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Abstract
The elastic modulus is one of the important parameters for analyzing the stability of engineering projects, especially dam 
sites. In the current study, the effect of physical properties, quartz, fragment, and feldspar percentages, and dynamic Young’s 
modulus (DYM) on the static Young’s modulus (SYM) of the various types of sandstones was assessed. These investiga-
tions were conducted through simple and multivariate regression, support vector regression, adaptive neuro-fuzzy inference 
system, and backpropagation multilayer perceptron. The XRD and thin section results showed that the studied samples were 
classified as arenite, litharenite, and feldspathic litharenite. The low resistance of the arenite type is mainly due to the pres-
ence of sulfate cement, clay minerals, high porosity, and carbonate fragments in this type. Examining the fracture patterns 
of these sandstones in different resistance ranges showed that at low values of resistance, the fracture pattern is mainly of 
simple shear type, which changes to multiple extension types with increasing compressive strength. Among the influencing 
factors, the percentage of quartz has the greatest effect on SYM. A comparison of the methods' performance based on CPM 
and error values in estimating SYM revealed that SVR (R2 = 0.98, RMSE = 0.11GPa, CPM =  + 1.84) outperformed other 
methods in terms of accuracy. The average difference between predicted SYM using intelligent methods and measured SYM 
value was less than 0.05% which indicates the efficiency of the used methods in estimating SYM.
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DYM	� Dynamic Young’s modulus
ML	� Machine learning
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MLR	� Multivariate linear regression
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RFR	� Random forest regression
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ANFIS	� Adaptive neuro-fuzzy inference system
RMSE	� Root mean squared error
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CART​	� Classification and regression tree
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UCS	� Uniaxial compressive strength
ANOVA	� Analysis of variance
D	� Density
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SVR	� Support vector regression
Eqs.	� Equations
SVM	� Support vector machine
XLD	� Xiaolangdi Dam
GMF	� Gaussian membership function
TGD	� Three Gorges dam
MF	� Membership functions
Qzr	� Quartz ratio
U	� Water uptake
Qz or Q	� Quartz
n	� Porosity
Ft or FM	� Fragment
SHN	� Schmidt hardness number
Ch	� Chert
ISRM	� International society for rock mechanics
Fr or FP	� Feldspar
Vs	� Shear wave velocity
Fm-m	� Metamorphic fragments
ASTM	� American society for testing and materials
MFIS	� Mamdani fuzzy inference system
FFNN	� Feedforward neural networks

Introduction

The assessment of rock geo-mechanical properties plays 
a pivotal role in understanding the behavior of subsurface 
formations and optimizing various engineering applications 
(Abdelhedi et al. 2023; Liu et al. 2023; Ameen et al. 2009). 
The elastic modulus represents the rigidity and resistance 
of the rocks to failure. This parameter is one of the impor-
tant parameters for analyzing the stability of engineering 
structures, especially dam sites. Recent advancements in the 
field have witnessed a diverse array of studies employing 
innovative approaches to characterize rock dynamic prop-
erties (Li and Dias 2023; Bouchaala et al. 2024; Motahari 
et al. 2022; Pappalardo and Mineo 2022). This introduction 
explores key findings from prominent research articles that 
delve into the intricacies of rock mechanics and elastic mod-
ulus estimation. The focus is on factors affecting dynamic 
properties and various methodologies, including traditional 
experimental approaches and innovative machine learning 
(ML) techniques.

Zhang et al. (2023) summarized factors affecting static 
and dynamic properties and proposed a method for extract-
ing static Young’s moduli (SYM) by analyzing elastic 
wave velocities of the various rocks. Rahman and Sarkar 
(2023a) explored correlations between uniaxial compres-
sive strength and dynamic elastic properties, emphasizing 
diverse rock types. Shahani et al. (2022) applied machine 
learning (ML) models for intelligent predictions at Thar 
Coalfield, while Manda et al. (2023) used a machine learn-
ing approach to predict geo-mechanical properties from 

well logs. Additionally, Li and Dias (2023) assessed rock 
elasticity modulus using hybrid random forest regression 
(RFR) models, combining data-driven and soft techniques. 
Daraei and Zare (2019) predicted the static elastic modu-
lus of limestone using downhole seismic tests, demon-
strating the applicability of ML to diverse geological 
formations. Mahmoud et al. (2020) applied backpropa-
gation multilayer perceptron (BPMLP), support vector 
regression (SVR), and Mamdani fuzzy inference system 
(MFIS) for SYM predictive models of sandstone forma-
tions. Khan et al. (2022) utilized multivariate statistics 
alongside ML models to forecast uniaxial compressive 
strength (UCS) and SYM (static Young's modulus). They 
stated that the random forest regression (RFR) has the best 
performance for predicting. Researchers have increasingly 
turned to artificial neural networks (ANNs), multivariate 
linear regression (MLR), and support vector regression 
(SVR) for their efficacy in estimating the dynamic and 
mechanical characteristics of rocks (Motahari et al. 2022; 
Mahmoud et al. 2020; Rastegarnia et al. 2021). Pappalardo 
and Mineo (2022) predicted static elastic modulus through 
regression models and BPMLP, showcasing the versatil-
ity of predictive modeling in rock mechanics. Rastegarnia 
et al. (2021) focused on the engineering characteristics 
and static properties of clay-bearing rocks, contributing 
valuable insights into this specific rock type. They stated 
that the BPMLP method has a conservative trend for fore-
casting SYM. Fang et al. (2023) assessed the applicability 
of BPMLP, SVR, ANFIS, and multiple linear regression 
(MLR) methods to estimate the SYM and UCS of the rock 
samples. Khosravi et al. (2022) contributed to the evalua-
tion and prediction of both static and dynamic parameters 
in rocks, offering a holistic perspective on rock behavior. 
Additionally, Onaloa et al. (2018) provided a SYM model 
for formation evaluation, enriching the understanding of 
rock properties for practical applications in the petroleum 
industry. Guo et al. (2023) conducted a comprehensive 
assessment of rock geo-mechanical properties and wave 
velocities, providing valuable insights into the complex 
interplay between various rock parameters. They stated 
that the SVR method has a higher accuracy than ANFIS, 
BPMLP, and MLR models. Soustelle et al. (2023) contrib-
uted to the understanding of carbonates by investigating 
the relationship between static and dynamic elastic mod-
uli, shedding light on the nuanced behavior of these forma-
tions. In the realm of carbonate rocks, Hadi and Nygaard 
(2023) focused on estimating UCS and SYM using petro-
physical properties, offering practical applications for the 
petroleum industry. Abdi et al. (2023) employed the RFR 
for forecasting the SYM of weak rock samples, address-
ing challenges associated with rocks of lower strength. 
Ebrahimi et al. (2023) verified the use of daily drilling 
reports in conjunction with ML methods for the estimation 
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of Young’s modulus, showcasing the potential for real-
time applications in the oil, gas, and petrochemical indus-
tries. Kheirollahi et al. (2023) integrated traditional well 
data with computational techniques to enhance velocity 
estimations. Ghafoori et al. (2018) used statistical meth-
ods to forecast SYM in the Asmari formation, promising 
improved accuracy. Their results showed that the dynamic 
Young's modulus was 5 times larger than the static Young's 
modulus. Motahari et al. (2022) presented a new relation-
ship between SYM and DYM of the feldspathic litharen-
ite samples. They stated that by increasing the amount of 
quartz in the samples, the compressional and shear wave 
speeds increased. Also, BPMLP, SVR, and MLR methods 
are conservative in estimating Vs. Comparing the perfor-
mance of the methods in estimating Vs showed that SVR 
has higher accuracy than other models. Xie et al. (2024) 

investigated the factors affecting shear wave velocity (Vs) 
of the limestone samples using Gaussian process regres-
sion (GPR), BPMLP, and MLR models. They stated that 
the GPR showed higher accuracy compared to the BPMLP 
and MLR. Table 1 summarizes some of the previous rela-
tionships to estimate the SYM.

Considering the challenges in measuring the mechani-
cal properties of rocks in civil and mining projects, this 
research prioritizes SYM estimation using simple and 
cost-effective methods. After assessing petrography, physi-
cal and mechanical properties of the sandstone samples 
types, simple regression (SR), MLR, and artificial intel-
ligence methods including SVR, ANFIS, and backpropa-
gation multilayer perceptron (BPMLP) were employed to 
build SYM prediction models. The models utilized miner-
alogy, physical properties, and dynamic Young’s modulus 

Table 1   Some of the previous relationships to estimate the SYM

Abbreviations: D Density, U water uptake, n porosity, DYM Dynamic Young’s modulus, SYM Static Young’s modulus, Vp Compressional wave 
velocity

Provided relationship Units and variables Authors Rock type Equations 
no. (Eqs.)

SYM = 0.0015Vp − 2.516 SYM (GPa) and Vp (m/s) Kurtulus et al. (2012) Travertine (1)
SYM = 23.643 -1.786*U SYM (GPa) and U (%) Fang et al. (2023) using U Sandstones (2)
SYM = 23.52–1.1*n SYM (GPa) and n (%) Fang et al. (2023)-using n Sandstones (3)
SYM = 11.237Vp − 6.894 SYM (GPa) and Vp (km/s) Bejarbaneh et al. (2018) Sandstones (4)
SYM = 2.06Vp2.78 SYM (GPa) and Vp (m/s) Moradian and Behnia (2009) Various stones (5)
SYM = 0.005Vp + 0.621 SYM (GPa) and Vp (m/s) Abdi et al. (2023) Sandstones (6)
SYM = 0.091*DYM^(1.552) SYM (GPa) and DYM (GPa) Davarpanah et al. (2020) Different stones (7)
SYM = 0.867*DYM-2.085 SYM (GPa) and DYM (GPa) Brotons et al., (2014) Various stones (8)
SYM = 0.932*DYM-3.421 SYM (GPa) and DYM (GPa) Brotons et al., (2016) Various stones (9)
SYM = 0.564*DYM-3.494 SYM (GPa) and DYM (GPa) Fei et al. (2016) Sandstones (10)
SYM = 0.022*DYM^(1.774) SYM (GPa) and DYM (GPa) Ghafoori et al. (2018) Limestone rocks (11)
SYM = 0.581*DYM-4.71 SYM (GPa) and DYM (GPa) Salehi et al. (2011) Limestone rocks (12)
SYM = 0.352*DYM^(1.149) SYM (GPa) and DYM (GPa) Najibi et al. (2011) Limestone rocks (13)
SYM = 0.541*DYM + 12.582 SYM (GPa) and DYM (GPa) Ameen et al. (2009) Carbonate rocks (14)
SYM = 0.008Vp − 5.619 SYM (GPa) and Vp (m/s) Azimian and Ajalloeian (2015) Marl (15)
SYM = 10.67Vp − 18.71 SYM (GPa) and Vp (km/s) Yasar and Erdogan (2004) Carbonate rocks (16)
SYM = 0.919Vp^1.9122 SYM (GPa) and Vp (km/s) Altindag (2012) Sedimentary rocks (17)
SYM = 0.4029*DYM SYM (GPa) and DYM (GPa) Pereira et al. (2021) Basalt rocks (18)
SYM = 0.0811*DYM^ (1.491) SYM (GPa) and DYM (GPa) Daraei and Zare (2019) Limestone (19)
SYM = 0.7134*DYM + (1.9584) SYM (GPa) and DYM (GPa) Onaloa et al. (2018) Various rocks (20)
SYM = 0.03*DYM^ (1.76) SYM (GPa) and DYM (GPa) Khosravi et al. (2022) Limestone (21)
SYM = 2.08*DYM^0.54 SYM (GPa) and DYM (GPa) Guo et al. (2023) Sedimentary rocks (22)
SYM = 0.69*DYM-16.58 SYM (GPa) and DYM (GPa) Sharifi et al. (2021) Sedimentary rocks (23)
SYM = 0.49*DYM-7.651 SYM (GPa) and DYM (GPa) Sharifi et al. (2023) Carbonate rocks (24)
SYM = 1.09*DYM-17.99 SYM (GPa) and DYM (GPa) Kotsanis et al. (2021) Prasinites (25)
SYM = 27.161n^-0.37 SYM (GPa) and n (%) Köken (2021) Sandstones (26)
SYM = 35.87–1.741n-0.29ft SYM (GPa), Ft (%), and n (%) Köken (2021) Sandstones (27)
SYM = 14.20 -1.68n + 0.22Qz SYM (GPa), Qz (%), and n (%) Köken (2021) Sandstones (28)
SYM = -11.11 + 9.05Vp SYM (GPa) and Vp (km/s) Köken (2021) Sandstones (29)
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(DYM) from obtained sandstone samples at two large dam 
sites in China to enhance precision and overcome limita-
tions in predicting SYM.

Case studies

This study investigates the engineering geological charac-
teristics of the two large dam sites in China. Situated on 
the Yellow River in China, the Xiaolangdi Dam (XLD) 
was completed in 1995, boasting dimensions of 154 m in 
height and 1650 m in length. Nestled within Henan province, 
approximately 20 km northwest of Luoyang, the XLD serves 
a diverse array of functions, including electricity genera-
tion and flood control. The geological makeup of the dam 
site comprises sedimentary rocks, primarily sandstone, and 
mudstone, forming its foundational base. These rock forma-
tions significantly influence both the stability and design 
of the dam. Beneath the surface lie Permian and Triassic 
bedrock, overlaid by Quaternary deposits. The Permian for-
mation features reddish and brown silty claystone and argil-
laceous siltstone, interspersed with layers of fine calcareous 
sandstone and medium-coarse siliceous sandstone. Similarly, 
the Triassic formation consists of red-brown limestone sand-
stone, alongside fine siliceous or calcareous sandstones and 
argillaceous siltstone, occurring in stratified layers. Under-
standing these geological characteristics is paramount for 
ensuring the durability and functionality of the Xiaolangdi 
Dam. Engineers and geologists meticulously consider these 
factors during the design, construction, and ongoing main-
tenance processes to safeguard its integrity and effectiveness 
for its intended purposes.

Constructed in 2006 on the Yangtze River, the Three 
Gorges dam (TGD) serves a multifaceted role, encompassing 
electricity generation, augmentation of the river's shipping 
capacity, and mitigation of downstream flooding risks. The 
dam site presents a rich geological tapestry, characterized 
by sandstone, shale, and limestone formations. These sedi-
mentary rocks exhibit variances in strength, permeability, 
and stability. The geological profile of the TGD site encom-
passes a blend of sedimentary rock formations, along with 
considerations for seismic activity risks, challenges associ-
ated with slope stability, and strategies for sedimentation 
management. This study focused on the analysis of sand-
stone types sourced from the dam site. Figure 1 depicts the 
specific locations of the studied dam sites, with a predomi-
nant emphasis on sampling from the TGD. Further details 
regarding the sampling locations, gathered from both the 
dam axis and reservoir, are illustrated in Fig. 1 and Table 2. 
The sampling locations along the reservoir and TGD axis 
cover depths ranging from 0.50 to 38 m. These areas pri-
marily comprise sandstone formations, including arenite, 
litharenite, and feldspathic litharenite types, predominantly 

sourced from the Badong formation dating back to the Juras-
sic period (Table 2).

To ensure precise mechanical property measurements, 
samples exhibiting cracks and joints were intentionally 
excluded. This precaution was taken due to the anisotropic 
behavior of these features, which can lead to stress concen-
tration and potential measurement errors (Yu et al. 2021). 
Consideration of anisotropy is particularly critical in the 
design of rock structures, especially when dealing with 
metamorphic rocks like schist, which are characterized by 
their sheet-like structure and mechanical variability (Fang 
et al. 2023).

Materials and methods

Laboratory tests

In the laboratory studies, we examined 122 rock samples 
with a length to diameter ratio ranging from 2.5 to 3 under 
natural conditions. To mitigate stress concentration con-
cerns, specimens exhibiting joints and cracks were omit-
ted. Prior to testing, the ends of the specimens were par-
allelized and polished. For petrography analysis, 122 thin 
sections were meticulously prepared and scrutinized in the 
microscopic laboratory using transmitted light. Thin sec-
tion identifications of the samples were conducted based on 
Folk (1980) instructions. X-ray diffraction (XRD) analysis 
employed a D8-Advance, Bruker AXS equipment via cop-
per Kα beam (λ = 1.5406Å) with a 2θ angle range of 2 to 
60 degrees, using powder of samples with 50-micron size.

The determination of the quartz ratio (Qzr) was derived 
from XRD results using Eq. 30, incorporating the percent-
ages of quartz (Qz), fragment (Ft), and feldspar (Fr).

Density (D), porosity (n), Schmidt hardness number 
(SHN), and water uptake by weight (U) were determined 
using methods specified in ISRM standards (ISRM 1981). 
The porosity test was determined based on the saturation 
and immersion method. This method is used for rock sam-
ples with regular, irregular geometric shapes or rock pieces. 
Also, the sample should not be crisp and fragile and should 
not be swollen and should not disintegrate or disintegrate 
due to exposure to water or a greenhouse. In this test, the 
sample is washed with water to remove the dust on the sur-
face of the water. The sample is placed in water and in a 
vacuum of less than 800 pascals for at least one hour to be 
saturated. During this period, the sample should be moved 
alternately to remove the air bubbles. Then the sample is 
placed in the basket and enters the water tub. In this case, the 

(30)Qzr =
Qz%

(Qz% + Ft% + Fr%)



Earth Science Informatics	

basket is hung on the scale with a wire. The saturated mass 
of the basket and the sample is measured with an accuracy 
of 0.1 g. Finally, the result of dividing the volume of pores 
by the total volume of the sample, which is expressed as a 
percentage, is called porosity.

(31)n(%) =
V
v

V
t

∗ 100

In this Eq. n is porosity, Vv is volume of pores in the 
sample, and Vt is total volume of rock sample.

In the present investigation, we employed the N-type 
Schmidt hammer, featuring a tensioned spring exerting 
force near the specimens. This device was consistently 
used in a vertical orientation for all samples in this study. 
The obtained hardness is affected by the hammer's orienta-
tion, using upright, horizontal, or upright positions within 
a ± 5 degrees deviation (ISRM 1981).

Fig. 1   Studied dams: Xiaol-
angdi dam cross-sectional view 
(a part; abbreviations: SIS: 
sandstone interbedded with silt-
stone, FS: fine sandstone, 
SSCM: siltstone interbedded 
with sandstone, conglomerate 
and silty mudstone, FSCS: fine 
sandstone interbedded with silt-
stone and conglomerate, S: silt-
stone, SC: silty claystone, SSC: 
fine sandstone interbedded with 
siltstone and silty claystone, al 
Q3: alluvium deposit of sand 
and gravel of the Pleistocene, F: 
fault ), and Three Gorges dam 
site and reservoir geological 
map (b part)

Table 2   Geological properties of the collected samples

Site Geological Age Sandstone types based on the Folk (1980) classification Number of used 
samples

Depth (m)

XLD Triassic and Permian Feldspathic litharenite and litharenite 40 0.20–86
TGD Jurassic Arenite, feldspathic litharenite, and litharenite 82 0.50 to 38
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Compressional (Vp) and shear (Vs) wave tests followed 
the ASTM D2845 standard at a frequency of 0.50MHz 
(ASTM 2008). The device used to measure the Vp and Vs 
is the Pundit Plus device made by Proceq, Switzerland. This 
device has a transducer with pressure and shear wave speed, 
frequency 1 MHz, diameter and length 50 mm, maximum 
force tolerance 220 kilonewtons and temperature range 0 
to 70 degrees. Prior to mechanical tests, sample ends were 
parallelized. Uniaxial compressive strength (UCS) tests 
were conducted per ASTM's recommended method with a 
constant loading rate of 0.70MPa/S (ASTM 2002). In the 
UCS test, when a static load was gradually applied to the 
sample, the axial strain was measured using a strain gauge. 
Then the stress–strain curve was drawn. Various defini-
tions of Young’s modulus are provided in Fig. 2. The secant 
static Young’s modulus (SYM) was determined using the 
stress–strain curve. The DYM was determined using Eq. 32 
(Pereira et al. 2021).

where, Vp, Vs, and D are in km/s and g/cm3, respectively.

The SVR approach

The SVR algorithm aims to identify the optimal regres-
sion function, minimizing prediction error while adhering 
to specified ε-tube bounds (Hussan et al. 2023; Fang et al. 
2023). This method looks for a border that, in addition to 
separating the data of two groups, has the greatest distance 
to the closest data of the two groups (Kookalani and Cheng 
2021; Maleki and Emami 2019). The closest data of each 
group to the decision boundary are called support vectors. 
In some problems, the model input data are not linearly 
separable for classification. In such cases, the support vec-
tor machine (SVM) uses a non-linear imager to transfer the 
data to a new and larger space (Fang et al. 2023; Dutta et al. 
2024; Guo et al. 2023). Upon reviewing published articles 
on estimating using SVR, it was evident that among vari-
ous kernel functions, the radial basis function (RBF) out-
performs others in terms of efficiency (Fang et al. 2023; 

(32)DYM =
D*Vs2(3*Vp2 - 4*Vs2)

Vp2 - Vs2

Khosravi et al. 2022). Consequently, we adopted this specific 
kernel function to estimate SYM in our research.

The ANFIS

The ANFIS, a hybrid machine learning (ML) approach 
merging ANNs and fuzzy logic, facilitates data-driven 
inference and predictions (Khajevand 2022). In this study, 
ANFIS based on the Gaussian membership function (GMF) 
and Sugeno fuzzy system was employed to estimate SYM. 
ANFIS-GMF incorporates fuzzy logic, managing uncer-
tain information through linguistic variables and member-
ship functions (Khajevand 2023a). Utilizing feedforward 
neural networks (FFNN), often with a hidden layer, this 
method maps input variables to output values, harnessing 
the strengths of fuzzy logic and NNs (Tashayo et al. 2020). 
Fuzzy logic handles linguistic rules and input-to-fuzzy set 
mapping, while the neural network learns fuzzy set param-
eters from data (Guo et al. 2023; Hasheminezhad and Sad-
eghi 2023; Khajevand 2023b).

The BPMLP method

The BPMLP refers to a type of ANN that uses the backprop-
agation algorithm for training. In a multilayer perceptron, 
information moves through an input layer, one or more hid-
den layers, and an output layer (Shamsashtiany and Ameri 
2018). The BPMLP method was completely described in 
previous studies (Guo et al. 2023; Khajevand 2023b, 2023a). 
In the current research, a feed-forward back-propagation 
algorithm with Levenberg Marquart (LM) training algo-
rithm was used for the BPMLP training. We utilized col-
lected equations from previous studies to predict the number 
of neurons using the BPMLP method (Fang et al. 2024). 
Accordingly, neurons 1 to 4 were investigated. MATLAB 
software was employed for BPMLP implementation to esti-
mate the SYM.

Normalizing data and evaluation metrics

In this research, for intelligent modeling, normalization of 
data between -1 and 1 was done using Eq. 33.

Fig. 2   Various definitions of 
Young’s modulus



Earth Science Informatics	

Here, An, Aa, Amin, and Amax​ represent the normalized, 
actual, minimum, and maximum values for the A parameter, 
respectively. To evaluate the effectiveness of the methods, 
calculated performance metric (CPM), mean absolute per-
centage error (MAPE), variance accounted for (VAF), root 
mean squared error (RMSE), and determination coefficient 
were employed (Eqs. 34–37). These metrics were exten-
sively used for evaluating models (Shakir 2023; Xiao et al. 
2023; Song et al. 2022).

where, NSYM, ASYM, and PSYM represent the total experi-
ments of SYM, actual and predicted SYM values, 
respectively.

Results and discussion

In this section, we present and compare laboratory test 
results of intact rock at the investigation sites, followed by 
the introduction of various experimental relationships and 
models for estimating the SYM.

One of the indirect methods of estimating rock proper-
ties at the construction site of construction projects is the 
use of indirect methods such as empirical relationships and 
intelligent models (Teshnizi et al. 2021). For this reason, in 
recent years, the presentation of models and relationships to 
estimate mechanical and dynamic properties, and destructive 
tests have been of interest to researchers. These methods are 
more important in the stages of identifying constructions 
and especially when sampling weak rocks (Pappalardo et al. 
2022).

Analysis of laboratory results

The petrographic and geological features of the samples 
under examination are displayed in Table 2. Figures 3 and 4 

(33)An= 2(
A

a
- Amin.

Amax. - Amin.

) − 1

(34)CPM = R.2 − RMSE + VAF

(35)RMS

⎛
⎜⎜⎝

���� 1

NSYM

NSYM�
i=1

�
ASYM − PSYM

�2⎞⎟⎟⎠
E =

(36)VAF =

[
1−

var(ASYM - PSYM)

var(ASYM)

]

(37)
MAPE =

NSYM∑
i = 1

���(
ASYM - PSYM

ASYM

)
���

NSYM

present examples of laboratory activities, including an XRD 
pattern of a Feldspathic litharenite sample and thin sections 
from the studied samples.

Table 3 presents the geo-mechanical properties of 122 
samples. Through XRD analysis (evidenced by a sample in 
Fig. 4) and thin section examination (some images in Fig. 3), 
the 122 sandstone samples were classified into arenite, 
litharenite, and feldspathic litharenite per Folk's (1980) cat-
egorization, encompassing components like feldspar, murky 
minerals, quartz, albite, carbonate and metamorphic frag-
ments, and chert. Gypsum and calcite, as types of cement, 
were characterized by semi-rounded to angular grains and 
poor to medium sorting.

The examined samples (refer to Table 3) exhibit a broad 
spectrum of properties. SYM values range from 8.62 GPa 
to 35.02 GPa, while DYM values span from 29.81 GPa 
to 85.26 GPa. Porosity levels vary between 0.001% and 
13.08%, and Schmidt hardness number (SHN) varies from 
29 to 55. Density values fall in the ranges of 2.35 g/cm3 
to 2.77 g/cm3. Based on the results, arenite and litharenite 
samples, incorporating Gypsum and clay elements, exhibit 
the lowest P-wave velocity, density, SHN, DYM, UCS, and 
SYM values. Conversely, specimens with high Qtr demon-
strate the highest dynamic and static values.

The mineralogy of sandstone significantly influences 
its mechanical properties. For instance, quartz-rich sand-
stones tend to be harder and more durable, while clay-rich 
varieties may exhibit lower strength. The arrangement and 
interlocking of minerals impact factors like compressive 
strength, porosity, and permeability in sandstone rocks, 
thereby affecting their overall mechanical behavior (Diaz-
Acosta et al. 2023; Liang et al. 2024). Sandstones with a 
higher quartz content generally have higher hardness and 
abrasion resistance (Motahari et al. 2022; Rastegarnia et al. 
2022). Quartz is a hard and durable mineral, contributing 
to the overall strength of the rock. The minerals binding the 
sand grains together (cement) influence the rock's strength. 
Silica, calcite, and iron oxides are common cementing mate-
rials (Etemadi et al. 2020). Silica cements often result in 
harder and more competent sandstones. The presence of clay 
minerals can affect the cohesion and porosity of sandstone 
(Tofighkhah et al. 2023). Higher clay content may reduce the 
overall strength of the rock and increase its susceptibility to 
weathering (Bagherzadeh Khalkhali et al. 2019).

The arrangement of minerals influences the porosity of 
sandstone. Well-sorted, tightly packed grains generally lead 
to lower porosity and higher strength, while poorly sorted 
or loosely packed grains can result in higher porosity and 
lower strength. The size and sorting of minerals within the 
rock impact its permeability and strength (He et al. 2021; Li 
et al. 2023). Well-sorted and fine-grained sandstones often 
exhibit higher shear strength. The mechanical properties of 
sandstone are intricately linked to its mineral composition, 
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with minerals like gypsum and clay playing pivotal roles in 
shaping the rock's behavior. The inclusion of gypsum may 
render the rock less robust, and its solubility in water can 
contribute to increased porosity over time, affecting both 
strength and durability. In contrast, the presence of clay min-
erals introduces a different set of influences on the mechani-
cal properties of sandstone. Clay minerals, such as kaolinite, 
illite, or smectite, bring cohesion to the rock, impacting its 

strength (Kafash Bazari 2023). The plasticity inherent in 
clay minerals also plays a role in shaping the deformation 
behavior of the sandstone. Moreover, these minerals con-
tribute to porosity and permeability, affecting fluid flow and 
storage properties within the rock (Sharifi et al. 2023; Mota-
hari et al. 2022; Khajevand 2023c).

The interaction between gypsum, clay minerals, and 
the cementing materials in sandstone is a dynamic process 
that further modulates the mechanical characteristics of the 
rock. Gypsum's susceptibility to dissolution in water and 
the potential for certain clay minerals to expand or contract 
with changes in moisture can lead to long-term changes in 
the sandstone's strength and stability (Ghavami and Rajabi 
2021; Chen et al. 2023; Taheri and Ziad 2021; Rahman 
and Sarkar 2023b). Figure 5 presents box plots and normal 
curves illustrating the variables. The data exhibit normal 
distributions, supporting statistical analysis. Moreover, with 
a dataset exceeding 25 data points (122 samples), statistical 
analysis and Pearson correlation can be applied across the 
entire dataset, assuming a normal distribution.

Effects of failure modes and sandstone types 
on mechanical properties

Efforts have been undertaken to categorize various failure 
patterns observed in cylindrical samples. Figure 6 illustrates 

Fig. 3   An example of litharenite 
thin section from the TGD (a), 
feldspathic litharenite thin sec-
tion from the XLD (b), litharen-
ite thin section from the TGD 
(c), and litharenite thin section 
from the TGD (d): (Q, FM, 
FP, Ch, and Fm-m are quartz, 
rock fragments, feldspar, chert, 
and metamorphic fragments, 
respectively)

Fig. 4   An example of a feldspathic litharenite XRD pattern
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the different types of failure modes observed during UCS 
tests (Basu et al. 2013). Analyzing these failure patterns 
offers insights into the predominant stress states within the 
rock samples under examination. Tensile fractures typically 
form perpendicular to the direction of the minimum princi-
pal stress, while aligning with the direction of the average 
and maximum stresses (Basu et al. 2013; Bouchaala et al. 
2023). However, the presence of microscopic discontinui-
ties introduces a scale effect, wherein the strength decreases 
as sample dimensions increase. In larger samples, disconti-
nuities have a more pronounced impact on strength, leading 

to predominantly shear-type fracture patterns (Basu et al. 
2013).

In feldspathic litharenite samples, the prevalent fracture 
pattern observed in most cases is axial fracturing (AF) type, 
as depicted in Fig. 7. Conversely, the Y-shaped fracture 
(YSF) pattern is the least common among the samples exam-
ined. Similarly, the majority of fracturing patterns observed 
in both arenites and litharenites are of the AF type. The wide 
variability in compressive strength from axial torque con-
tributes to the diverse failure patterns observed under axial 
pressure (Basu et al. 2013). Consequently, analyzing these 

Table 3   Statistical statistics of the measured properties

Vp (km/s) D (g/cm3) n (%) UCS (MPa) SYM (GPa) SHN Qz (%) Ft (%) Fr (%) Qtr DYM (GPa)

Mean 4.71 2.61 4.47 87.02 22.47 43.00 12.13 45.09 40.23 0.12 55.86
Standard error 0.07 0.01 0.29 2.52 0.63 0.59 0.20 0.53 0.30 0.00 1.60
Standard deviation 0.78 0.13 3.20 27.63 6.87 6.47 2.17 5.78 3.28 0.02 17.57
Sample variance 0.60 0.02 10.26 763.49 47.22 41.91 4.73 33.39 10.75 0.00 308.77
Kurtosis (1.27) (0.98) (0.64) -1.03 (1.09) (0.86) (0.99) (0.83) (0.95) (0.92) (1.35)
Skewness 0.22 (0.63) 0.39 0.06 0.04 0.02 0.02 (0.13) 0.19 0.04 0.11
Minimum 3.60 2.35 0.001 37 8.62 29.00 7.73 32.34 34.17 0.08 29.81
Maximum 6.13 2.77 13.08 143 35.02 55.00 16.62 57.00 47.14 0.17 85.26

Fig. 5   Box plots and normal 
curves of the variables
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failure patterns can elucidate the underlying reasons for such 
broad variations. As the resistance of the samples increases, 
transitioning from arenites to feldspathic litharenites, there 
is an escalation in multiple fracturing (MF) behaviors while 
the occurrence of axial fracture (AF) decreases. In essence, 
samples with lower strength exhibit a heightened tendency 
towards AF as the predominant failure mode.

The comparison of the characteristics of arenite and feld-
spathic litharenite and litharenite samples shows that the 
highest values of the average dynamic properties are related 
to feldspathic litharenite samples. Also, the highest value 
of density and compressive strength is related to litharen-
ite feldspathic. The high specific weight of the feldspathic 
litharenite type is related to the high amounts of opaque 
heavy minerals in this type. Feldspathic litharenite type 
sandstones showed the highest average values of static and 
dynamic Young's modulus. The low resistance of arenite 
and litharenite types is mainly due to the presence of sulfate 
cement, clay minerals, high porosity, and carbonate frag-
ments in this type. For example, the results related to the 
physical and mechanical parameters of samples 1 to 27 of 
each sandstone type are presented in Fig. 8.

The quartz content in sandstone is a key determinant of 
the rock's durability and its resistance to weathering pro-
cesses (Wang et al. 2024). Moreover, the type and amount 
of cementing minerals, such as silica, calcite, or iron oxides, 
in sandstone play a crucial role in determining the rock's 
strength. A comprehensive understanding of the mineral 
composition of sandstone is vital for assessing their engi-
neering geological characteristics. These insights into the 
role of calcite, clay minerals, and other components contrib-
ute to informed decision-making in construction and vari-
ous engineering applications where these rocks are utilized 
(Rastegarnia et al. 2020).

Correlation matrix between inputs and SYM

To explore the influence of geo-mechanical parameters on 
the static Young’s modulus (SYM), we analyzed the cor-
relation matrix and the two-variable regression models (as 
shown in Tables 4, and Figs. 9 and 10). The results illus-
trated the potential for estimating SYM based on various 
factors including DYM, water uptake (U), porosity(n), 
quartz ratio (Qzr), and SHN as indicated in Fig. 9, due to 

Fig. 6   Fracture pattern under UCS test (Basu et al. 2013)

Fig. 7   Fracture pattern observed for each sandstone types (values are in percent): Arenite (a), Litharenite (b), and Feldspathic litharenite (c)



Earth Science Informatics	

their correlation coefficients exceeding 0.84. Notably, water 
uptake exhibited the least impact on SYM. Following this, 
both simple and multivariate regression and machine learn-
ing (ML) techniques were employed to scrutinize parameter 
effects and determine the most suitable equation for SYM 
estimation.

Figure 10 shows a high correlation between the dynamic 
and static Young's modulus so that it is possible to esti-
mate the static modulus based on the dynamic modulus. 
Based on the results of the current study, SYM is 2.5 times 
greater than DYM. The static and dynamic elastic modu-
lus, which describe a material's stiffness, are influenced 
by various factors (Ghafoori et al. 2018; Li and Fan 2024; 
Zhang et al. 2023):

•	 Material composition: different rock types have different 
stiffness due to their atomic and molecular arrangements.

•	 Crystal structure: crystalline samples’ elastic modulus 
depends on their crystal lattice arrangement.

•	 Temperature: elastic modulus decreases as temperature 
rises due to increased thermal vibrations.

•	 Strain rate: higher strain rates often lead to stiffer rock 
responses.

•	 Microstructure: features like grain size affect modulus; 
finer grains typically result in higher stiffness.

Fig. 8   Comparing physical and 
mechanical properties of the 
litharenite (L) and feldspathic 
litharenite (FL) for samples 
1–27

Table 4   Regression equations between static Young’s modulus and 
inputs

Equations %R-sq Analysis of Vari-
ance

Eq. No

F-Value P-Value

SYM = 1.821 + 0.3696DYM 89.31 985.94 0.00 (38)
SYM = 31.158 − 1.9435n 82.10 541 0.00 (39)
SYM = −21.21 + 1.0272SHN 93.63 1435.21 0.00 (40)
SYM = − 12.83 + 283.34Qzr 87.57 831 0.00 (41)
SYM = 28.995 − 2.680U 73.32 324 0.00 (42)
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•	 Presence of defects: cavities and defects like vacancies 
and dislocations can alter modulus by hindering or facili-
tating atomic movement.

•	 Moisture content: moisture absorption can change inter-
nal structure and stiffness.

•	 Applied stress/strain: material moduli can vary with the 
type and direction of applied stress or strain.

•	 Loading history: past mechanical loading affects modu-
lus, with cyclic loading or creep causing microstructural 
changes.

•	 Frequency: In dynamic testing, frequency affects moduli 
due to viscoelastic effects.

Understanding these factors is essential for predict-
ing and controlling rock behavior in various applica-
tions, using experimental and computational methods for 
characterization.

Evaluating previous empirical Eqs.

Table 1 outlines various relationships proposed by prior 
researchers for predicting SYM. Utilizing these relation-
ships, SYM values were calculated for each sample, and 
the laboratory test outcomes were then compared with the 
estimated values derived from these empirical relationships. 
Evaluation results for the previous relationships are depicted 
in Figs. 11 and 12. Multiple metrics were employed to evalu-
ate the predictive accuracy of the earlier relationships. In 
terms of the correlation coefficient, most relationships dem-
onstrated satisfactory accuracy in SYM estimation. Notably, 
according to the CPM, among the examined background 
equations, the one proposed by Pereira et al (2021) based 
on Vp showcased superior precision in predicting SYM 
compared to other equations from the research background 
(Fig. 12). Despite having a high correlation coefficient, the 

Fig. 9   Correlation matrix of the 
variables

Fig. 10   Schematic view of the 
relationships between dynamic 
and static Young’s modulus: All 
fits (a) and the best fit (b)
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Fig. 11   Correlation between 
measured and predicted SYM
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CPM values of all previous relationships are negative, indi-
cating low accuracy for SYM estimation (Fig. 12). Addition-
ally, the values derived from most previous relations devi-
ated significantly from the diametric line, resulting in their 
mean values differing substantially from the mean results of 
this study. Consequently, the development of local models 
for each area is deemed necessary (Li and Dias 2023). Thus, 
we explored the suitability of various modeling techniques 
for SYM estimation.

MLR Analysis

The MLR analysis was conducted utilizing Minitab soft-
ware (Version 20) to construct predictive equations for 
forecasting SYM, as shown in Table 5. Model accuracy 
was assessed through analysis of variance (ANOVA), with 

findings detailed in Tables 5 and 6, demonstrating signifi-
cance below the 5% threshold and confirming the equation's 
efficacy in estimating SYM. The t-test was also employed 
to evaluate constant coefficients, with specific instances pre-
sented in Tables 5 and 6. The results show that, statistically, 
the variables of water uptake (U) and porosity (n) do not 
have much effect on the static modulus. Because the level of 
confidence in the t-test is more than 5%. These two variables 
were removed to check their effect on SYM. Removing these 
two variables has a very slight effect on the relationship 
determination coefficient (Table 5). Therefore, SYM estima-
tion with three inputs of Schmidt number (SHN), dynamic 
modulus (DYM), and quartz ratio (Qzr) is more economical 
and preferred. In this way, these three variables were also 
considered as inputs in ML methods to estimate SYM. An 
example of coefficients and results of analysis of variance 

Fig. 12   Performance of previous proposed Eqs. to estimate SYM
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and t-test is presented in Table 6. These tests were exten-
sively used in the literature to validate models and empiri-
cal relationships (Zhao et al. 2024; AlHamad et al. 2021; 
Shirnezhad et al. 2021).

The ANFIS model results

Utilizing MATLAB software, we developed an ANFIS-
GMF model incorporating a Sugeno system. The ANFIS-
GMF analysis utilized Gaussian membership functions 
distributed across rules, with linear membership functions 
employed for the SYM output layer. Through trial-and-error 
testing, appropriate membership degrees for input combina-
tions were determined. To train the fuzzy inference system 
(FIS), we employed a hybrid learning algorithm that com-
bines backpropagation with the least squares method. The 
developed ANFIS-GMF summarizes that the FIS type is 
GENFIS2 with input membership function type Gaussian 
and output membership function type linear. There are 4 
membership functions (MFs) for the input, distributed across 
4 rules of the Sugeno type (Fig. 13). The error goal is set at 
0.00, with training continuing for 180 epochs. The influence 
radius is specified as 0.53. Figure 14 shows the developed 
ANFIS performance in SYM prediction.

The BPMLP results

In this study, a BPMLP was utilized with data normalized 
to the range of [-1,1] like other ML models. The input 
layer consisted of 4 neurons, corresponding to the inde-
pendent variables, while the output layer featured a single 
SYM output. To address the complexity of the problem, 
we opted for a single hidden layer with minimal neurons, 
as suggested by previous research (Shahani et al. 2022; 
Alsalami et al. 2023). The dataset was split into training 
(93 cases) and testing (31 cases), with training determining 
weights and testing evaluating model performance. Rela-
tionships based on the number of dependent and independ-
ent variables have been presented by previous researchers 
to determine the number of neurons to be examined. Fol-
lowing equations proposed by various researchers (Fang 
et al. 2024), we examined neurons 1 to 4 to identify the 
best neuron for predicting SYM using BPMLP (Table 7). 
We applied a Sigmoid transfer function between the input 
and hidden layers and a linear transfer function between 
the hidden and output layers. The BPMLP training utilized 
the LM algorithm. Results revealed the highest correctness 
in approximating SYM for the third neuron with 3 inputs 
and LM training algorithm, as detailed in Table 7. The LM 
algorithm's adaptive learning rate adjustment capability 

Table 5   Results of MLR to estimate SYM

Input number Inputs Equation R-square % RMSE Eq. No

5 DYM, n, SHN, Qzr, U SYM = −11.06 + 0.1162 DYM − 0.083 n + 0.924 SHN − 90.7 Qzr − 0.246 U94.51 1.03 (43)
4 DYM, SHN, Qzr, U SYM = −12.56 + 0.1187 DYM + 0.942 SHN − 88.3 Qzr − 0.266 U 94.49 1.05 (44)
4 DYM, n, SHN, Qzr SYM = −12.83 + 0.1291 DYM − 0.135 n + 0.956 SHN − 96.0 Qzr 94.36 1.02 (45)
3 DYM, SHN, Qzr SYM = −15.65 + 0.1352 DYM + 0.990 SHN − 92.6 Qzr 94.31 1.01 (46)
3 n, U, DYM SYM = 11.55 − 0.441 n − 0.435 U + 0.2498 DYM 90.89 1.04 (47)
3 n, DYM, SHN SYM = −14.81 − 0.101 n + 0.0725 DYM + 0.7919 SHN 93.98 1.05 (48)
3 n, Qzr, SHN SYM = −17.04 − 0.203 n − 33.8 Qzr + 1.050 SHN 93.79 1.06 (49)
2 DYM, Qzr SYM = − 3.52 + 0.2470 DYM + 97.9 Qzr 89.93 1.06 (50)
2 SHN, Qzr SYM = − 21.70 + 1.109 SHN − 24.0 Qzr 93.67 1.04 (51)
2 SHN, DYM SYM = −16.89 + 0.8221 SHN + 0.0786 DYM 93.95 1.04 (52)
2 n, U SYM = 31.016 − 1.362 n − 1.008 U 85.14 1.06 (53)
2 n, Qzr SYM = 0.47 − 0.646 n + 199.7 Qzr 89.12 1.07 (54)
2 n, DYM SYM = 9.44 − 0.553 n + 0.2774 DYM 90.41 1.03 (55)
2 U, DYM SYM = 6.69 − 0.581 U + 0.3077 DYM 90.25 1.05 (56)

Table 6   Features of the ideal 
MLR model (i.e., Eq. 46 
presented in Table 5)

(a) Coefficients and t-test (b) Analysis of variance

Term Coef SE Coef T-Value P-Value Source DF Adj SS Adj MS F-Value P-Value

Constant -15.65 2.04 -7.66 0.00 Regression 3 5299.17 1766.39 640.36 0.00
DYM 0.1352 0.0375 3.60 0.00 DYM 1 35.84 35.84 12.99 0.00
SHN 0.990 0.105 9.44 0.00 SHN 1 245.90 245.90 89.14 0.00
Qzr -92.6 34.2 -2.71 0.008 Qzr 1 20.26 20.26 7.35 0.01
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proved advantageous in technical and engineering prob-
lems (Rastegarnia et al. 2021; AlHamad et al. 2022). Fig-
ure 15 shows the results of the ideal BPMLP model in 
SYM prediction.

The SVR results

SVR modeling results are summarized according to Table 8:
Factors affecting SVR are summarized below (Joseph and 

Swalih 2023; Fang et al. 2023).

•	 Curse of dimensionality: As the number of input vari-
ables increases, the feature space expands, leading to 
sparser data points in high-dimensional spaces. This 
makes it difficult for SVR to find an optimal hyperplane 
that effectively separates classes.

•	 Overfitting: introducing more input variables can result 
in overfitting, where the model becomes overly com-

Fig. 13   Rule diagram using ANFIS method in SYM prediction

Fig. 14   The ANFIS perfor-
mance in SYM prediction

Table 7   Results of neuron 
evaluation using the BPMLP 
model

Neuron 
number

R MSE

1 0.97 0.03
2 0.97 0.04
3 0.98 0.02
4 0.96 0.02
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plex and captures noise from the training data instead of 
underlying patterns. Consequently, the model may strug-
gle to generalize well to unseen data.

•	 Increased computational complexity: A higher number 
of input variables can escalate the computational require-

ments for SVR training and prediction. This can lead to 
longer processing times and resource-intensive opera-
tions, impeding practical application.

•	 Difficulty in kernel selection: SVR often relies on kernel 
functions to map data into higher-dimensional spaces. 

Fig. 15   The BPMLP perfor-
mance in SYM prediction

Table 8   Results of the SVR method to estimate SYM

Phase Details

Dataset split The dataset for SYM modeling using the SVR method was divided randomly into a training set consisting of 92 cases 
and a test set containing 30 cases

Kernel function 
parameter optimiza-
tion

To optimize the achieved parameters of the SVR model, such as epsilon = 0.02, c = 51, and Gamma = 1, a trial-and-error 
approach was employed

Best SVR performance The best performance in SVR was achieved with the implementation of the RBF kernel using four inputs, yielding the 
most favorable results

Visualization of results Figure 16 illustrates the most accurate results obtained with SVR utilizing the RBF kernel for SYM estimation, specifi-
cally employing SHN, DYM, and Qzr inputs

Fig. 16   The SVR performance 
in SYM prediction
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With an increasing number of input variables, select-
ing an appropriate kernel and fine-tuning its parameters 
becomes more challenging, impacting the model's overall 
performance.

•	 To tackle these challenges, it is crucial to employ feature 
selection or dimensionality reduction techniques. These 
methods help identify and retain only the most relevant 
input variables, mitigating overfitting, alleviating the 
curse of dimensionality, and enhancing the accuracy of 
the SVR model.

Method comparisons and discussions

In our evaluation of various models, we examined differ-
ent statistics, as illustrated in Table 9. Notably, SVR dem-
onstrated the highest accuracy, characterized by CPM and 
%MAPE values in forecasting SYM. All methods displayed 
high R2 values, typically around 0.95 or 0.98, indicating 
a robust ability to explain variance in SYM prediction. 
Based on the results, the performance of the SVR is bet-
ter than the BPMLP and other models (Table 9). BPMLP 
uses the risk minimization method (ERM) but SVR uses 
the structural risk minimization method. Also, the preci-
sion of these approaches is influenced by the number of 
inputs, the number of samples, and the choice of training 
algorithm (Fang et al. 2024; Gautam et al. 2023). Khajevand 
(2023b) evaluated MLR, ANFIS, and BPMLP in predicting 
UCS of various rock samples. The outcomes showed that 
the ANFIS produced the most precise results. Khan et al. 
(2022) stated that the RFR outperforms KNN (K-nearest 
neighbors), MLR, and BPMLP in guessing rock UCS. Fang 
et al. (2024) demonstrated that the SVR provides the most 
correct outcomes for forecasting rock tensile strength among 
BPMLP, MLR, RFR, and CART.

Each of the methods successfully displayed the correla-
tions between input parameters and their impacts on SYM, 
showcasing strong generalization abilities for new data. The 
average values of the static modulus using intelligent meth-
ods were found to be equal to 22.46GPa, which is about 
0.04% different from the experimental value (22.47GPa). 
This discrepancy is less than 1% and indicates the efficiency 
of the methods used in estimating Young's modulus.

Conclusions

In this research, after evaluating petrography, physical and 
mechanical characteristics of the sandstone samples, intel-
ligent and statistical analyses including SVR, ANFIS, MLR, 
and BPMLP were employed to estimate the SYM (static 
Young’s modulus) of different types of sandstones found 
at the Three Gorges and Xiaolangdi dam sites. Petrography 
studies classified samples into arenite, feldspathic litharen-
ite, and litharenite categories. The distinct sandstone types 
between the two dam sites resulted in variations in their geo-
mechanical properties. Samples of feldspathic litharenite at 
the dam sites exhibited the highest strength, attributed to 
the influence of feldspar, while litharenite and arenite types 
showed variability in strength based on their mineral com-
positions. Analysis of fracture mode patterns revealed that 
samples with low strength values (arenite and litharenite) 
predominantly exhibited axial fractures, transitioning to 
multiple fracture types in feldspathic litharenite samples as 
UCS and SYM increased. Linear models demonstrated the 
highest correlation coefficients of inputs with SYM estima-
tion. The ratio of quartz and water uptake showed the highest 
and lowest impacts on SYM, respectively.

The SVR model outperformed other methods in terms of 
accuracy (R2 = 0.98, RMSE = 0.11GPa, CPM =  + 1.84) to 
estimate SYM. Notably, intelligent models demonstrated no 
overfitting, with test data correctness equal to or greater than 
training data. The average difference between the values of 
static modulus using ML methods and its experimental value 
is about -0.04%, which is less than 1% and indicates the 
efficiency of the methods used in estimating static Young's 
modulus.

In summary, the study highlights effective approaches for 
selecting the most suitable machine learning methods for 
accurately predicting rock SYM, particularly beneficial in 
the site investigation stages of civil engineering projects. 
Testing on larger datasets and data from diverse sites and 
lithologies is recommended for enhanced prediction accu-
racy in future models.
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