 
1989), which utilizes a ‘‘parse tree’’ form to search in the 
solution space, and GEP uses the benefits of GA and GP. 
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SMO can directly solve the SVM problem without utilizing 
a quadratic optimizer or additional matrix space employed 
in this work. The result of LSSVM differs strongly on the 
appropriate selection of the kernel function and modifying 
the appropriate parameters of C and γ. The polynomial ker‑
nel function used in this study for LSSVM since its out‑
standing outcomes in QD prediction is dependent on the 
study area’s dataset. Also, the optimum parameters of the 
LSSVM model are achieved based on a trial‑and‑error pro‑
cess (Suryanarayana et al. 2014). The LSSVM was applied 
using codes of the LIBSVM library introduced by Chang 

suggested by Vapnik (1998). Then, Suykens and Vande‑
walle (1999) proposed the LSSVM based on the SVM. 
LSSVM is a robust method to resolve function estimation, 
nonlinear classification, and density estimation of hydrolog‑
ical problems. LSSVM solves linear programming subjects 
by modifying inequality constraints in the SVM to equal‑
ity constraints (Kumar and Kar 2009). Also, the LSSVM is 
faster than the SVM (Fels and Ghorfi 2022; Gu et al. 2010).

Different algorithms were proposed to solve the dual 
optimization issue of SVM models. The Sequential Mini‑
mal Optimization (SMO) is the latest learning algorithm 
for SVM, which employs an analytical phase (Platt 1999). 

Fig. 2 The general structure of ML models: ANN (a), ANFIS (b), GEP(c), GMDH (d) and LSSVM (e)
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and support air circulation and entry for laborers while 
constructing the gallery and after finishing the construc‑
tion to monitor and maintain the Qanat.To simplify the 
subject, Qanat could be defined as a practically horizon‑
tal tunnel with some shaft wells which transmit ground‑
water from the aquifer to the surface. Qanat water leaks 
into the tunnel in the saturated zone and then streams 
down the tunnel to the outlet.

Also, Qanats can be considered a drainage system that 
drains groundwater to supply agricultural and drinking 
usage (Boustani 2008; Ganjeizadeh Rohani et al. 2024; 
Mohajerani et al. 2024; Nasiri and Mafakheri 2015; Yazdi 
and Khaneiki 2016). A cross‑section of a typical Qanat in 
an unconfined aquifer and two intersecting Qanats near the 
town of Meybod, Yazd Province, Iran is given in Fig. 3. 
It should be mentioned that in a Qanats, the discharge is 
a function of specific storage of the aquifer, the length of 
the gallery and groundwater level; subsequently ground‑
water fluctuations can directly affect the Qanats discharge. 
Although the Qanat has provided water for Iranian for over 
two thousand years, the difficulty of controllability of water 
discharge has supposed that Qanat is now unsuitable for the 
optimum usage of water resources.

Study area

The study area of Razan‑Ghahavand is located in Hamedan 
province, with an area of 3084 square kilometers. Water 
requirements for residents of this area are supplied by 1788 
wells, 104 springs, and 96 Qanats. The groundwater sys‑
tem is experiencing significant tension due to an imbalance 
between extraction and infiltration, resulting in excessive 
exploitation of groundwater resources. A detailed location 
of the study area is given in Fig. 4. The elevation of the 
study area differs from 1581 to 2741 m above mean sea 
level, and the mean annual temperature and precipitation of 
the study region, respectively are 10° C and 245 mm.

Data and preprocessing

This study utilizes time series data collected from the 
Razan‑Ghahavand Aquifer over a period of 18 years, from 
2003 to 2021. The data, provided by the Hamedan Regional 
Water Authority, includes monthly measurements of Qanat 
discharge (QD), groundwater levels (GWL), and meteoro‑
logical parameters such as temperature (T), precipitation 
(P), and evapotranspiration (ET). Each selected variable 
plays a specific role in the hydrological dynamics of Qanats. 
Discharge for adjacent Qanat (QD1 and QD2): Reflects the 

and Lin (2011). The overall structure of the LSSVM model 
is given in Fig. 2e.

Qanat system

The Qanat system denotes a conventional reliance on the 
water supply and agricultural usage and is a remarkable 
typical aspect of Iran’s climate and landscape. However, in 
many areas, the Qanat is now quickly substituted by deep 
wells.

Qanats have been built by the hand of experienced labor‑
ers with extensive knowledge of geology and engineering. 
As shown in Fig. 3, a Qanat system comprises the following 
four main elements:

1. Mother well: a dug deep into the groundwater level. 
Qanats conduct groundwater by gravity, and the mother 
well is typically built on sedimentary formation at the 
baseline of mountains. The most profound mother well, 
about 300 m, belongs to a 2,700‑year‑old Qanat in 
Gonabad in Iran (Boustani 2008).

2. Outlet: the area where water emerges to the surface. 
There are regularly various nominee locations for the 
groundwater outlet. The last position is determined con‑
cerning several factors, such as the vicinity to the posi‑
tions of water utilization and the gallery’s slope.

3. Gallery: Once the outlet and mother well’s location are 
determined, a slightly sloped tunnel is started to build 
from the outlet in the direction of the mother well. 
The selection of the gallery’s slope could be a trade‑
off between erosion and sedimentation, which usually 
slope of Qanats is about 0.5%. The gallery length dif‑
fers from a hundred meters to kilometers, and the most 
extended gallery of Qanats is about 120 km, belongs to 
Zarach in Iran (Molle et al. 2004) and,

4. Shafts: are a string of vertical wells constructed along 
the Qanat’s gallery between the outlet and the mother 
well at a 20–50 m distance to assist sediment removal 

Fig. 3 Cross section of typical Qanat in an unconfined aquifer
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effects. Conversely, PACF is used to measure the correla‑
tion between observations at different lags while control‑
ling for the values of the intervening observations, thereby 
isolating the direct effects. Significant autocorrelations up 
to lag 3 were demonstrated in the ACF and PACF plots for 
both Qanat 1 and Qanat 2, as well as for GWL. Based on 
this observation, the inclusion of lags 1, 2, and 3 of QD 
and GWL as predictors in the machine learning models was 
decided.

Model development

Monthly local QD (QDt−1, QDt−2, QDt−3) and GWL for 
one, two and three lag‑times (GWLt−1, GWLt−2, GWLt−3), 
temperature, (T), precipitation (P), evapotranspiration (ET) 
and QD of neighboring Qanat were considered as inputs for 
one-, two-, and five-month ahead QD predictions for two 
adjacent Qanats in Razan‑Ghahavand Aquifer. This study 
explored GWL fluctuations based on a representative hydro‑
graph. The Hamedan Regional Water Authority published 

effect of neighboring discharged on the each Qanat; Ground‑
water Level (GWL): Indicates the aquifer’s state, influenc‑
ing QD through hydraulic connectivity; Meteorological 
Data: Temperature, precipitation, and evapotranspiration 
directly affect evaporation and recharge rates, hence influ‑
encing QD. The integration of these variables suggests their 
interplay determines the aquifer’s response to natural and 
anthropogenic changes, making them critical for accurate 
QD predictions. The output variable for models is the Qanat 
discharge (QD), predicted at one, two, and five-month lead 
times.

For accurate modeling of Qanat discharge (QD) using 
groundwater levels (GWL) and hydrological time series 
data, the optimal number of lagged inputs that signifi‑
cantly influence the current values must be determined. 
The Autocorrelation Function (ACF) and Partial Auto‑
correlation Function (PACF) analyses were employed to 
identify these effective lags. The correlation between time 
series observations at different time lags is measured by 
ACF, which indicates how past values are related to future 
values without distinguishing between direct and indirect 

Fig. 4 The geographical map of the study area
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the predictor inputs and QD. Generally, a trial‑and‑error 
procedure was applied to identify the number of neurons in 
the hidden layer. This information is provided in the third 
column of Tables 2, 3, 4, 5, 6 and 7 for Qanat 1 and 2. Opti‑
mizing the cluster radius is a substantial concern for the effi‑
cient ANFIS structure. Smaller radii make numerous small 
clusters and, subsequently, many rules, whereas large radii 
cause a few large clusters to get fewer rules (Sanikhani and 
Kisi 2012). The optimal LSSVM parameters were deter‑
mined as C= [0.2, 1] and γ = 5 by trial‑and‑error procedure. 
RBF is chosen as the appropriate kernel function.

Model comparison according to computational 
effort and Run Times

Computational cost is regularly a substantial constraint of 
prediction models. In the present study, we use different 
ML models to predict QD to achieve this goal; the com‑
putation times for the ANN, ANFIS, GEP, GMDH, and 
LSSVM models for the first combination and one month 
ahead, respectively, were recorded as 4.70, 3.90, 6.17, 1.32, 
and 0.48 s. The outcomes reveal that the LSSVM is faster 
compared to other implemented ML models. Moreover, the 
appropriate iteration (epoch) number, an important factor 
for ML models, could improve the model accuracy in both 
training and validation stages and could prevent overtrain‑
ing. Adjusting various models with various forms and it is 
apparent that 100–200 iterations are enough for calibration 
of all developed models in predicting QD in both Qanats. 
Th epoch number for all developed ANN models was less 
than 100.

Comparison of the implemented models

This study aims to consider the application of various 
machine learning models ANN, ANFIS, GEP, and LSSVM 
to predict QD levels up to five months beyond data records. 
In the first part, various input combinations were examined 
by the applied models.

the Qanat discharge and monthly GWLs for 18 years from 
2003 to 2021. To evaluate the models’ efficiency in predict‑
ing QD, the input‑output time series was split into two sec‑
tions, 70% for training and 30% for the testing phase.

Model implementation

Selecting the most appropriate combination of input datas‑
ets is an essential step in ML modeling.

Considering unrelated datasets with time lags as input 
datasets in the scenarios reduces the results’ reliability and 
complicates the models’ structure. The general correlation 
analysis shows that QD in both Q1 and Q2 Qanats in the 
Razan‑Ghahavand strongly correlated with time series data 
of QD of neighboring Qanat (Q1 and Q2) and GWL fluctua‑
tions. Moreover, meteorological datasets were additionally 
used for QD prediction.

Different input combinations were evaluated using the 
predictive input parameters with different lag time steps 
from one‑month “QDt−1” to three‑month prior “QDt−3” 
to predict QD with various lead times (one- to five-month 
ahead) (Table 1).

Results and discussion

This research focuses on utilizing machine learning meth‑
ods to accurately predict QD and identify the most effec‑
tive model for practical application. The study employs 
several machine learning techniques, including GEP, ANN, 
GMDH, LSSVM, ANFIS. These methods are used to fore‑
cast QD one, two, and five months in advance within an 
unconfined aquifer.

Designing an optimum structure for each model is an 
important phase of the modeling process since an inappro‑
priate structure of the model could trigger over/ under-fitting 
issues. In the present study, a three‑layered ANN model was 
deemed for QD prediction; Initial outcomes revealed that 
one hidden layer was sufficient to get a relationship between 

Combination Input data Group
Q1 Q2

Combination 1 [Q1Dt − 1,Q1DDt − 2,Q1Dt − 3] Com1=[Q2Dt − 1,Q2Dt − 2,Q2Dt − 3] 1
Combination 2 [Q1Dt − 1, GWL, T,E, P] Com2=[Q2Dt − 1,GWL, T,E, P] 2
Combination 3 [Q1Dt − 1,Q1Dt − 2, GWL, T,E, P] Com3=[Q2Dt − 1,Q2Dt − 2, GWL, T,E, P] 2
Combination 4 [Q1Dt − 1,Q1Dt − 2,Q1Dt − 3,GWL, 

T,E, P]
Com4=[Q2Dt − 1,Q2Dt − 2,Q2Dt − 3,GWL, 
T,E, P]

2

Combination 5 [GWL, T,E, 
P,GWLt−1,GWLt−2,GWLt−3]

Com5=[GWL, T,E, 
P,GWLt−1,GWLt−2,GWLt−3]

3

Combination 6 [Q1Dt − 1,Q1Dt − 2,Q1Dt − 3,Q2D, 
GWL, T,E, P]

Com6=[Q2Dt − 1,Q2Dt − 2,Q2Dt − 3,Q1D, 
GWL, T,E, P]

Combination 7 [Q2D, GWL, T,E, 
P,GWLt−1,GWLt−2,GWLt−3]

Com7=[Q1D, GWL, T,E, 
P,GWLt−1,GWLt−2,GWLt−3]

3

Table 1 Different combinations 
for both models
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are 0.82 and 0.83. Hence, GMDH can get good estimation 
without using previous QD values, and this model can be 
efficient for predicting QD when monthly QD time series 
data are unavailable.

Also, the conclusions reveal that considering QD of 
adjacent Qanat as input model parameters (comparing com‑
bination 4 with 6 and 5 with 7) improves the accuracy of 
all models. For example, in the training phase of LSSVM 
for the prediction of one month ahead QD in Qanat 1, from 
combination 4 to combination 6, the NSE is improved from 
0.84 to 0.86 and from combination 5 to combination 7, the 
NSE is improved from 0.82 to 0.85; for the prediction of one 
month ahead QD in Qanat 2, from combination 4 combina‑
tion 6, the NSE is improved from 0.76 to 0.80; and from 
combination 5 to combination 7, the NSE is improved from 
0.75 to 0.79.

It is essential to point out that all models’ results for com‑
bination 1, where just monthly QD (QDt−1, QDt−2, QDt−3) 
values are used as inputs are not satisfactory for both Qanats. 
By considering all combinations and ML models like ANN, 
ANFIS, GEP, and LSSVM, it can be seen that combina‑
tion six (combination with hydroclimatic and hydrogeo‑
logical based) can offer accurate predictions for one month 
ahead QD. Based on Tab.s 2 and 5, it is evident that ANFIS, 
GMDH, and LSSVM models at the training phase offer good 

It should be remarked that combinations are categorized 
into three groups in the present application (Table 1), which 
(1) hydrogeological based: and employs only Qanat dis‑
charge data (QDt−1, QDt−2, QDt−3) to predict QD (combina‑
tion 1); (2) mixture of hydroclimatic and hydrogeological 
based: employs monthly local QD and QD of neighboring 
Qanat, local GWL, temperature, (T), precipitation (P), and 
evapotranspiration (ET) to predict QD (combinations 2, 
3, 4, 6); And, (3) hydrological and hydrogeological based 
combinations without using previous QD values to predict 
QD (combination 5 and 7).

Models for QD prediction could be categorized into 
various groups based on NSE (Nash-Sutcliffe Effi‑
ciency) as follows: very good (0.85 < NSE ≤ 1.00), good 
(0.70 < NSE ≤ 0.85), satisfactory (0.55 < NSE ≤ 0.70), and 
unsatisfactory (NSE ≤ 0.55) (Moriasi et al. 2015). All mod‑
els except the GEP model in the training phase for combina‑
tions 5 and 7 show satisfactory and good results according 
to NSE results (0.55 < NSE ≤ 0.70 and 0.70 < NSE ≤ 0.85). 
Tables 2 and 5 show that the GMDH model gives the best 
results among other applied models for combinations 5 and 
7 for the training and testing phases of both Qanats. For the 
one month ahead QD prediction in Qanat 1, the NSE val‑
ues in the training phase are 0.84 (combination 5) and 0.85 
(combination 7), and in Qanat 2, the corresponding values 

Fig. 5 The observed and simulated one month ahead QD 
time series using the ANN, ANFIS, GEP, GMDH and 
LSSVM models for the combination 6: Qanat1 (a) and 
Qanat2 (b)
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Fig. 6 Scatterplots of the observed and 
predicted one month ahead QD by different 
models for the combination 6: Qanat1 (left 
panel) and Qanat2 (Right panel)
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MAE = 4.10 and NSE = 0.81; for five-month ahead QD pre‑
diction in Qanat 1, R = 0.86, RMSE = 7.27, NRMSE = 0.10, 
MAE = 5.36 and NSE = 0.73; for one month ahead QD pre‑
diction in Qanat 2, R = 0.93, RMSE = 6.56, NRMSE = 0.09, 
MAE = 5.13 and NSE = 0.86; for two‑month ahead QD pre‑
diction in Qanat 2, R = 0.89, RMSE = 7.71,NRMSE = 0.10, 
MAE = 6.28 and NSE = 0.79; for five-month ahead QD pre‑
diction in Qanat 2, R = 0.86, RMSE = 9.11,NRMSE = 0.11, 
MAE = 7.51 and NSE = 0.73)

The accuracy models for the combination six are fur‑
ther compared in Figs. 5 and 6 via time variation graphs 
and scatterplots for both Qanats. The graphs in Fig. 5 pro‑
vide detailed changes between observed values and predic‑
tions provided by the models. Also, the provided graphs in 
Fig. 6 reveal how all model’s simulations are scattering, 

precision for the one month ahead QD prediction for both 
Qanats with NSE higher than 0.55. However, great imple‑
mentation is found for the GMDH methods based on NSE 
values greater than 0.7 for five months ahead in the train‑
ing phase for both Qanats. Considering RMSE, NRMSE 
and R values, the GMDH model reveals precise results with 
the low RMSE, NRMSE, and high R values. The LSSVM 
can be ranked as the second model. According to the NSE 
analysis, the GEP model is the worst in estimating QD. The 
outcomes of the training phase ascertained that the GMDH 
model (six input combination) for both Qanats performed 
superior to the other models; for one month ahead QD pre‑
diction in Qanat 1, R = 0.93, RMSE = 5.28, NRMSE = 0.07, 
MAE = 3.63 and NSE = 0.87; for two‑month ahead QD pre‑
diction in Qanat 1, R = 0.91, RMSE = 5.90, NRMSE = 0.08, 

Table 5 The results of the different combinations in predicting one- ahead QD for Qanat 2
Qanat 2 Input Properties Lt + 1

Training Test
R RMSE NRMSE MAE NS R RMSE NRMSE MAE NS

ANN Combination 1 2 0.66 9.42 0.15 7.14 0.43 0.6 4.67 0.22 3.66 0.3
Combination 2 3 0.79 7.93 0.13 6.23 0.6 0.72 4.25 0.2 3.36 0.42
Combination 3 4 0.8 7.81 0.13 5.85 0.61 0.75 4.26 0.2 3.36 0.42
Combination 4 5 0.82 7.26 0.12 5.54 0.66 0.64 4.66 0.22 3.59 0.31
Combination 5 6 0.81 7.3 0.12 5.69 0.66 0.45 5.33 0.25 4.38 0.09
Combination 6 6 0.83 7.09 0.12 5.56 0.68 0.63 4.61 0.22 3.7 0.32
Combination 7 0.5 0.82 7.43 0.12 5.8 0.65 0.48 5.03 0.24 4.2 0.19

ANFIS Combination 1 0.9 0.67 9.9 0.14 7.38 0.45 0.51 8.17 0.39 6.58 0.01
Combination 2 0.9 0.83 7.56 0.1 5.81 0.68 0.68 13.88 0.65 13.21 0.01
Combination 3 0.9 0.85 7.03 0.1 5.36 0.72 0.68 13.95 0.66 11.6 0.01
Combination 4 0.9 0.86 6.79 0.09 5.14 0.74 0.7 12.37 0.58 10.22 0.01
Combination 5 0.9 0.86 6.87 0.09 5.17 0.74 0.69 15.87 0.75 14.85 0.01
Combination 6 0.9 0.88 6.01 0.08 4.63 0.76 0.74 11.26 0.53 10.6 0.01
Combination 7 0.9 0.87 6.7 0.09 5.07 0.75 0.67 18.78 0.89 17.44 0.01

GEP Combination 1 ‑ 0.64 9.67 0.16 7.26 0.4 0.75 8.39 0.18 5.97 0.18
Combination 2 ‑ 0.68 9.36 0.15 7.57 0.44 0.63 26.86 0.59 0.01 0.01
Combination 3 ‑ 0.63 10.82 0.18 8.23 0.25 0.77 6.62 0.15 4.32 0.49
Combination 4 ‑ 0.68 10.44 0.17 7.61 0.3 0.63 13.27 0.29 11.68 0.01
Combination 5 ‑ 0.61 9.94 0.16 7.83 0.37 0.54 30.41 0.67 29.18 0.01
Combination 6 ‑ 0.69 10.29 0.17 7.93 0.39 0.78 6.66 0.15 4.8 0.48
Combination 7 ‑ 0.68 9.82 0.16 7.6 0.38 0.6 14.06 0.31 12.43 0.01

GMDH Combination 1 15,15,1 0.86 9 0.11 6.65 0.73 0.85 9.96 0.13 7.48 0.71
Combination 2 15,15,1 0.91 7.53 0.09 5.66 0.83 0.86 8.19 0.11 5.94 0.72
Combination 3 15,15,1 0.91 7.32 0.09 6.05 0.83 0.88 8.5 0.11 6.64 0.77
Combination 4 15,15,1 0.92 7.18 0.09 5.48 0.84 0.88 8.91 0.11 7.11 0.78
Combination 5 15,15,1 0.91 7.69 0.1 5.72 0.82 0.88 7.88 0.1 5.64 0.78
Combination 6 15,15,1 0.93 6.56 0.09 5.13 0.86 0.89 8.06 0.12 6.01 0.79
Combination 7 15,15,1 0.91 7.06 0.1 5.46 0.83 0.89 9.27 0.12 7.11 0.79

LSSVM Combination 1 10,5 0.68 9.8 0.13 7.39 0.46 0.55 8.33 0.39 6.88 0.01
Combination 2 10,5 0.85 7.01 0.1 5.35 0.73 0.78 14.08 0.66 13.42 0.01
Combination 3 10,5 0.86 6.81 0.09 5.19 0.74 0.78 12.37 0.58 11.67 0.01
Combination 4 10,5 0.87 6.58 0.09 5.02 0.76 0.75 13.36 0.63 12.59 0.01
Combination 5 10,5 0.86 6.63 0.09 5.1 0.75 0.66 16.04 0.76 14.67 0.01
Combination 6 10,5 0.89 6.05 0.08 4.59 0.8 0.73 14.59 0.69 13.74 0.01
Combination 7 10,5 0.88 6.15 0.08 4.61 0.79 0.67 16 0.75 14.84 0.01

1 3



Earth Science Informatics

performance metrics, including standard deviation, cor‑
relation, and root mean square error. In each diagram, the 
GMDH model is closer to the reference point, indicating that 
its predictions closely match the observed data’s variability 
(standard deviation) and pattern (correlation). The proxim‑
ity of the GMDH model to the center of the circle further 
demonstrates its lower RMSE, signifying more accurate 
predictions compared to other models. These results under‑
score the effectiveness of the GMDH model in capturing the 
complex dynamics of Qanat discharge, providing reliable 
predictions that are crucial for water resource management 
in the regions dependent on Qanats. The consistency in 
model performance across both Qanat 1 and Qanat 2 further 
reinforces the robustness of the GMDH approach.

and R values provide a practical understanding of fitting the 
simulated dataset based on the accuracy and precision of 
both Qanats. Analysis of the hydrographs and scatterplots 
reveals that the forecasted time series by GMDH closely 
aligns with the observed QD values and exhibits less dis‑
persion compared to the other four models used. However, 
noticeable disparities between the predicted and observed 
time series are apparent for the GEP model. However, the 
GMDH model could not catch the extreme QD values. This 
can be explained by the smaller number of samples for QD 
peak values. Without a high number of examples, ML mod‑
els cannot adequately learn extreme events.

The Taylor diagrams for both Qanat 1 and Qanat 2, 
as shown in Fig. 7, provide a visual comparison of vari‑
ous machine learning models based on their statistical 

Table 6 The results of the different combinations in predicting two-months ahead QD for Qanat 2
Lt + 2

Qanat 2 Input Properties Training Test
R RMSE NRMSE MAE NS R RMSE NRMSE MAE NS

ANN Combination 1 2 0.44 11.05 0.18 8.8 0.19 0.38 5.43 0.25 4.6 0.12
Combination 2 3 0.72 8.69 0.14 6.59 0.5 0.44 5.74 0.26 4.76 0.01
Combination 3 4 0.75 8.23 0.13 6.27 0.55 0.45 5.43 0.25 4.45 0.11
Combination 4 5 0.75 8.33 0.14 6.44 0.54 0.54 5.21 0.24 4.32 0.19
Combination 5 6 0.73 9.59 0.16 7.73 0.39 0.43 5.85 0.27 4.83 0.01
Combination 6 6 0.75 8.37 0.14 6.58 0.53 0.62 5.04 0.23 4.15 0.24
Combination 7 0.5 0.74 8.68 0.14 6.9 0.5 0.48 6.13 0.28 4.8 0.01

ANFIS Combination 1 0.9 0.47 11.77 0.16 8.94 0.22 0.22 9.14 0.42 6.98 0.01
Combination 2 0.9 0.78 8.42 0.12 6.63 0.6 0.64 17.45 0.8 16.43 0.01
Combination 3 0.9 0.81 7.92 0.11 6.28 0.65 0.62 19.98 0.92 18.11 0.01
Combination 4 0.9 0.82 7.64 0.1 6.1 0.67 0.63 16.35 0.75 13.93 0.01
Combination 5 0.9 0.83 7.33 0.1 5.74 0.7 0.68 17.22 0.79 14.36 0.01
Combination 6 0.9 0.84 7.24 0.1 5.6 0.71 0.67 14.66 0.68 11.88 0.01
Combination 7 0.9 0.84 7.3 0.1 5.66 0.7 0.69 16.64 0.77 13.94 0.01

GEP Combination 1 ‑ 0.41 11.21 0.18 8.78 0.16 0.54 22.51 0.49 21.24 0.01
Combination 2 ‑ 0.6 10.31 0.17 8.17 0.32 0.58 10.81 0.24 8.13 0.01
Combination 3 ‑ 0.59 10 0.16 7.64 0.33 0.67 24.97 0.55 24.01 0.01
Combination 4 ‑ 0.58 10.02 0.16 7.75 0.33 0.61 22.6 0.5 19.69 0.01
Combination 5 ‑ 0.58 10.02 0.16 7.73 0.33 0.53 29.26 0.64 28.17 0.01
Combination 6 ‑ 0.61 9.89 0.16 7.65 0.35 0.54 9.35 0.62 7.24 0.01
Combination 7 ‑ 0.6 9.83 0.16 7.56 0.36 0.62 24.42 0.54 23.31 0.01

GMDH Combination 1 15,15,1 0.81 10.79 0.14 8.04 0.65 0.71 12.2 0.18 10.04 0.4
Combination 2 15,15,1 0.87 8.53 0.12 7.07 0.76 0.82 10.04 0.14 8.33 0.67
Combination 3 15,15,1 0.87 8.9 0.11 7.29 0.75 0.84 9.49 0.15 7.32 0.68
Combination 4 15,15,1 0.88 8.52 0.11 6.9 0.77 0.86 9.34 0.14 8.2 0.71
Combination 5 15,15,1 0.89 7.77 0.1 6.43 0.81 0.82 10.09 0.13 8.19 0.65
Combination 6 15,15,1 0.89 7.71 0.1 6.28 0.79 0.88 8.64 0.13 8.12 0.72
Combination 7 15,15,1 0.89 8.38 0.11 6.79 0.79 0.84 8.54 0.12 6.72 0.69

LSSVM Combination 1 10,5 0.52 11.46 0.16 8.75 0.26 0.26 10.07 0.46 7.72 0.01
Combination 2 10,5 0.8 8 0.11 6.34 0.64 0.67 18.64 0.86 17.52 0.01
Combination 3 10,5 0.81 7.85 0.11 6.17 0.65 0.65 15.59 0.72 14.49 0.01
Combination 4 10,5 0.83 7.57 0.1 5.96 0.68 0.61 15.33 0.71 14.38 0.01
Combination 5 10,5 0.83 7.48 0.1 5.87 0.69 0.65 16.12 0.74 14.66 0.01
Combination 6 10,5 0.84 7.21 0.1 5.77 0.71 0.6 16.08 0.74 15.18 0.01
Combination 7 10,5 0.84 7.23 0.1 5.79 0.71 0.67 16.54 0.76 15.29 0.01
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QD1 and QD2 (discharging of neighboring Qanat) and 
Groundwater Level (GWL) emerge as significant drivers, 
with high variability in their SHAP values, indicating that 
these features have a substantial impact on the model’s out‑
put across all data points. Temperature (T), Evapotranspi‑
ration (ET) and Precipitation (P) show less variability and 
smaller range of SHAP values, suggesting a lower but con‑
sistent influence.

Figure 9 delves into local interactions, revealing how 
specific feature combinations affect discharge outcomes 
under particular conditions. This analysis is crucial for rec‑
ognizing circumstances where interactions between features 
like temperature and groundwater level critically alter pre‑
dictions, offering deeper insights into the model’s operation 
under diverse scenarios. According to this figure for both 

In total, the current study implies the superiority of the 
GMDH method compared to the other applied ML methods 
based on the employed dataset. These findings reinforce the 
prior results reported by the existing literature for differ‑
ent areas (Aghelpour and Varshavian 2020; Li et al. 2020; 
Moghadam et al. 2021; Kamali et al. 2022).

Figures 8 and 9 illustrate the impact of various hydrolog‑
ical, meteorological, and neighboring Qanat features on the 
discharge predictions of Qanats 1 and 2 using the GMDH 
model as the best model.

Figure 8 provides a global view, showcasing how differ‑
ent features influence the model output across all instances. 
This global perspective is crucial for understanding which 
features generally drive the model’s predictions and should 
therefore be monitored closely in management practices. 

Table 7 The results of the different combinations in predicting five-months ahead QD for Qanat 2
Lt + 5

Qanat 2 Input Properties Training Test
R RMSE NRMSE MAE NS R RMSE NRMSE MAE NS

ANN Combination 1 2 0.44 10.83 0.18 8.21 0.19 0.11 7.33 0.32 5.67 0.01
Combination 2 3 0.56 10.31 0.17 8.15 0.27 0.26 6.74 0.3 5.83 0.18
Combination 3 4 0.59 9.76 0.16 7.79 0.34 0.29 7.13 0.31 6.1 0.23
Combination 4 5 0.67 8.86 0.15 6.55 0.46 0.05 8.56 0.38 6.83 0.01
Combination 5 6 0.65 9.3 0.15 7.54 0.4 0.2 6.35 0.28 4.96 0.01
Combination 6 6 0.68 8.82 0.14 6.92 0.46 0.43 5.74 0.25 4.95 0.07
Combination 7 0.5 0.68 9.02 0.15 7.18 0.44 0.28 7.29 0.32 5.75 0.07

ANFIS Combination 1 0.9 0.38 12.35 0.17 9.41 0.14 0.05 11.07 0.49 8.63 0.01
Combination 2 0.9 0.7 9.5 0.13 7.64 0.49 0.52 21.2 0.93 19.81 0.01
Combination 3 0.9 0.79 8.16 0.11 6.43 0.63 0.47 20.46 0.9 16.75 0.01
Combination 4 0.9 0.82 7.66 0.11 5.97 0.67 0.51 14.35 0.63 12.85 0.01
Combination 5 0.9 0.82 7.66 0.11 5.94 0.67 0.47 20.46 0.9 16.75 0.01
Combination 6 0.9 0.84 7.39 0.1 5.74 0.71 0.51 14.05 0.63 12.73 0.01
Combination 7 0.9 0.83 7.34 0.1 5.64 0.7 0.46 19.46 0.9 16.15 0.01

GEP Combination 1 ‑ 0.24 11.69 0.19 9.09 0.06 0.04 45.23 0.99 37.45 0.01
Combination 2 ‑ 0.4 11.42 0.19 8.9 0.1 0.56 28.11 0.62 26.96 0.01
Combination 3 ‑ 0.41 10.97 0.18 8.56 0.17 0.49 26.22 0.58 24.99 0.01
Combination 4 ‑ 0.46 10.81 0.18 8.34 0.19 0.48 27.2 0.6 26.04 0.01
Combination 5 ‑ 0.39 11.08 0.18 9.2 0.15 0.1 21.98 0.48 20.65 0.01
Combination 6 ‑ 0.47 10.73 0.18 8.38 0.21 0.51 22.3 0.49 19.86 0.01
Combination 7 ‑ 0.45 10.81 0.18 8.34 0.19 0.48 27.2 0.6 26.04 0.01

GMDH Combination 1 15,15,1 0.73 12.22 0.15 9.75 0.53 0.65 12.55 0.19 10.43 0.41
Combination 2 15,15,1 0.77 10.78 0.15 8.89 0.6 0.72 13.18 0.17 10.84 0.48
Combination 3 15,15,1 0.82 10.28 0.13 8.44 0.67 0.72 11.33 0.19 9.96 0.5
Combination 4 15,15,1 0.82 9.89 0.13 8.1 0.68 0.84 9.71 0.12 7.93 0.7
Combination 5 15,15,1 0.83 9.49 0.12 7.81 0.69 0.75 12.88 0.17 10.73 0.54
Combination 6 15,15,1 0.86 9.11 0.11 7.51 0.73 0.71 12.47 0.21 10.36 0.45
Combination 7 15,15,1 0.85 9.21 0.12 7.64 0.72 0.76 12.08 0.2 9.01 0.51

LSSVM Combination 1 10,5 0.41 12.25 0.17 9.33 0.16 0.09 12.04 0.53 9.36 0.01
Combination 2 10,5 0.74 9.07 0.12 7.24 0.54 0.45 21.49 0.95 19.71 0.01
Combination 3 10,5 0.76 8.76 0.12 6.94 0.57 0.39 18.53 0.82 16.68 0.01
Combination 4 10,5 0.78 8.44 0.12 6.69 0.6 0.35 17.59 0.78 16.05 0.01
Combination 5 10,5 0.79 8.36 0.11 6.72 0.61 0.5 15.29 0.67 13.56 0.01
Combination 6 10,5 0.8 8.17 0.11 6.49 0.62 0.36 18.15 0.8 16.73 0.01
Combination 7 10,5 0.81 7.99 0.11 6.34 0.64 0.56 15.73 0.69 14.24 0.01
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models can enable local water authorities and stakeholders 
to forecast water availability more accurately, facilitating 
proactive management strategies. For instance, the predic‑
tive capabilities of these models can be integrated into water 
management systems to optimize the allocation and use of 
water from Qanats, ensuring that water supply meets the 
demands of agriculture and domestic use without overex‑
ploiting the aquifer. By predicting periods of low discharge, 
water managers can plan alternative water supply strate‑
gies or implement water‑saving measures in advance, thus 
avoiding crises. Moreover, the ability of these models to 
account for various hydrological and climatic inputs means 
they can also be used to assess the impact of climate change 
on Qanat performance. This is crucial for long‑term water 
resource planning, allowing for the adaptation of water 
infrastructure and policies in response to predicted changes 

Qanats, the importance of temperature and significant local 
interaction with precipitation and GWL may indicate sce‑
narios where climatic conditions jointly affect QD. Also, the 
interaction values for discharge from neighboring Qantas 
underscore the model’s sensitivity to neighboring discharge 
influences, critical for precise discharge predictions.

The practical implications of the presented method 
for groundwater resource management in arid 
regions

The findings from this study, demonstrating the efficacy of 
various machine learning models in predicting Qanat dis‑
charge, have significant practical implications for ground‑
water resource management, particularly in arid regions 
where water scarcity is a pressing issue. Implementing these 

Fig. 7 Taylor diagrams of dif‑
ferent models: Qanat1 (a) and 
Qanat2 (b)
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not exceed the natural replenishment rates of aquifers. Addi‑
tionally, these predictions can facilitate the development of 
early warning systems for water scarcity, allowing commu‑
nities and farmers to implement water‑saving measures in 
advance, thereby safeguarding against the ecological and 
economic impacts of drought.

Future research directions for enhancing Qanat 
discharge predictions using machine learning

For enhancing the accuracy of ML predictions in Qanat 
discharge studies, future research can explore several 
innovative approaches. Developing hybrid models that 
combine multiple ML techniques could leverage the 
strengths of various algorithms to handle complex data‑
sets more effectively. Additionally, advanced ensemble 
techniques like stacked generalization could further refine 
predictions by integrating outputs from multiple models, 
exploiting the unique strengths of each to improve over‑
all accuracy. Enhancing feature engineering and selection 
is also crucial, as more precise input features related to 
hydrological, meteorological, and geological data could 
be pivotal in improving model outcomes. Exploring deep 
learning architectures such as Convolutional Neural 
Networks (CNNs) for spatial data and Long Short‑Term 
Memory (LSTM) networks for temporal data could offer 
significant advancements in processing complex time 
series and spatial patterns. Incorporating uncertainty anal‑
ysis through Bayesian networks or Monte Carlo methods 
could provide deeper insights into prediction confidence 
and the influence of various parameters, which is vital 
for robust water management strategies. Additionally, 
expanding data sources to include remote sensing data 
could provide more dynamic and high‑frequency updates, 
enhancing the model’s responsiveness to environmental 
changes.

in groundwater levels and Qanat discharge patterns. Incor‑
porating machine learning models into groundwater moni‑
toring systems could also enhance the efficiency of these 
systems, providing continuous, real‑time data analysis. This 
would allow for immediate responses to detected changes in 
water levels, potentially preventing over‑extraction and its 
associated negative impacts on the aquifer.

Overall, the application of these models in groundwa‑
ter resource management not only promises to enhance the 
sustainability of water resources in arid regions but also 
supports the preservation of Qanats, which are vital to the 
cultural and ecological landscapes of these areas. By fos‑
tering a more data‑driven approach to water management, 
stakeholders can ensure the resilience and efficiency of 
water use in face of increasing variability due to human and 
environmental changes.

Also, these machine learning predictions help in miti‑
gating adverse environmental effects. The environmental 
impacts of Qanat decline or alterations in their discharge 
patterns are profound, especially in arid and semi‑arid 
regions where they serve as critical water sources. One 
significant impact is on local ecosystems, which rely on 
consistent and adequate water supply from Qanats. A 
decrease in water availability can lead to habitat degrada‑
tion, loss of biodiversity, and reduced agricultural pro‑
ductivity due to increased soil salinity and desertification. 
This alteration in land use and ecosystem health can, in 
turn, reduce the land’s natural resilience to environmental 
changes.

Machine learning models, as detailed in the paper, can 
significantly mitigate these adverse effects through enhanced 
predictive capabilities. By accurately forecasting Qanat 
discharge under various scenarios, these models allow for 
better water resource management. They enable authorities 
to implement strategic water allocation and conservation 
practices, ensuring that water usage is sustainable and does 

Fig. 8 Feature impact analysis on qanat discharge predictions for GMDH model: Qanat1 (a) and Qanat2 (b)
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QD (QDt−1, QDt−2, QDt−3), QD of neighboring Qanat, local 
GWL for one, two, and three lag‑times (GWLt−1, GWLt−2, 
GWLt−3), temperature, (T), precipitation (P), and evapo‑
transpiration (ET) data were considered as inputs to pre‑
dict one-, two-, and five-month ahead QD for two adjacent 
Qanats in Razan‑Ghahavand Aquifer. Seven input combi‑
nations were categorized into three groups based on expert 
knowledge and investigated for QD prediction with differ‑
ent lead times (one to five months ahead) using monthly 

Conclusions

Qanats are a unique way to extract groundwater from the 
aquifer, especially in arid and semiarid countries. Simu‑
lation of discharge of Qanats is essential for aquifer and 
demand management, and machine learning methods are 
promising tools to simulate the complex behavior of the 
Qanats. The present study utilized a range of well‑accepted 
machine learning methods for predicting QD. Monthly local 

Fig. 9 SHAP interaction value analysis for Qanat discharge predictions using GMDH mode: Qanat1 (a) and Qanat2 (b)
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