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Abstract
This study addresses the critical question of predicting the amplitude of S-waves during earthquakes in Aotearoa New Zealand 
(NZ), a highly earthquake-prone region, for implementing an Earthquake Early Warning System (EEWS). This research uses 
ground motion parameters from a comprehensive dataset comprising historical earthquakes in the Canterbury region of NZ. 
It explores the potential to estimate the damaging S-wave amplitude before it arrives, primarily focusing on the initial P-wave 
signals. The study establishes nine linear regression relationships between P-wave and S-wave amplitudes, employing three 
parameters: peak ground acceleration, peak ground velocity, and peak ground displacement. Each relationship’s performance 
is evaluated through correlation coefficient (R), coefficient of determination (R²), root mean square error (RMSE), and 5-fold 
Cross-validation RMSE, aiming to identify the most predictive empirical model for the Canterbury context. Results using 
a weighted scoring approach indicate that the relationship involving P-wave Peak Ground Velocity (Pv) within a 3-second 
window strongly correlates with S-wave Peak Ground Acceleration (PGA), highlighting its potential for EEWS. The selected 
empirical relationship is subsequently applied to establish a P-wave amplitude (Pv) threshold for the Canterbury region as a 
case study from which an EEWS could benefit. The study also suggests future research exploring complex machine learn-
ing models for predicting S-wave amplitude and expanding the analysis with more datasets from different regions of NZ.

Keywords Earthquake early warning · Low-cost seismometers · The PLUM · MEMS · Warning systems · S-wave 
estimation · Earthquake resilience · Earthquake detection

Introduction

Earthquakes pose a significant hazard in Aotearoa New 
Zealand (NZ), one of the most seismically active regions 
globally (Anderson and Webb 1994). Annually, over a hun-
dred earthquakes of magnitude four or higher are recorded 
(GeoNet 2023). The devastating impacts of significant 

seismic events, such as the 2010/2011 Canterbury sequence 
and the 2016 Kaikōura earthquake, underscore the urgent 
need for effective mitigation strategies (Potter et al. 2015); 
Stevenson et al. (2011, 2017). Earthquake Early Warning 
System (EEWS) emerges as a vital technology to reduce 
earthquake-related damages by providing advance alerts, yet 
NZ lacks an official national EEWS (Becker et al. 2020). 
The GeoNet program, while serving as the official source 
of seismic information, does not provide early warnings 
(GeoNet 2017; GNS Science 2023). The absence of a formal 
EEWS is primarily attributed to the high costs associated 
with developing and maintaining such advanced systems, 
presenting a substantial challenge for their implementation 
in NZ (Brooks et al. 2021; Prasanna et al. 2022).

The increasing global interest in cost-effective EEWSs 
has led to the adoption of low-cost micro-electromechanical 
systems (MEMS)-based sensors. Since their introduction in 
the early 1990s (Holland 2003), these sensors have been 
effectively utilised in seismic applications for real-time 
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public alerting across various regions, including Taiwan 
(Wu  et al.  2013), China (Peng  et al.  2019), California 
(Clayton et al. 2015), and Costa Rica (Brooks et al. 2021), 
albeit mostly in experimental setups. In NZ, the CRISiSLab 
team at Massey University has developed an experimental, 
community-engaged EEWS utilising Raspberry Shake 4D 
seismographs equipped with MEMS-based accelerometers 
(Prasanna et al. 2022). The system employs the Propagation 
of the Local Undamped Motion (PLUM) algorithm, known 
for its robustness and straightforward approach to detect-
ing seismic activities and issuing alerts without the need to 
estimate detailed seismic event characteristics (Chandraku-
mar et al. 2023).

A significant limitation of the PLUM algorithm is its 
maximum warning time of 10 s, primarily due to its reli-
ance solely on S-wave detection. This study proposes 
addressing this limitation by leveraging the earlier arrival 
of P-waves (Kodera  2018). A suitable P-wave detec-
tion algorithm has already been identified in a previous 
study (Chandrakumar et al. 2023), paving the way for this 
advancement. The system can capitalise on P-wave detec-
tion to extend warning times within the PLUM frame-
work by establishing a reliable empirical relationship 
between P-wave and S-wave amplitudes (Kodera 2018). 
This relationship offers two significant advantages. First, 
it enhances the effectiveness of the PLUM algorithm by 
providing more lead time for preparedness. Second, it ena-
bles the determination of P-wave thresholds for the early 
detection of significant shaking.

In this context, this research addresses a critical gap in 
NZ’s EEWS capabilities by establishing robust empiri-
cal relationships between P-wave and S-wave amplitude 
parameters specific to the country’s unique seismic land-
scape using linear regression models. Subsequently, the 
study identifies the most suitable empirical relationship 
for application in NZ’s highly seismic Canterbury region. 
A case study utilising the chosen relationship is presented 
to define effective EEW alert thresholds for P-waves in the 
Canterbury region, demonstrating a practical application 
of the research findings.

The structure of this article is organised as follows: The 
second section offers a brief overview of the literature on 
P-wave to S-wave amplitude relationships from studies con-
ducted globally. The third section details the methodology 
employed in this research. The fourth section presents the 
comprehensive results, which are then discussed in the fifth 
section in the context of the established empirical relation-
ships. Building on these results, the sixth section introduces 
a case study that applies the selected empirical relationship 
to determine thresholds for felt earthquakes in NZ. Finally, 
the seventh section provides a conclusive summary and key 
takeaways, highlighting the significance of this research.

Background on P‑wave and S‑wave 
amplitude relationships

Researchers worldwide have explored various methods utilis-
ing P-wave measurements to estimate ground shaking, either 
by determining earthquake magnitude or predicting the ampli-
tude of S-waves. One notable approach originated in Japan 
during the 1990s with the UrEDAS system, which pioneered 
the use of P-wave arrival to estimate earthquake magnitude 
and location (Nakamura 2004). Following this, Allen and Kan-
amori (2003) introduced a method that estimates earthquake 
magnitude from the frequency content of P-wave arrivals.

In the Japanese seismic landscape, Yamamoto et al. 
(2008) introduced a new intensity parameter called  MI, 
showcasing that, for Japanese seismic data, P-wave 
intensity is consistently lower than S-wave intensity by 
approximately an  MI value of 1. Meanwhile, in Taiwan, 
researchers conducted a comprehensive analysis of the 
relationship between P-wave and S-wave amplitude. 
They used various measurements from P and S waves, 
including Peak Ground Acceleration (Pa), Peak Ground 
Velocity (Pv), Peak Ground Displacement (Pd) and Period 
parameter (τC) from the 3 s following the P-wave detec-
tion, as well as Peak Ground Velocity (PGV) and Peak 
Ground Displacement (PGD) of S-waves for 26 damaging 
earthquakes (Wu and Kanamori 2005a, b). Out of these 
parameters, they were able to select the most suitable rela-
tionship for their system, ultimately establishing Pd and 
τC thresholds for EEW. Further work investigated the rela-
tionship between Pd and PGV using records from Japan, 
Taiwan, and southern California (Wu and Kanamori 2008; 
Wu and Mittal 2021).

Researchers from USA, China and Italy contributed to 
advancing approaches by utilising Pd (measured within 
3 s after P-wave detection) as a proxy for predicting PGV 
(Böse et al. 2009a; Caruso et al. 2017; Wang et al. 2020; 
Zollo et al. 2014). In contrast, Colombelli et al. (2015) 
established an empirical relationship between three peak 
amplitude parameters of the P-wave window (Pa, Pv and 
Pd) and PGV.

While some studies suggest that predicting the ground 
shaking of an earthquake using just a few seconds of ini-
tial P-wave data is achievable (Olson and Allen 2005; Zollo 
et al. 2006), others indicate that the estimation of ground 
shaking tends to saturate for larger events with longer rup-
ture durations (Hoshiba et al. 2011; Rydelek and Horiuchi 
2006). Predicting the ground shaking of significant seis-
mic events with limited real-time seismic data has become 
increasingly challenging due to the complexities involved. 
Larger crustal earthquakes with magnitudes (M) of 6, 7, and 
8 are associated with fault lengths of about 10 km, 30 km, 
and 100 km, respectively, with rupture velocities close to of 
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3 km/s. Consequently, assuming a unilateral rupture, it could 
take up to 3, 10, and 30 s to rupture these faults completely 
(Wells and Coppersmith 1994; Yamamoto et al. 2008). Also, 
it has become quite challenging to determine the ground 
shakings of significant seismic events with limited real-time 
seismic data (Yamamoto et al. 2008). However, it is essential 
to note that these methods are still valuable for estimating 
lower bounds of expected ground shakings, aiding in the 
early assessment of earthquake strength (Kanamori 2005).

These studies on P-wave and S-wave relationships world-
wide have contributed significantly to improving EEW 
research. However, most of these findings are predominantly 
rooted in research outside NZ’s unique geological and tec-
tonic context. Therefore, researching and constructing a 
relationship between P and S-wave amplitude is crucial to 
successfully developing an EEWS tailored to NZ’s unique 
geological and tectonic conditions. Findings in NZ also adds 
to the discourse in global research.

Method

Data collection

The data for this study are strategically sourced from the 
Canterbury Region, NZ, chosen for its history of significant 
seismic activity and the notable impact of past earthquakes 
(Stevenson et al. 2011, 2017). This research utilises the Can-
terbury Network (CanNet), a low-cost strong motion network 
established by GeoNet before the 2010–2011 Canterbury 
earthquake sequence. CanNet is equipped with MEMS-based 
accelerometers designed to effectively record ground motions 
(Avery et al. 2004; Berrill et al. 2011). The selection of CanNet 
is deliberate, as its accelerometers closely match the response 
characteristics of the sensors used in the CRISiSLab EEWS. 
This ensures that the seismic data collected are reliable and 
relevant from a network mirroring the CRISiSLab EEWS.

The timeframe from 2010 to 2023 is chosen for data 
collection because it corresponds to the period during 
which GeoNet actively catalogued and recorded P-wave 
and S-wave picks for most of the CanNet recordings. This 
pre-existing identification of arrival times is critical. It sig-
nificantly reduces the need for manual pickings across the 
numerous earthquake ground motion recordings.

The dataset compiled from this collection phase com-
prises 5254 earthquake waveforms captured from MEMS-
based accelerometers, corresponding to 3245 earthquakes 
with a magnitude exceeding 3 (M > 3). Even though the data 
are limited, they serve the need to make a baseline for imple-
menting a relationship between P and S-waves as an initial 
foundation. This focused dataset provides a strong founda-
tion for investigating these relationships and advancing the 
operational capabilities of low-cost EEWSs.

Data analysis

Data inspection and selection

The initial phase of the research involves an assessment of 
data quality to ensure the reliability of subsequent analy-
ses. Each waveform from the 5254 records in the dataset 
is visually inspected during this phase. A specialised tool 
is developed to facilitate this inspection that allows for the 
individual review of waveforms (Fig. 1). This tool gener-
ates four plots for each record, each serving a specific role 
in the inspection process. The first plot displays the ver-
tical acceleration record, highlighting P and S-wave picks 
reported by GeoNet with distinctive red and blue vertical 
lines, facilitating precise waveform analysis (Fig. 1a). For 
a closer examination, the second plot provides an enlarged 
view of the absolute vertical acceleration record, focusing 
on a 5-second window around the P-wave pick to inspect the 
P-wave arrival (Fig. 1b). The third and fourth plots showcase 
horizontal acceleration records in the HNE: east component 
and HNN: north component directions, with the S-wave pick 
marked by a blue vertical line (Fig. 1c and d).

During this phase, the focus is on verifying the accuracy 
of the P and S-wave picks recorded by GeoNet. Records 
with accurately identified picks are selected for further 
analysis, while those with erroneous picks are excluded. 
This process resulted in 4330 valid waveforms. Subse-
quently, these recordings are classified according to Site 
Classes defined for NZ based on soil characteristics (Dobry 
et al. 2000). The majority of the data belonged to Site Class 
D, and to maintain consistency in soil characteristics, only 
records from this class are retained, refined dataset of 3542 
waveforms.

To ensure the relevancy and suitability of the data for 
the study, ground motion records are exclusively retained 
from stations situated within a 30-kilometre epicentral 
distance from each earthquake event, a selection criterion 
supported by previous research (Böse et al. 2009; Tsuno 
2021; Zollo et al. 2010). Two key considerations drove 
this strategy. First, it guarantees data relevancy, as P and 
S waves are less likely to be contaminated by other waves 
in the coda. Proximity to the epicentre enables the accu-
rate detection of both P and S-waves. Second, data qual-
ity is enhanced closer to the epicentre due to a reduced 
noise-to-signal ratio, improving the precision of empirical 
relationships.

Additionally, a condition is imposed to include a maxi-
mum of four station records for each earthquake event. 
This filtering process results in the final selection of 763 
earthquake events, with magnitudes ranging from 3 to 6.6, 
yielding 1,251 earthquake ground motion records suitable 
for further analysis. Figure 2 illustrates the Canterbury 
region chosen for this study, highlighting the seismic 
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station locations and the epicentral locations of the earth-
quakes. Further, Table 1 summarises the earthquake mag-
nitudes and the corresponding number of events.

Data allocation for model training and evaluation

After filtering, the dataset is subjected to time-based split-
ting, where training and testing sets are selected based on 
their temporal order (Lyu et al. 2021). Time-based splitting 
ensures the model is trained on historical data and evalu-
ated on new, unseen data. This allocation strategy facilitates 
comprehensive model development and ensures a reliable 
evaluation using independent data.

 I. Training Dataset: It consists of 1021 ground motion 
recordings of the filtered data from 2010 to 2019, 
which are used to develop the model.

 II. Testing Dataset: It contains 230 recordings of the fil-
tered data from 2020 to 2023, which are reserved for 
model evaluation.

Parameters used for analysis

The analytical focus of the study centred on two distinct 
time windows: the three-second interval immediately fol-
lowing the P-wave pick and the subsequent time window 
corresponding to the arrival of the S-wave. The selection of 
a 3-second time window for the P-wave phase draws from 
literature, emphasising the effectiveness of this choice (Wu 
and Kanamori 2005a). It balances achieving accurate S-wave 
amplitude estimation and providing a sufficiently wide warn-
ing window with reduced blind zone for an EEWS (Böse 
et al. 2009a; Caruso et al. 2017; Wang et al. 2020; Y.-M. 
Wu and Mittal 2021).

Fig. 1  Interface of a seismic waveform inspection tool. a shows a ver-
tical acceleration record with P and S-wave picks marked by red and 
blue lines, respectively. b  displays an enlarged view of the absolute 
vertical record around the P-wave pick for detailed analysis. Panels 

(c) and (d) present horizontal acceleration records in the east (HNE) 
and north (HNN) directions, with S-wave picks indicated by blue 
lines
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Standard metrics such as Peak Ground Acceleration, 
Peak Ground Velocity, and Peak Ground Displacement can 
be used to represent the amplitude of seismic waves for an 
earthquake (Y. M. Wu and Zhao 2006; Y.-M. Wu and Kan-
amori 2008). Therefore, this study computed six seismic 
parameters to establish relationships between P and S-wave 
amplitude.

For the selected P-wave window, calculations for estimat-
ing the amplitude of the P-wave include the Peak Ground 
Acceleration (Pa), the Peak Ground Velocity (Pv), and the 
Peak Ground Displacement (Pd) of the P-wave. These cal-
culations are based on the vertical acceleration, velocity, 

and displacement records, as P-waves predominantly exhibit 
motion in the vertical direction (Y.-M. Wu 2019; Zhang 
et al. 2003).

Subsequently, for the S-wave window, key parameters to 
estimate the amplitude of S-waves: the Peak Ground Accel-
eration (PGA), the Peak Ground Velocity (PGV), and the 
Peak Ground Displacement (PGD) are calculated. Data from 
the HNE (east-west direction) and HNN (north-south direc-
tion) channels are utilised to capture these peak values, given 
that S-waves predominantly exhibit motion in the horizontal 
direction (Shearer 2009). The PGA, PGV, and PGD values 
are calculated using the RotD50 method for the S-waves 
(Boore, 2010).

Before calculating the P-wave and S-wave parameters, 
the chosen ground motion recordings are filtered using a 
Butterworth-Bandpass filter from 0.1 to 20 Hz. This filter-
ing step retains the earthquake signal’s frequency content 
of interest and removes low-frequency and high-frequency 
ambient noise (Claerbout 1964; Virtanen et al. 2020).

Table 2 summarise the parameters used in this study and 
their respective abbreviations.

It is important to note that this study does not focus on 
determining the τC for the P-wave window, as observed in 
various studies that seek to establish a relationship between 

Fig. 2  Map of the Canterbury 
region in NZ, showing the loca-
tions of seismic stations and the 
epicentres of selected earth-
quake events used in this study

Table 1  Overview of earthquake magnitudes and event counts in the 
dataset

Magnitude (M) range Number 
of events

3 to 4 596
4 to 5 150
5 and above 17
Total 763
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τC and earthquake magnitude (M) (Wang et al. 2020; Wu 
and Kanamori 2005a, b). Instead, the primary focus is 
exploring relationships between P and S-wave amplitudes.

Outlier test

Before choosing the model, it is crucial to systemati-
cally identify and remove outliers from the dataset to 
ensure the robustness and accuracy of the models. Out-
liers, which can significantly skew results, are detected 
using the Interquartile Range (IQR) method (Taylor 
2018; Gianluca Malato 2021). The outlier method works 
as follows,

1. Calculate the dataset’s first quartile (Q1) and third quar-
tile (Q3). The first quartile is the value at the 25th per-
centile, and the third is at the 75th percentile.

2. Compute the IQR as the difference between Q3 and Q1 
(IQR = Q3 - Q1). The IQR represents the range of the 
middle 50% of the data.

3. Define the lower and upper outlier thresholds using the 
following formulas:

a Lower threshold = Q1–1.5 * IQR
b Upper threshold = Q3 + 1.5 * IQR

4. Identify any data points that fall below the lower thresh-
old or above the upper threshold. These observations are 
considered outliers.

This statistical approach is applied separately to the train-
ing and testing datasets to ensure the integrity of the model 
evaluation. This separation is critical to prevent data leakage, 
which could lead to overly optimistic performance estimates 
and compromise the model’s generalisability. The outlier 
removal process affected approximately 0.4–0.5% of the 
training and testing datasets across all relationships. Fur-
ther, Figs.  7, 8, 9, 10, 11 to 12 in the Appendix illustrate 
the data before and after removing outliers for training and 
testing datasets across the nine relationships intended for 
construction.

Linear regression analysis

Linear regression is a straightforward approach used in seis-
mology to estimate S-wave amplitudes using P-wave data. Its 
simplicity and ease of implementation make it an ideal choice 
for smaller datasets, allowing for the establishment of a reli-
able baseline relationship between P-wave and S-wave ampli-
tudes. This method has been substantiated by several studies 
in the literature, which have demonstrated its effectiveness 
in accurately modelling relationships within the seismic data 
context (Y.-M. Wu and Mittal 2021; Yamamoto et al. 2008).

Several strategic considerations drove this study’s use of 
a linear regression model. While machine learning models 
are increasingly popular due to their ability to handle com-
plex datasets and provide accurate predictions, their applica-
tion in seismology presents unique challenges (Abdalzaher 
et al. 2023; Hsu and Huang 2021; Zhu et al. 2022). Complex 
models, such as Convolutional Neural Networks (CNNs) or 
Recurrent Neural Networks (RNNs), require large datasets 
to effectively learn and generalise without overfitting (Jon 
Reilly 2024; Pragati Baheti 2021). Given the specific con-
text of our study, where the dataset comprised MEMS-based 
ground motion data with a relatively limited size, there is a 
significant risk that a more complex model could yield unre-
liable predictions. This concern guided the choice towards 
using a simple linear regression model.

The computed parameters from the P-wave and S-wave 
windows served as the basis for establishing nine distinct 
linear regression relationships between P-wave and S-wave 
characteristics. To enhance the interpretability and robust-
ness of these relationships, raw parameter values are trans-
formed into logarithmic (log10) base values. This trans-
formation significantly reduces the influence of extreme 
outliers and stabilises variance, making the data more suit-
able for linear modelling. Additionally, converting to loga-
rithmic scales compresses the data range, simplifying the 
analysis and facilitating a more linear representation of the 
data. This method aids in establishing meaningful correla-
tions and enhances the overall reliability and robustness of 
the empirical relationships.

Table 2  Abbreviations and 
descriptions of the parameters 
used for analysis

Abbreviation Description

Pa Peak Ground Acceleration calculated for the P-wave window
Pv Peak Ground Velocity calculated for the P-wave window
Pd Peak Ground Displacement calculated for the P-wave window
PGA Peak Ground Acceleration calculated for the S-wave window
PGV Peak Ground Velocity calculated for the S-wave window
PGD Peak Ground Displacement calculated for the S-wave window
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The chosen linear regression equation takes the form of 
y = ax + b, where x represents the independent variable (in 
our study, the amplitude of the P-waves, denoted as Pa, Pv, 
or Pd) and ‘y’ represents the dependent variable (the ampli-
tude of the S-waves, represented as PGA, PGV, or PGD). 
The values for ‘a’ and ‘b’ in this equation are determined 
using the least squares method to find the best-fit linear rela-
tionship between the P-wave and S-wave amplitudes. Spe-
cifically, ‘a’ represents the slope of the regression line, indi-
cating the rate of change in the S-wave amplitude concerning 
changes in the P-wave amplitude, while ‘b’ represents the 
intercept, denoting the estimated S-wave amplitude when 
the P-wave amplitude is zero (Barbur et al. 1994; Draper 
and Smith 2014).

Following the construction of the linear regression mod-
els, the residuals of each model were subjected to an error 
distribution analysis to evaluate the S-wave amplitude esti-
mation. This included calculating the mean error, median 
error, standard deviation, and mean absolute error (MAE) 
for the residuals.

Evaluating the generalisability and suitability of empirical 
relationships

A set of metrics derived from the established linear regres-
sion models are used to evaluate generalisability and 
select the study’s optimal empirical relationship. Further, 
a weighted scoring approach is employed to quantify the 
efficacy of each of the nine models.

Metrics

a The correlation coefficient (R)

It measures the strength and direction of a linear relation-
ship between two variables on a scatter plot (Draper and 
Smith 2014). For linear regression involving two variables 
x (P-wave amplitude parameter) and y (S-wave amplitude 
parameter), R ranges from − 1 to 1. A value of 1 indicates a 
perfect positive linear relationship, where increases in xcor-
respond to increases in y . Conversely, a value of -1 denotes 
a perfect negative linear relationship, where increases in x
correspond to decreases in y . A value of 0 signifies no linear 
correlation between the variables. R is given by the formula:

where xi and yi are amplitude parameter values, and 
−
x and 

−
y are the mean values of the amplitude parameters for the P 
and S-waves, respectively.

b The coefficient of determination (R²)
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It represents the proportion of the variance in the depend-
ent variable that is predictable from the independent vari-
ables. It ranges from 0 to 1 where an  R2 value of 1 indicates 
that the regression predictions perfectly fit the data, and 0 
suggests that the model does not explain any variability in 
the response data around its mean. The  R2 is the square value 
of R.

 iii. The Root Mean Square Error (RMSE)

It measures the standard deviation of residuals or pre-
diction errors, providing insights into how much deviation 
occurs from the observed data points to the predictions made 
by the regression model. This is crucial for assessing a mod-
el’s accuracy, with lower RMSE values indicating a better fit 
to the data. RMSE is given by the formula,

where yi is the observed amplitude value, ŷi is the predicted 
amplitude value for the S-wave using the linear regression 
model, and n is the number of observations used.

 iv. 5-fold Cross Validation RMSE

It is a statistical method employed to ensure the gen-
eralisability of a constructed model. This research uti-
lised a K-fold Cross-validation approach with K equal to 
5, chosen to achieve a good balance between the model 
construction and validation. The training dataset (2010 
to 2019) is partitioned into five equal segments. Four 
segments are used to train the model for each validation 
cycle, and the remaining segment serves as the test set. 
This process iterates until each fold has been used for 
validation exactly once. In this investigation, for each 
empirical relationship, the RMSE is computed across five 
distinct folds within the training dataset. RMSE quanti-
fies the average magnitude of the prediction error. By 
assessing RMSE across all folds, the study can discern 
how consistently the model performs. Cross-validation 
is conducted on the training dataset to avoid data leak-
age and ensure the integrity of performance evaluations. 
The test dataset is reserved for the final assessment of 
the model, thereby preventing any bias in the model’s 
estimated ability to generalise and ensuring an unbiased 
evaluation on new, unseen data.

Method for selecting the most suitable Linear Regres-
sion Relationship.

a Evaluation with Testing Data

The models developed are evaluated using an independent 
test dataset from 2020 to 2023. This phase critically assesses 
each model’s performance on new, unseen data, essential for 

(2)RMSE =

�
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∑
�
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verifying their robustness. The effectiveness and generalis-
ability of the models are determined by comparing the R² 
and RMSE values from this test dataset against those from 
the training phase. This approach ensures that the models 
perform well on historical data and are reliable and accurate 
when applied to predict future seismic events.

b Overfitting and Underfitting Assessment

Assessing overfitting and underfitting is crucial for ensur-
ing the robustness of constructed models, as these phenom-
ena can significantly affect a model’s predictive accuracy on 
new data. Overfitting occurs when a model is overly tailored 
to the training data and performs well on this data but poorly 
generalises to new datasets (Tigran 2022; Will Koehrsen 
2018). This often results in models that are tailored too 
closely to the specifics of the training data. In contrast, 
underfitting happens when models are too simplistic, fail-
ing to capture essential relationships within the data, leading 
to suboptimal performance on training and testing datasets 
(Tigran 2022; Will Koehrsen 2018).

The nature of overfitting and underfitting within each con-
structed linear regression model is analysed using the previ-
ously introduced metrics: R² and RMSE for both training 
and testing datasets and RMSE values derived from 5-fold 
Cross-validation of the training data.

 iii. Weighted Scoring Approach

A weighted scoring framework is implemented to aggre-
gate multiple performance metrics into a unified measure 
of model efficacy, which facilitates the identification of 
the most appropriate linear regression relationship (Grif-
fith and Headley 1997; Nicholas Morpus 2024). The per-
formance metrics considered are R² for the training data-
set (Trained R²), RMSE for the training dataset (Trained 
RMSE), the mean RMSE from 5-fold Cross-validation 
(Mean of 5-fold Cross-validation RMSE), R² for the test-
ing dataset (Tested R²), and RMSE for the testing dataset 
(Tested RMSE). These metrics are normalised to ensure 
comparability; higher values of R² are indicative of bet-
ter performance, while lower values of RMSE represented 
lower error rates.

The following factors outline the assigned weights to 
various evaluation metrics employed in the model selection 
process and their rationale behind the chosen values.

The Mean of 5-fold Cross-validation RMSE is given 
the highest weight (0.6) to select the most suitable rela-
tionship. This metric is crucial for accurately estimating 
the model’s performance across diverse data subsets; pri-
oritising a lower mean of 5-fold Cross-validation RMSE 
ensures that the chosen model can generalise effectively 

and remain reliable in real-world scenarios with poten-
tially varying data characteristics.
Tested RMSE, weighted at 0.3, is the next most impor-
tant factor. This metric directly assesses the model’s per-
formance on entirely new data, a crucial factor for the 
practical deployment of an EEWS. In an EEWS, encoun-
tering unseen data is the norm, emphasising the need for 
a model that can reliably predict earthquakes under such 
conditions.
Trained RMSE receives a weight of 0.2, signifying its 
role in indicating the model’s efficacy in capturing and 
learning from historical data. While a lower Trained 
RMSE is desirable, it holds less weight than the model’s 
generalisability and performance on unseen data.
Tested R² and Trained R² are assigned a weight of 0.1 
each. While R² can be a valuable tool for initial explora-
tion and assessing fit quality in linear models, it is ulti-
mately de-emphasised in favour of RMSE for final model 
selection. Two factors drive this decision: RMSE pos-
sesses a clear unit (error in the original units), facilitat-
ing a more straightforward interpretation of the model’s 
performance. Additionally, RMSE exhibits less suscepti-
bility to overfitting compared to R². Table 3 displays the 
weights assigned to the chosen metrics.

The formula for calculating the weighted score of each 
model integrates these normalised metrics and their respec-
tive weights to derive a composite measure of performance 
is expressed as:

Results

P‑wave parameters versus S‑wave amplitude

Pa vs. S‑wave amplitude

The initial set of relationships analysed focused on P-wave 
Pa values and their correlation with S-wave amplitude 
parameters, including PGA, PGV, and PGD (Fig. 3).

The relationship between P-wave amplitude (Pa) and 
S-wave amplitude measured by PGA demonstrates a strong 
correlation. As depicted in Fig. 3a, the empirical relationship 
(Eq. 1 from Table 4) produced R and R² values of 0.891 and 
0.793, indicating a robust association. This high R² suggests 

(3)

Weighted Score =[
(

Normalised Trained R
2 × 0.1

)

+
(

Normalised TestedR
2 × 0.1

)

+(Normalised Trained RMSE × 0.2)

+(Normalised Tested RMSE × 0.3)

+(Normalised Cross − Validation RMSE × 0.6)]



Earth Science Informatics 

that the variability in Pa substantially explains the variance 
in PGA values. The RMSE of 0.296 and a 5-fold Cross-
validation RMSE ranging from 0.251 to 0.384 confirm the 
model’s accuracy and consistency.

Regarding the P-wave amplitude (Pa) compared with the 
S-wave’s PGV, Fig. 3b showcases the Pa versus PGV rela-
tionship (Eq. 2 from Table 4), yielding R and R² values of 
0.872 and 0.760, respectively. Although slightly lower than 
the Pa-PGA relationship, these figures still represent a sig-
nificant correlation, indicating that Pa variations can explain 
a large portion of the PGV variability. The RMSE for this 
relationship is 0.349, with the 5-fold Cross-validation RMSE 
values ranging from 0.291 to 0.512, reflecting the model’s 
reliability across different subsets of data.

Finally, the analysis of Pa against the S-wave amplitude 
measured by PGD is shown in Fig. 3c. The empirical rela-
tionship (Eq. 3 from Table 4) resulted in R and R² values 
of 0.835 and 0.697, respectively. These values indicate a 
strong but less pronounced correlation compared to the 
earlier relationships. The RMSE of 0.395 and the 5-fold 
Cross-validation RMSE values between 0.310 and 0.609 
suggest a slightly greater deviation from the model pre-
dictions, highlighting the challenges in predicting PGD 
from Pa.

Pv vs S‑wave amplitude

The subsequent analysis explored relationships involving 
Pv values for P-waves and the S-wave amplitude measured 
as PGA, PGV, and PGD. Figure 4 illustrates the obtained 
graphs for the Pv vs. PGA, Pv vs. PGV, and Pv vs. PGD 
relationships.

As depicted in Fig. 4a, the relationship between Pv and 
PGA (Eq. 4 from Table 5) exhibited a robust positive cor-
relation, with R and R² values of 0.914 and 0.835, respec-
tively. These high R and R² values, surpassing those seen in 
relationships involving Pa, indicate a more consistent and 
robust predictive capability. The RMSE of 0.266 and the 

Table 3  Assigned weights and 
justification for performance 
metrics in linear regression 
model selection

Metric Weight

Trained  R2 0.1
Tested  R2 0.1
Trained RMSE 0.2
Tested RMSE 0.3
Mean of 5-fold Cross-

validation RMSE
0.6

Fig. 3  Empirical relationships between P-wave Pa and S-wave parameters for Site Class D. Panel (a) shows Pa vs. PGA, (b) shows Pa vs. PGV, 
and (c) shows Pa vs. PGD. Each graph features data points in blue, a linear regression line in red, and the 95% confidence interval shaded in grey
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5-fold Cross-validation RMSE ranging from 0.226 to 0.33 
further underscore the model’s accuracy and consistency.

The empirical analysis extended to the relationship 
between Pv and PGV, as illustrated in Fig. 4b. This rela-
tionship (Eq. 5 from Table 5) yielded similar R and R² val-
ues of 0.914 and 0.835, respectively, demonstrating a robust 
positive correlation. This reflects the same level of consist-
ency as the Pv versus PGA analysis despite a marginally 
higher RMSE of 0.290 and a 5-fold Cross-validation RMSE 
between 0.253 and 0.407.

Finally, Fig. 4c highlights the Pv versus PGD relation-
ship (Eq. 6 from Table 5), which recorded R and R² val-
ues of 0.875 and 0.765. These values, while strong, are 
slightly lower than those of the previous Pv relationships. 
The RMSE of 0.349 and a 5-fold Cross-validation RMSE 

ranging from 0.286 to 0.517 suggest a more noticeable vari-
ability between observed and predicted values, reflecting the 
challenges in predicting PGD from Pv with the same preci-
sion as PGA or PGV.

Pd vs S‑wave amplitude

The final set of analyses investigates the empirical relation-
ships between P-wave amplitude, represented by Pd, and 
S-wave amplitudes, represented by PGA, PGV, and PGD. 
Figure 5 provides a graphical visualisation of the computed 
relationships, illustrating the interaction between these seis-
mic parameters.

The relationship between Pd and PGA (Eq.  7 from 
Table 6) demonstrated a robust positive correlation, with R 

Table 4  Summary of empirical relationships, R, R2, RMSE and 5-fold cross-validation RMSE values obtained for P-wave’s Pa and S-wave 
amplitude parameters (PGA, PGV and PGD)

Equation Parameters Empirical relationship R R2 RMSE 5-fold Cross-validation RMSE

1 Pa Vs PGA log (PGA) = 0.87 ( ±0.01 ) log (Pa) + 0.10 ( ±0.02) 0.891 0.793 0.296 [0.384, 0.279, 0.262, 0.251, 0.36]
2 Pa Vs PGV log (PGV) = 0.93 ( ±0.02 ) log (Pa) – 1.29 ( ±0.03) 0.872 0.760 0.349 [0.45, 0.321, 0.291, 0.293, 0.512]
3 Pa Vs PGD log (PGD) = 0.90 ( ±0.02 ) log (Pa) – 2.82 ( ±0.03) 0.835 0.697 0.395 [0.518, 0.345, 0.319, 0.31, 0.609]

Fig. 4  Empirical relationships between P-wave Pv and S-wave parameters for Site Class D. Panel (a) shows Pv vs. PGA, (b) shows Pv vs. PGV, 
and (c) shows Pv vs. PGD. Each graph features data points in blue, a linear regression line in red, and the 95% confidence interval shaded in grey
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and R² values of 0.902 and 0.814, respectively, as shown in 
Fig. 5a. This relationship exhibited an RMSE of 0.280, with 
a 5-fold Cross-validation RMSE ranging between 0.239 and 
0.351. These metrics suggest a firm consistency and reli-
ability in predicting PGA from Pd.

Further, the relationship between Pd and PGV is explored 
and is depicted in Fig. 5b. This relationship (Eq. 8 from 
Table 6) produced R and R² values of 0.920 and 0.846, 
respectively, indicating an even stronger positive cor-
relation than the Pd vs. PGA relationship. The RMSE is 
slightly lower at 0.279, with a 5-fold Cross-validation RMSE 
between 0.243 and 0.349, reinforcing the model’s accuracy 
in predicting PGV from Pd.

Lastly, Fig. 5c depicts the relationship between Pd and 
PGD (Eq. 9 from Table 6), yielding R and R² values of 0.911 
and 0.830, respectively. These values suggest a substantial 
predictive capability, although slightly reduced compared 
to the Pd vs. PGV relationship. The RMSE for this relation-
ship is 0.295, with a 5-fold Cross-validation RMSE spanning 
from 0.254 to 0.389, indicating slightly higher variability in 
predictions for PGD relative to PGA and PGV.

Evaluation of error distribution for S‑wave amplitude 
estimation

The residuals from each of the nine empirical relationships 
are analysed to evaluate the error distribution for the S-wave 
amplitude estimation. The analysis included calculating the 
Mean error, Median error, Standard Deviation, and Mean 
Absolute Error (MAE) for the residuals, in addition to the 
RMSE. Table 7 summarises the values obtained from these 
calculations.

The error distribution analysis for S-wave amplitude esti-
mation reveals that the mean and median errors are minimal 
and negligible across all models, indicating that the residuals 
are centred around zero.

• Standard Deviation: The Pv vs. PGA model exhibits the 
lowest standard deviation (0.2655), indicating greater 
consistency in its residuals. In contrast, the Pa vs. PGD 
model shows the highest standard deviation (0.395), indi-
cating higher variability.

• MAE: The Pv vs. PGA model has the lowest MAE of 
0.2046, highlighting its accuracy and reliability. Other 
notable performances include the Pd vs. PGA model, 
which has an MAE of 0.2063, and the Pd vs. PGV model, 
which has an MAE of 0.2068.

The Pv vs. PGA model consistently demonstrates better 
performance regarding Standard Deviation, and MAE. Other 
models, such as Pv vs. PGV and Pd vs. PGA, also show 
strong performance, particularly the MAE, highlighting 
their potential effectiveness in predicting S-wave amplitudes. 
Further, histograms that show the frequency distribution of 
residuals in estimating S-wave amplitudes are plotted for 
each of the nine relationships and attached in the Appendix 
as Fig. 13.

Evaluation and generalisation of the linear 
regression relationships with testing data

This section details the evaluation results of the constructed 
linear regression models using the testing dataset.

Table  8 summarises the  R2 (Tested R²) and RMSE 
(Tested RMSE) values for each relationship, comparing the 
outcomes from the training phase and those observed with 
the testing phase.

Among the evaluated relationships, the Pv vs. PGA 
relationship exhibited superior performance, achieving 
the highest R² of 0.716, which indicates a strong cor-
relation and predictive capability, along with the lowest 
RMSE of 0.305, suggesting minimal prediction errors. 
In contrast, the Pa vs. PGD relationship showed the least 
predictive accuracy, with the lowest R² of 0.392 and the 
highest RMSE of 0.471, indicating higher prediction 
variability.

Furthermore, relationships involving Pd in overall dem-
onstrated commendable performance, with the Pd vs. PGA 
relationship being notably effective, achieving an R² of 
0.699 and an RMSE of 0.314. In contrast, relationships 
based on Pa generally showed poorer performance, as evi-
denced by lower R² values and higher RMSEs across the 
board, indicating a reduced reliability for making precise 
predictions.

Table 5  Summary of empirical relationships, R, R2, RMSE and 5-fold cross-validation RMSE values obtained for P-wave’s pv and S-wave 
amplitude parameters (PGA, PGV and PGD)

Equation Parameters Empirical relationship R R2 RMSE 5-fold Cross-validation RMSE

4 Pv Vs PGA log (PGA) = 0.85 ( ±0.01 ) log (Pv) + 1.48 ( ±0.04) 0.914 0.835 0.266 [0.33, 0.239, 0.257, 0.226, 0.297]
5 Pv Vs PGV log (PGV) = 0.92 ( ±0.01 ) log (Pv) + 0.25 ( ±0.04) 0.914 0.835 0.290 [0.355, 0.263, 0.264, 0.253, 0.407]
6 Pv Vs PGD log (PGD) = 0.89 ( ±0.02 ) log (Pv) – 1.34 ( ±0.05) 0.875 0.765 0.349 [0.425, 0.313, 0.31, 0.286, 0.517]
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Identifying overfitting and underfitting in linear 
regression models

This section outlines the results concerning the analysis of 
overfitting and underfitting within the constructed linear 
regression models.

Overfitting in linear regression models is character-
ised by high R² values during training with a substan-
tial test drop, suggesting the model memorises specifics 
rather than generalises. This is further indicated by low 
training RMSEs that increase significantly during test-
ing and inconsistent performance across different sub-
sets in 5-fold Cross-validation RMSE (Tigran 2022; Will 
Koehrsen 2018).

Fig. 5  Empirical relationships between P-wave Pd and S-wave parameters for Site Class D. Panel (a) shows Pd vs. PGA, (b) shows Pd vs. PGV, 
and (c) shows Pd vs. PGD. Each graph features data points in blue, a linear regression line in red, and the 95% confidence interval shaded in grey

Table 6  Summary of empirical relationships, R, R2, RMSE and 5-fold cross-validation RMSE values for P-wave’s pd and S-wave amplitude 
parameters (PGA, PGV and PGD)

Equation Parameters Empirical relationship R R2 RMSE 5-fold Cross-validation RMSE

7 Pd Vs PGA log (PGA) = 0.84 ( ±0.01 ) log (Pd) + 2.85 ( ±0.06) 0.902 0.814 0.280 [0.351, 0.258, 0.239, 0.239, 0.313]
8 Pd Vs PGV log (PGV) = 0.94 ( ±0.01 ) log (Pd) + 1.83 ( ±0.06) 0.920 0.846 0.279 [0.33, 0.258, 0.243, 0.254, 0.349]
9 Pd Vs PGD log (PGD) = 0.93 ( ±0.01 ) log (Pd) + 0.33 ( ±0.06) 0.911 0.830 0.295 [0.369, 0.266, 0.262, 0.254, 0.389]

Table 7  Summary of error distribution metrics for S-wave amplitude 
estimation, including mean error, median error, standard deviation, 
range, and MAE for each of the nine empirical relationships

Model Median error Standard Devia-
tion

MAE

Pa vs. PGA 0.0121 0.296 0.234
Pa vs. PGV 0.0039 0.346 0.2763
Pa vs. PGD -0.0022 0.395 0.3054
Pv vs. PGA 0.0186 0.2655 0.2046
Pv vs. PGV 0.0085 0.2904 0.2235
Pv vs. PGD 0.0103 0.349 0.2651
Pd vs. PGA 0.0109 0.2801 0.2063
Pd vs. PGV -0.0024 0.2788 0.2068
Pd vs. PGD -0.0057 0.2953 0.2213
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Conversely, underfitting is marked by uniformly low R² 
and high RMSE across training and testing phases, reflect-
ing the model’s failure to capture essential data trends. Ele-
vated Cross-validation RMSEs also underscore underfitting, 
revealing the model’s inadequate performance on unseen 
segments of the training data (Tigran 2022; Will Koehrsen 
2018).

The analysis of the constructed relationships using the 
calculated metrics provides a clear indication of their vary-
ing abilities to model and predict unseen data effectively:

• Relationships with Pa: The Pa vs. PGA and Pa vs. PGV 
models exhibit signs of overfitting. While their Trained 
R2 values are relatively high (0.793 and 0.76, respec-
tively), the significant drop in R2 and increase in RMSE 
when moving to the test dataset (0.639 vs. 0.343 for Pa 
vs. PGA and 0.453 vs. 0.411 for Pa vs. PGV) suggest the 
models are not generalising well to unseen data. The Pa 
vs. PGD model shows even stronger evidence of overfit-
ting, with a very low Tested R2 (0.392) and high Tested 
RMSE (0.471).

• Relationships with Pv: The Pv vs. PGA model dem-
onstrates the best overall performance. Its Trained 
and Tested R2  values are high (0.835 and 0.716, 
respectively), and the increase in Tested RMSE 
(0.305) is moderate. The 5-fold Cross-validation 
RMSE also suggests good generalisability, indicating 
that the model captures the underlying relationship 
effectively and performs well on unseen data. The Pv 
vs. PGV and Pv vs. PGD models show similar trends, 
although with slightly lower performance than Pv vs. 
PGA.

• Relationships with Pd: The Pd vs. PGA, Pd vs. PGV, 
and Pd vs. PGD models exhibit good performance. 

Their Trained and Tested R2 values are high (above 
0.8 for Trained R2 and above 0.6 for Tested R2), and 
the increases in Tested model RMSE are moderate. 
The 5-fold Cross Validation RMSE values also indi-
cate good generalisability.

Evaluating linear regression relationships 
through weighted scoring

As outlined in the “Method” section, the weighted scores for 
each constructed relationship are computed using Formula 
3. The following table (Table 9) presents the results derived 
from the weighted scoring approach, quantifying the effi-
cacy of various relationships in estimating S-wave amplitude 
from P-wave amplitude.

The analysis revealed a prominent relationship 
between Pv and PGA, evidenced by the highest weighted 
score of 1.29. This association stood out due to its strong 
correlation and consistent predictive ability, suggesting 
its potential value as a model within EEWSs. Conversely, 
relationships involving Pa displayed lower efficacy. This 
is reflected in their weighted scores: Pa vs. PGA (0.98), 
Pa vs. PGV (0.43), and particularly Pa vs. PGD (0.0), 
which suggests minimal utility in employing Pa for accu-
rate S-wave prediction. Additionally, Pd-related relation-
ships demonstrated positive performance, with Pd vs. 
PGA and Pd vs. PGV achieving scores of 1.19 and 1.12, 
respectively. These scores indicate strong reliability in 
utilising Pd parameters for estimating S-wave ampli-
tude, although they are surpassed by the Pv vs. PGA 
relationship.

Discussion

This research has evaluated different P-wave parameters 
for estimating S-wave amplitude in EEWS, assessing 
their effectiveness and generalisability. The findings 
indicate that Pv is the most suitable parameter for esti-
mating S-wave amplitude, especially for PGA, a crucial 
indicator of ground shaking. Additionally, Pd shows 
robust performance, whereas Pa displays certain limita-
tions. The subsequent section will further explore these 
results and discuss their broader implications.

Efficacy of Pd in predicting S‑wave amplitude The corre-
lation between P-wave amplitude and S-wave amplitude 
is comprehensively analysed using the metrics R, R², 
RMSE, and 5-fold Cross-validation RMSE for the nine 
developed models. The Pd parameter consistently dem-
onstrated robust predictive power across its relationships 

Table 8  Comparison of trained and tested R² and RMSE values for 
the nine linear regression relationships

Relationship Trained model Tested model

R2 RMSE R2 RMSE

Pa vs. PGA 0.793 0.296 0.639 0.343
Pa vs. PGV 0.760 0.349 0.453 0.411
Pa vs. PGD 0.697 0.395 0.392 0.471
Pv vs. PGA 0.835 0.266 0.716 0.305
Pv vs. PGV 0.835 0.290 0.618 0.343
Pv vs. PGD 0.765 0.349 0.573 0.394
Pd vs. PGA 0.814 0.280 0.699 0.314
Pd vs. PGV 0.846 0.279 0.626 0.339
Pd vs. PGD 0.830 0.295 0.632 0.366
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with S-wave amplitudes, notably PGA, PGV, and PGD. 
It exhibited strong correlations, with R values exceeding 
0.9 and R² values of 0.814, 0.846, and 0.83, respectively, 
indicating significant predictive capabilities (Table 6). 
Furthermore, RMSE values for these relationships 
remained uniformly low, below 0.3, underscoring their 
prediction accuracy. The 5-fold Cross-validation RMSE 
results further reinforced the reliability of the Pd-based 
models, with values ranging from 0.239 to 0.389, indi-
cating good generalisation performance. These metrics 
collectively affirm Pd’s efficacy as a dependable predic-
tor of S-wave amplitude, reinforcing its value in EEWSs.

Limitations of Pa in predicting S‑wave amplitude Empir-
ical relationships utilising Pa to predict S-wave ampli-
tudes exhibited considerably poorer fits, ref lecting 
findings similar to those reported in studies on EEWSs 
employing MEMS sensors, such as the research con-
ducted by Wu et al. (2005b). Specifically, when estimat-
ing S-wave amplitudes (PGA, PGV, and PGD) using Pa, 
the relationships demonstrated lower R and R² values 
and higher RMSEs, indicating a less accurate fit. The 
5-fold Cross-validation RMSE values further revealed 
higher prediction errors across all folds for these three 
S-wave amplitude predictions, underscoring the models’ 
inadequacies. Notably, the relationship between Pa and 
PGD is weak, recording the lowest R and R² values of 
0.835 and 0.697, respectively, and the highest RMSE 
at 0.395. Cross-validation RMSEs for this relationship 
varied from 0.319 to 0.609, indicating substantial pre-
diction errors and poor generalisability to new data. 
These results highlight the limited effectiveness of Pa 
as a predictor of S-wave amplitude, especially in esti-
mating PGD.

Pv as the optimal predictor for S‑wave amplitude Despite 
not reaching the highest correlation levels achieved by 
Pd models, Pv has shown robust overall correlations as a 
predictor of S-wave amplitudes. The relationships involv-
ing Pv and various S-wave parameters—PGA, PGV, and 
PGD—demonstrate strong statistical correlations, with R 
values consistently above 0.85 and R² values exceeding 
0.75. Particularly notable are the Pv versus PGA and Pv 
versus PGV models, which recorded R and R² values of 
0.914 and 0.835, respectively. These high metrics sig-
nify strong linear associations between Pv and S-wave 
amplitudes.

The Pv vs. PGA model, with its low RMSE of 0.266, 
stands out among the Pv relationships, indicating minimal 
prediction error, reflecting the model’s accuracy in estimat-
ing PGA from Pv. Moreover, the 5-fold Cross-validation 
RMSE results further validate the reliability of the Pv-
based models. The consistently low error rates across all 
folds highlight excellent generalisability to new, unseen data. 
Additionally, the error distribution analysis of S-waves indi-
cated that the Pv vs. PGA model consistently demonstrates 
better performance regarding Standard Deviation and MAE 
than other models. These findings solidify Pv’s status as 
an effective and dependable indicator of S-wave amplitude, 
particularly for predicting PGA, and underscore its practical 
implications in real-world scenarios.

Testing data evaluation Evaluating the constructed mod-
els with a test dataset spanning 2020 to 2023 is a pivotal 
step in assessing the generalisability and robustness of the 
linear regression models. As shown in Table 7, the Pv vs. 
PGA relationship stands out with the highest R² of 0.716 
for the test dataset. It underscores its strong correlation and 
predictive capability alongside the lowest RMSE of 0.305, 
indicating minimal prediction errors. However, it contrasts 
with the Pa vs. PGD relationship, which exhibited the lowest 
tested R² of 0.392 and the highest RMSE of 0.471, high-
lighting considerable prediction variability. Further, rela-
tionships involving Pd overall showed commendable perfor-
mance, with the Pd vs. PGA relationship notably achieving 
an R² of 0.699 and an RMSE of 0.314, demonstrating its 
effectiveness.

Pv and Pd avoid overfitting and underfitting While the 
relationships with Pv and Pd demonstrated significant 
correlations with S-wave amplitudes, understanding their 
modelling characteristics regarding overfitting and under-
fitting is crucial (Section 4.3). For instance, relationships 
involving Pa, such as Pa vs. PGA, Pa vs. PGV and Pa 

Table 9  Weighted scores for assessing the efficacy of linear regres-
sion relationships in estimating s-wave amplitude from p-wave ampli-
tude

Equation Relationship Weighted score

1 Pa vs. PGA 0.98
2 Pa vs. PGV 0.43
3 Pa vs. PGD 0
4 Pv vs. PGA 1.29
5 Pv vs. PGV 1
6 Pv vs. PGD 0.51
7 Pd vs. PGA 1.19
8 Pd vs. PGV 1.12
9 Pd vs. PGD 0.96
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vs. PGD, exhibited overfitting with substantial drops in 
R² and increases in RMSE, suggesting poor generalisa-
tion. Conversely, the Pv vs. PGA relationship showed 
robust performance with high R² values and moderate 
RMSE increases during testing, underscoring its effec-
tive learning and generalisation capabilities. Similarly, 
models involving Pd, such as Pd vs. PGA, maintained 
high R² and moderate RMSE increases, indicating robust 
learning and predictive reliability. These insights high-
light the potential of Pv and Pd parameters in providing 
reliable predictions in real-world settings, with the Pv vs. 
PGA model marked as the most effective based on the 
measured metrics.

Rationale behind Pa’s poor performance and pv and pd’s 
effective predictive capabilities The observed poor cor-
relation when using Pa as the amplitude parameter for 
the initial motion can be attributed to its susceptibility 
to misinterpretations, especially in the context of nearby 
small seismic events. Pa may yield comparatively large 
values for such events, even though the resulting PGA 
and PGV values are relatively small. This discrepancy 
arises due to differences in frequency content and attenu-
ation. Pa primarily reflects the characteristics of a very 
high-frequency seismic wave, which attenuates more 
rapidly with distance and, therefore, has a lower poten-
tial for causing significant damage. In contrast, Pv and 
Pd capture lower frequency content, which attenuates 
less rapidly and is more indicative of the seismic energy 
that can cause considerable damage (Wu and Kanamori 
2005b). Therefore, Pv and Pd correlate strongly with 
critical seismic amplitude indicators like PGA and PGV. 
Notably, Pd demonstrates a notable correlation with peak 
amplitude parameters, which is pivotal in assessing the 
seismic impact (Wu and Kanamori 2005b). Another criti-
cal factor is the integration process used to determine 
Pv and Pd. This process acts as a natural low-pass fil-
ter, smoothing out high-frequency noise and providing 
a more stable signal. This stability is crucial for accu-
rate prediction models, as it reduces the likelihood of 
overfitting to noise and local site effects in the initial 
P-wave data. Therefore, using Pa as the triggering param-
eter in an EEW network is limited since it could lead to 
an increased occurrence of false alerts, undermining the 
effectiveness of the EEWS.

Results comparison to prior research To further contextual-
ise the findings, a comparative analysis is conducted between 
the results of this study and those reported in previous 

research papers that have explored empirical relationships. 
This study comprehensively compares various relation-
ships between P-wave and S-wave amplitude parameters, 
enhancing the understanding of seismic predictors by detail-
ing how different P-wave parameters correlate with S-wave 
amplitudes across various scenarios. In contrast, much of 
the literature, such as the studies by Wang et al. (2020) and  
Wu and Kanamori (2005b) have focused on specific relation-
ships like Pd vs. PGV.

For instance, a study by Wu and Kanamori (2008) in 
Taiwan, which used 780 records to establish a relation-
ship between Pd and PGV, reported a standard deviation 
(SDV) of 0.326 but did not specify R or  R2 values; simi-
larly, Wu and Mittal (2021) investigated this relationship 
using earthquake recordings from Japan, Taiwan, and 
Southern California, reporting an R-value of 0.873 and 
an SDV of 0.326, which is slightly lower than this study’s 
R-value of 0.920 and RMSE of 0.279 for the Pd vs. PGV 
model. Caruso et al. (2017) built a relationship between 
Pd and PGV using Italian earthquake data, resulting in an 
R² of 0.760 and an SDV of 0.36, which compares to the R² 
of 0.846 reported in this study for the same relationship, 
although with a slightly lower RMSE of 0.279. These 
comparisons highlight the robustness of the empirical 
relationships established in the current research within 
the context of NZ earthquake data, underscoring the 
comparative performance of these models against inter-
national studies. However, direct comparisons are com-
plicated by some studies not reporting all metrics such as 
R, R², or RMSE, which underscores the need for stand-
ardised reporting in seismic research.

Weighted scoring approach to identify optimal model In 
this study, the challenge of comparing linear regression 
models, particularly between Pv and Pd relationships, 
necessitated a method that could systematically evalu-
ate and select the optimal model. These models often 
yield similar results, making it difficult to discern the 
most effective one for EEW applications. To address this, 
the weighted scoring method is introduced (Griffith and 
Headley 1997). This approach allows for an objective 
comparison by focusing on crucial metrics from an EEW 
perspective. By assigning weights to different perfor-
mance metrics, such as R² and RMSE (see Formula 3), 
and evaluating them in a structured manner, this method 
helps prioritise models that are statistically robust and 
most relevant for practical implementation in seismic 
alert systems.
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Among the assessed models (Table 8 provides a clear 
summary of these scores), the relationship between Pv and 
PGA stood out significantly, achieving the highest weighted 
score of 1.29. This score reflects its robust correlation and 
consistent predictive accuracy, marking it as a highly effec-
tive model within EEWSs. Conversely, models involving 
Pa, such as Pa vs. PGV and Pa vs. PGD, exhibited much 
lower effectiveness, with scores of 0.43 and 0, respectively, 
indicating their limited utility in accurate S-wave prediction. 
Meanwhile, Pd-related models displayed strong performance, 
with scores of 1.19 for Pd vs. PGA and 1.12 for Pd vs. PGV, 
demonstrating their reliability in estimating S-wave ampli-
tude, albeit not surpassing the superior performance of the 
Pv vs. PGA relationship.

In conclusion, the study identifies the empirical rela-
tionship between Pv and PGA as the most suitable for 
estimating S-wave amplitude for the Canterbury region 
of NZ, demonstrating superior performance across train-
ing and testing datasets. This relationship’s robustness is 
critical for the real-time application of EEWS, provid-
ing a reliable basis for operational success. Additionally, 
the chosen relationship enhances the integration of the 
S-wave-based PLUM algorithm with the P-wave detec-
tion algorithm, effectively reducing the inherent limita-
tions of the PLUM algorithm’s warning time. As outlined 
in the case study below, this relationship is also crucial 
in establishing a P-wave amplitude threshold. By set-
ting a critical Pv value threshold, the EEWS can trigger 
alerts when this value is exceeded, indicating potential 
significant ground shaking.

Case study: establishing EEW alert threshold 
for earthquakes in Canterbury

The study presents a case study showcasing the applica-
tion of the selected empirical relationship in determining 
the threshold for felt earthquakes. The case study aims 
to establish the Pv threshold that would enable the issu-
ance of alerts for a level of shaking that would be felt in 
the Canterbury region of NZ. This application uses the 
new Ground Motion to Intensity Conversion Equations 
(GMICEs) (Moratalla et al. 2020) constructed for NZ to 
derive the Pv threshold.

Method

MMI selection The initial step involves selecting a Modi-
fied Mercalli Intensity (MMI) range suitable for EEW 
purposes. This range determines the ground-shaking 
intensity levels that necessitate issuing an alert. For this 
selection, the study references the MMI descriptions pro-
vided by GeoNet (Dowrick 1996; Dowrick et al. 2008). 
This ensures alignment with the regional seismic condi-
tions and enhances the relevance of our chosen MMI 
range.

S‑wave parameter threshold identification To deter-
mine the threshold value for the S-wave PGA, we use 
Moratalla et  al. (2020) study which introduced new 
GMICEs designed explicitly for NZ. This study estab-
lished relationships between the earthquakes’ MMI scale 
and PGA values. By plotting this relationship, the PGA 
value associated with perceivable ground shaking in the 
chosen MMI range can be identified. This value is then 
employed as the S-wave threshold to indicate felt ground 
shaking.

P‑wave parameter threshold derivation Utilising the 
selected empirical relationship between Pv and PGA, the 
corresponding threshold value for the P-wave parameter 
(Pv) is calculated based on the identified S-wave parameter 
(PGA) threshold.

Results

According to the GeoNet MMI description (Dowrick 
1996; Dowrick et al. 2008), an MMI value of 5 is selected 
as the threshold for EEW activation. This level represents 
shaking generally felt outdoors, awakens most sleepers, 
and may alarm some individuals indoors.

PGA values corresponding to an MMI of 5 are calcu-
lated using the GMICEs (Formula 4 and 5) provided by 
Moratalla et al. (2020). Figure 6 graphically depicts the 
relationship between MMI and PGA, where the chosen 
MMI threshold of 5, relevant to EEW generation, is indi-
cated with a green vertical line.

(4)
log (PGA) = (MMI − 1.7601)∕1.992 if MMI < 5.5277



Earth Science Informatics 

PGA threshold identification The corresponding log 
(PGA) threshold for S-waves is identified by examining 
the intersection point on the graph depicted in Fig. 6. 
At this juncture, the log (PGA) value, determined as the 
threshold for S-waves, is 1.63, as indicated by the red 
dashed horizontal line on the graph. Upon converting 
this logarithmic value back to its original scale, the PGA 
threshold is established at 42.3  cm−2.

Pv threshold derivation Following the identification of 
the PGA threshold, this value is applied to the selected 
empirical relationship, defined as log (PGA) = 0.85 (±0.01) 
log (Pv) + 1.48 (±0.04), to derive the corresponding Pv 
threshold for event detection. This process established a Pv 
threshold ranges between 0.6 and 0.8  cm−1 according to the 
uncertainty in the linear regression coefficients. Selecting 
a Pv threshold of 0.6  cm−1 is considered most suitable, as 
a higher threshold may increase the risk of missed alerts, a 
critical concern in EEWSs.

(5)
log (PGA) = (MMI + 1.9095)∕3.9322 if MMI ≥ 5.5277

When the Pv exceeds 0.6   cm−1, the event is highly 
likely to be felt. Implementing a Pv threshold at 0.6  cm−1 
would have enabled the EEWS to issue alerts for per-
ceivable earthquake events. This threshold is applicable 
both in on-site EEWSs, where individual stations operate 
independently to issue warnings and in regional EEWSs, 
where data from multiple stations are aggregated to issue 
warnings.

This application’s MMI value (5 or above) choice for 
triggering EEW alerts is grounded in GeoNet’s MMI 
description. This approach serves as an illustrative exam-
ple, showcasing the practicality of the selected relationship 
for EEW purposes with a specific focus on MMIs indica-
tive of significant seismic events. The selection of the MMI 
value potentially leads to debates among social and tech-
nical scientists regarding the most suitable threshold for 
generating alerts using the detected P-wave 3-second win-
dow. The ability to customise the threshold based on unique 
regional characteristics and priorities remains a valuable 
consideration.

Limitations and future work

While providing valuable insights into P and S-wave 
amplitude relationships for NZ based on data from the 
Canterbury region, the study has certain limitations and 
opens avenues for future research.

The study’s data source primarily relies on ground 
motion data from the CanNet network, which utilises 
MEMS-based sensors. This aligns with the implementa-
tion of the CRISiSLab EEW network. Future work aims 
to extend the analysis by incorporating a more extensive 
dataset from GeoNet’s strong motion sensors, provid-
ing a broader spectrum of ground motion data across 
NZ. Including more data will facilitate the exploration 
of complex machine learning-based models to construct 
more nuanced and accurate relationships for S-wave 
amplitude, thereby enhancing the precision and effec-
tiveness of the EEWS. This expansion will also allow 
for a more comprehensive investigation into the P and 
S-wave amplitude relationships, addressing the current 
data source’s limitations and broadening the research 
scope. Further, it is important to note that the results 
from this study are not compared with machine learning-
based approaches found in the literature, as it would not 

Fig. 6  Relationship between MMI and PGA using GMICEs (1) and 
(2) as provided by Moratalla et al. (2020). The vertical green line rep-
resents the selected MMI value (MMI 5), and the horizontal red line 
indicates the PGA threshold for perceivable ground shaking
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be a fair comparison due to the differences in dataset 
sizes and complexities. Future work with a larger dataset 
will enable a more equitable evaluation of the perfor-
mance metrics between linear regression and machine 
learning models.

This study’s analysis considered stations installed 
within a single Site Class to maintain consistent soil char-
acteristics throughout. Future research plans to expand the 
study to include different Site Classes within NZ. This 
expansion will provide a more comprehensive understand-
ing of regional variability in P and S-wave amplitude rela-
tionships, contributing to the findings’ generalisability 
and enhancing the EEWS’s applicability across diverse 
geological settings.

Conclusion

This study makes a significant contribution by comprehen-
sively comparing various relationships between P-wave 
and S-wave amplitude parameters, distinguishing itself 
from prior studies that often focused on singular or limited 
relationships. Among the various relationships examined, 
it is evident that Pv exhibited a strong and dependable 
correlation with PGA.

This research marks a crucial step towards estab-
lishing a robust, low-cost EEWS in NZ. Having imple-
mented a community-engaged, low-cost EEW network 
in NZ (Prasanna et  al. 2022), the findings will be the 
basis for linking detected P-waves to impending ground 
shaking caused by S-waves. It facilitates the integration 
of the S-wave-based PLUM algorithm with the P-wave 

detection algorithm, effectively overcoming the limited 
warning time inherent to the PLUM algorithm. As shown 
in the case study, this relationship provides a foundational 
element for determining the suitable threshold for EEW 
alerts, enhancing the system’s overall responsiveness and 
reliability.

By choosing Pv vs. PGA as the suitable relationship, 
we showcased its practicality by setting a threshold for the 
selected P-wave parameter (Pv) that triggers EEW alerts 
in the Canterbury region of NZ, employing an application 
using GMICEs. This case study approach is particularly 
tailored to detecting earthquakes resulting in perceiv-
able ground shaking within the Canterbury region of NZ. 
However, the approach used in this study is more com-
prehensive than the specific use case presented; it holds 
the potential for application and extension to other regions 
in NZ or areas with similar seismic characteristics. Fur-
thermore, employing this approach to establish empirical 
relationships between P and S-wave amplitudes for other 
regions enables the determination of thresholds for detect-
ing ground shaking, enhancing the effectiveness of an 
EEWS tailored to specific geographic locations and seis-
mic conditions.

This study has laid the foundation for establishing a 
relationship between P and S-wave amplitudes for EEW, 
contributing to improved seismic hazard mitigation in NZ. 
There are opportunities for future research on prioritising 
the expansion of the ground motion dataset and exploring 
complex machine learning-based techniques for predict-
ing S-wave amplitude. The insights gained from this study 
provide a valuable resource for enhancing the accuracy and 
timeliness of EEW in NZ, ultimately safeguarding lives and 
property during seismic events.
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Fig. 7  It shows the original and cleaned training data for relationships using Pa as the input parameter. Panel (a) displays Pa vs. PGA, panel (b) 
shows Pa vs. PGV, and panel (c) depicts Pa vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)

Appendix
Figs. 7, 8, 9, 10, 11, 12 and 13
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Fig. 8  It shows the original and cleaned training data for relationships using Pv as the input parameter. Panel (a) displays Pv vs. PGA, panel (b) 
shows Pv vs. PGV, and panel (c) depicts Pv vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)
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Fig. 9  It shows the original and cleaned training data for relationships using Pd as the input parameter. Panel (a) displays Pd vs. PGA, panel (b) 
shows Pd vs. PGV, and panel (c) depicts Pd vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)
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Fig. 10  It shows the original and cleaned testing data for relationships using Pa as the input parameter. Panel (a) displays Pa vs. PGA, panel (b) 
shows Pa vs. PGV, and panel (c) depicts Pa vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)
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Fig. 11  It shows the original and cleaned testing data for relationships using Pv as the input parameter. Panel (a) displays Pv vs. PGA, panel (b) 
shows Pv vs. PGV, and panel (c) depicts Pv vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)
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Fig. 12  It shows the original and cleaned testing data for relationships using Pv as the input parameter. Panel (a) displays Pv vs. PGA, panel (b) 
shows Pv vs. PGV, and panel (c) depicts Pv vs. PGD, with each panel comparing original data (left) and data post-outlier removal (right)
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Fig. 13  it shows the histograms 
that show the frequency distri-
bution of residuals in estimating 
S-wave amplitudes where plot 
(a) shows the histogram for Pa 
vs. PGA, (b) Pa vs. PGV, (c) Pa 
vs. PGD, (d) Pv vs. PGA, (e) Pv 
vs. PGV, (f) Pv vs. PGD, (g) Pd 
vs. PGA, (h) Pd vs. PGV and (i) 
Pd vs. PGD
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