
Vol.:(0123456789)

Earth Science Informatics (2024) 17:3253–3269 
https://doi.org/10.1007/s12145-024-01335-1

RESEARCH

YOLO‑U: multi‑task model for vehicle detection and road 
segmentation in UAV aerial imagery

Zhihong Zhao1,2 · Peng He1

Received: 9 February 2024 / Accepted: 15 May 2024 / Published online: 4 June 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Due to the constrained performance of embedded chips in devices such as drones, real-time processing of simultaneous 
vehicle detection and road segmentation networks becomes challenging, leading to a lack of associative feature learning. To 
tackle these issues, we introduce a novel multi-task model for vehicle detection and road segmentation in unmanned aerial 
vehicle(UAV) Aerial Imagery. Our approach introduces a lightweight Ghost-Dilated convolution, combining the large receptive 
field of dilated convolution with the efficiency of Ghost convolution, resulting in fewer parameters and reduced computational 
load. Building upon this, we propose the Ghost-Atrous Spatial Pyramid Pooling (G-ASPP) module, a multi-scale feature 
extraction module that enhances the model's multi-scale characteristics while minimizing the increase in network parameters 
and computational requirements associated with Atrous Spatial Pyramid Pooling(ASPP) modules. The constructed multi-task 
UAV aerial vehicle detection and road segmentation network incorporates a carefully designed backbone, neck, detection 
head, and segmentation head. By refining existing lightweight backbone networks, our model achieves superior real-time 
performance and accuracy, demonstrating enhanced detection and segmentation accuracy with lower parameters and compu-
tational overhead. Experimental validation on a self-constructed multi-task dataset highlights the proposed model's improved 
segmentation and detection performance, particularly for small targets and narrow roads, confirming its effectiveness. This 
research contributes valuable insights to the study of multi-task networks in the realm of UAV vision.
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Introduction

Currently, Unmanned Aerial Vehicle (UAV) find applica-
tions in nearly a hundred fields of civil use, spanning agri-
culture, forestry, power, environmental protection, land, 
ocean, water conservancy, and transportation, among others 
(Chao et al. 2022). In the field of transportation, UAV, with 
their characteristics of compact size, high maneuverability, 
and flexible deployment, offer significant advantages in areas 
such as illegal evidence collection, traffic guidance, and 

routine inspections (Ling et al. 2022). The cameras mounted 
on UAV can transmit real-time footage, allowing operators 
on the ground to view the captured scenes. The flexibility of 
UAV enables them to adapt to various complex conditions, 
and aerial images provide more information compared to 
ground perspectives. Through artificial intelligence tech-
nology, valuable information can be extracted from aerial 
images, such as tracking the object detected in the images 
(Xue et al. 2023a, 2023b; Sun et al. 2024), so as to improve 
the work efficiency of data analysts.

In traffic patrols, it is essential for management person-
nel to pay more attention to vehicles on the road. There-
fore, the issue of how to avoid detecting vehicles outside 
the designated road area becomes crucial. One solution 
to this problem is to extract road information and retain 
detection targets that intersect with the road. However, 
this approach relies on accurately and efficiently extract-
ing road information. Object detection and image seg-
mentation, as one of the application directions of artifi-
cial intelligence technology, leverage various manually 
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curated datasets to train neural networks to detect and 
segment various objects in images or videos, meeting the 
requirements for vehicle detection and road information 
extraction. Object detection methods can be classified 
into one-stage and two-stage methods. One-stage meth-
ods (such as YOLO (Redmon et al. 2016) and SSD (Liu 
et al. 2016)) directly predict the position and category of 
objects in a single network, suitable for applications with 
high real-time requirements. Two-stage methods (such as 
Faster R-CNN (Ren et al. 2015)) first extract candidate 
regions and then classify and locate these regions, provid-
ing higher accuracy. Image segmentation algorithms based 
on Convolutional Neural Networks (CNN) have also made 
significant progress. Classical methods like Fully Convo-
lutional Network (FCN) (Long et al. 2015), U-Net (Ron-
neberger et al. 2015), SegNet (Badrinarayanan et al. 2017), 
and deep learning architectures like DeepLab (Chen et al. 
1412), PSPNet (Zhao et al. 2017), continuously emerge, 
effectively improving segmentation performance by intro-
ducing techniques such as dilated convolutions and pyra-
mid pooling.

Existing vehicle detection and road segmentation net-
works are mostly single-task networks. Drones, when 
identifying vehicles and segmenting roads, require the 
simultaneous operation of two networks, demanding high 
performance from the UAV and potentially wasting com-
putational resources. Additionally, they may fail to extract 
correlated features between tasks.

Multi-task networks can save computational and stor-
age resources by sharing network parameters. In resource-
constrained environments or on mobile devices, such 
resource sharing is crucial for practical deployment. More-
over, multi-task networks allow neural networks to share 
learned representations across different tasks. By sharing 
the underlying feature extraction layer, the model can learn 
universal representations, enhancing the understanding of 
correlations between tasks.

The current multi-task algorithms lack optimization for 
the perspective of UAV, which leads to poor detection per-
formance when directly applied in the field of UAV aerial 
photography, and it is difficult to meet real-time require-
ments. Due to the large scale differences and complexity 
of targets in the UAV perspective, it is necessary for multi-
task networks to have the ability to extract multi-scale fea-
tures. Furthermore, considering the power consumption of 
onboard chips on UAV, further lightweight improvements 
are needed for multi-task networks to reduce runtime 
power consumption.

In addressing the aforementioned issues, this paper 
makes the following contributions:

• In response to the high parameter and computational com-
plexity issues of current multi-task models, as well as 

their unsuitability for small target detection from the per-
spective of UAV, a new multi-task framework YOLO-U 
has been constructed by improving lightweight backbone 
networks, employing highly coupled backbone and neck 
networks, and incorporating lightweight Ghost-Dilated 
convolutions and G-ASPP modules. This framework is 
more suitable for vehicle detection and road segmentation 
from the perspective of UAV compared to other multi-
task models. The network employs an improved light-
weight backbone, neck, detection head, and segmentation 
head, allowing simultaneous detection and segmentation 
of vehicles and roads in UAV-captured images. As both 
head networks share a common backbone and neck net-
work, computational and storage resources are conserved, 
and the model's understanding of correlations between 
tasks is improved, enhancing detection performance.

• In response to the issue of increased parameter and 
computational complexity caused by adding multi-scale 
feature extraction modules, a lightweight dilated con-
volution called Ghost-Dilated convolution is proposed. 
Ghost-Dilated Convolution combines the characteristics 
of Ghost convolution and dilated convolution, using a 
two-stage feature extraction approach. It achieves a large 
receptive field while having fewer parameters and com-
putational requirements.

• The ASPP module is composed of multiple dilated con-
volutions, which has a high number of parameters and 
computational complexity. In order to reduce the increase 
in model parameters and computational complexity, a 
lightweight Ghost-Atrous Spatial Pyramid Pooling 
(G-ASPP) module based on Ghost-Dilated convolution is 
proposed. The G-ASPP module has a structure similar to 
the Atrous Spatial Pyramid Pooling (ASPP) module but 
uses Ghost-Dilated Convolution instead of dilated con-
volution. Therefore, compared to the ASPP module, the 
network using the G-ASPP module has nearly equivalent 
multi-scale feature extraction capability but with lower 
parameters and computational requirements.

This article will be primarily divided into five chapters. 
In the first chapter, the research significance of multitasking 
networks on UAV is discussed, and the main contributions of 
this paper are introduced. The second chapter covers current 
related work, providing an overview of the current research 
status of UAV aerial target detection and segmentation, as 
well as multitasking networks. The third chapter details the 
methodology, providing a comprehensive introduction to the 
overall network framework and the principles behind the pro-
posed modules. The fourth chapter focuses on the experimental 
section, conducting detailed experiments to validate the con-
tributions made and prove their effectiveness. The fifth chap-
ter serves as the conclusion, summarizing the contributions, 
experimental findings, and conclusions drawn in this paper.
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Related work

UAV Aerial object detection

The task of object detection from the UAV perspective has 
received extensive research attention due to challenges 
such as varying target sizes, uneven target distribution, 
and complex shooting environments in UAV-captured 
scenes. Liu et al. (2023) proposed a novel dual backbone 
network detection method (DB-YOLOv5), which enhances 
the feature extraction capability for small targets by utiliz-
ing multiple backbone networks, achieving high detection 
performance for small targets. However, the use of multi-
ple backbone networks significantly increases the model's 
parameters and computational requirements, difficult to 
deploy directly on UAV. Huang et al. (2023) proposed a 
lightweight object detection network for UAV platforms, 
based on the YOLOv5 network. By adding a small target 
detection head, improving the IOU metric, and introduc-
ing FasterNet, they enhanced small target detection while 
reducing model parameters and improving real-time per-
formance. Khan et al. (2022) proposed a multi-scale and 
multi-class unified framework for detecting objects in high-
resolution satellite images. The framework addresses the 
multi-scale problem by utilizing multiple Region Proposal 
Networks (RPNs), each with its own scale range, and lev-
eraging the independent level of the pyramid to generate 
scale-specific object proposals. Li et al. (2023) proposed a 
lightweight infrared target detection method, named Edge-
YOLO, by improving the YOLOv5m backbone network to 
further enhance the running speed of the network. It has a 
parameter size of 5.2 million and a computational workload 
of 14.2 gigaflops, achieving a running speed of 31.9 frames 
per second on the RK3588 chip.

UAV Aerial image segmentation

Image segmentation from the UAV perspective faces chal-
lenges such as complex scenes, difficult to achieve real-
time performance and significant differences in target 
sizes. Li et al. (2023) proposed the Dual-Stream Feature 
Fusion Network (DSFA-Net), which utilizes two branches 
to extract shallow and deep information separately. This 
network balances shallow and deep feature extraction, 
improving feature fusion for stronger segmentation capa-
bilities, especially for targets with large size differences. 
Xu et al. (2023) introduced an automated segmentation 
method for insulator images based on DeepLab V3 + . This 
method demonstrated effective segmentation of insulator 
images captured from UAV. Shi et al. (2023) presented 
a UAV image city scene segmentation network based on 
the Transformer. By designing a backbone network with 

a deformable multi-head self-attention transformer block 
featuring an aggregation window, introducing a position 
attention module, and a V-shaped encoder network, they 
improved the accuracy of city scene segmentation. The 
above-mentioned algorithm lacks optimization for embed-
ded devices, which increases the performance requirements 
of the model and makes it difficult to achieve real-time 
requirements on embedded devices.

Multi‑task neural networks

Multi-task networks are widely applied in the field of 
autonomous driving. Wu et al. (2022) proposed a pano-
ramic driving perception network, YOLOP, capable of 
simultaneously performing vehicle detection, drivable 
area segmentation, and lane line segmentation. It achieves 
high detection accuracy while maintaining real-time per-
formance. However, due to the abundance of small targets 
in the drone's field of view and the significant difference 
from the vehicle's perspective, there is a lack of effective 
solutions for handling scale variations in aerial drone foot-
age, making it difficult to apply to target detection tasks 
from a drone's perspective. He et al. (2017) introduced 
a model, Mask R-CNN, capable of simultaneously per-
forming instance segmentation and object detection. They 
added a branch for predicting object masks based on the 
existing bounding box recognition branch, laying the foun-
dation for multi-task networks. However, due to the lack 
of corresponding lightweight design and the low real-time 
performance of the R-CNN framework, it is difficult to 
achieve real-time UAV target detection and segmentation 
tasks. Zhang et al. (2020) proposed a novel Multi-Scale 
and Occlusion Aware Network (MSOA-Net) for UAV-
based vehicle segmentation. The issue of scale change is 
addressed through the use of a multi-scale feature adaptive 
fusion network. However, the network can only detect and 
segment vehicles, and cannot perform separate detection 
and segmentation of different targets. Additionally, due to 
the lack of lightweight processing in the backbone net-
work, it is difficult to guarantee real-time performance on 
embedded devices. Balamuralidhar et al. (2021) proposed 
a multitask Mult EYE object detection, which utilizes the 
characteristics of multitasking during model training to 
simultaneously train the road segmentation head and vehi-
cle detection head. During inference, the road segmenta-
tion head is frozen while sharing the underlying feature 
extraction layer to improve the accuracy of vehicle detec-
tion. However, in order to improve real-time performance 
of vehicle detection, the model chooses to freeze the road 
segmentation head, resulting in the inability to output road 
segmentation results simultaneously during inference and 
thus losing the characteristics of multitasking.
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Methodology

Ghost‑dilated convolution

In object detection and image segmentation tasks, objects 
to be detected and segmented in the input images vary in 
scale. Therefore, the network needs the capability to cap-
ture features at different scales. Researchers have used 
ordinary convolution with a large kernel to expand the net-
work's receptive field, but this leads to an increase in net-
work parameters. Addressing this issue, YU et al. (2015) 
proposed a convolution known as dilated convolution with 
a large receptive field, controlling the size of the dilated con-
volution's receptive field through dilation factors. Compared 
to ordinary convolution with the same receptive field, this 
approach significantly reduces the number of parameters and 
computational requirements.

HAN et al. (2020) analyzed the feature maps extracted 
by ordinary convolution and found that the feature maps 
of some channels extracted by ordinary convolution were 
similar to the feature maps of other channels, which indi-
cated that the feature maps of other channels could be trans-
formed into these feature maps by some linear transforma-
tion. Based on this analysis, they proposed a lightweight 
convolution called Ghost convolution. Ghost convolution 
adopts a two-stage feature extraction approach, as shown 

in Fig. 1. In the first stage, intrinsic feature maps of the 
images are extracted using ordinary convolution, with the 
channel number set to a smaller value. In the second stage, 
group convolution is employed to further process (linear 
transformation) the feature maps extracted in the first stage, 
and the results from both stages are concatenated for output. 
Through this process, Ghost convolution exhibits nearly the 
same feature extraction capability as ordinary convolution 
but with lower parameters and computational requirements.

Dilated convolution follows the same process as ordi-
nary convolution in feature extraction. Therefore, similar 
optimization techniques used for ordinary convolution 
can be applied to dilated convolution to further reduce 
its parameters and computational requirements. Combin-
ing the two-stage characteristic of Ghost convolution with 
dilated convolution, a lightweight Ghost-Dilated Convolu-
tion with a large receptive field is proposed. The Ghost-
Dilated Convolution is illustrated in Fig. 2.

In the first stage, intrinsic feature maps are obtained by 
applying dilated convolution with a smaller channel num-
ber to the input feature map, as defined in Eq. (1).

where χ ∈ RH×W×C is the input feature map, f � ∈ R
c×k×k×m×d 

denotes the dilated convolution operation, and Y �

∈ R
H2×W2×m 

represents the intrinsic feature map obtained.

(1)Y
�

= � × f
�

Fig. 1  Ghost convolution

Fig. 2  Ghost-dilated convolution
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In the second stage, linear transformations are applied to 
the intrinsic feature maps using 3 × 3 group convolution, and 
the computation process is expressed in Eq. (2).

where y′

i
 represents the Y ′-th linear transformation process 

generating the i-th Ghost feature map yij , and Φi,j is the con-
volution kernel for the linear transformation.

Finally, the intrinsic feature maps and the linearly trans-
formed feature maps are concatenated for the final output, 
as shown in Eq. (3).

where Y ∈ RH2×W2×2m represents the final feature map gener-
ated by Ghost-Dilated Convolution.

Based on the Ghost-Dilated Convolution process described 
above, it combines the characteristics of dilated convolution 
with a large receptive field and the lightweight nature of Ghost 
convolution. This combination further reduces the parameters 
of networks employing dilated convolution.

G‑ASPP module

Due to the relative flexibility of drones, the shooting per-
spective and altitude are not fixed. When a drone is at a 
high altitude, ground targets appear relatively small in the 
captured image, while they appear larger when the drone is 
at a lower altitude. Therefore, the network must have a multi-
scale characteristic to accommodate the scale variations of 
targets captured by the drone. Basalamah et al. (2019) pro-
posed a Scale-Driven Convolutional Neural Network (SD-
CNN) model, which generates scale-aware object proposals 
by creating a scale map. This model effectively addresses 
the challenges of complex backgrounds, scale variations, 
nonuniform distributions, and occlusions in object detection 
tasks. He et al. (2015) proposed the use of Spatial Pyramid 
Pooling (SPP) modules in the network to enhance the capa-
bility of extracting scale features. YOLOv5 further improved 
the SPP module, introducing the SPPF module to enhance 
the network's recognition ability for multi-scale targets.

The ASPP module, based on the SPP module, uses dilated 
convolutions with parallel different dilation rates instead 
of max-pooling to extract features at different scales, and 
then combines these multi-scale features. Compared to SPP 
modules and SPPF modules that use simple max-pooling 
to increase the image's receptive field, the ASPP module 
enlarges the receptive field through dilated convolutions 
with different dilation rates. While using dilated convolu-
tions to extract features from images can capture more multi-
scale features than max-pooling operations, it also increases 
the network's parameters and computational requirements.

(2)yij = Φi,j

(

y
�

i

)

, ∀i = 1, ...,m, j = 1, ..., s

(3)Y = Cat
(

Y
�

, yi,j
)

, ∀i = 1, ...,m, j = 1, ..., s

To avoid the increase in parameters resulting from adding 
dilated convolutions, a lightweight multi-scale feature extrac-
tion module called the G-ASPP module is proposed, based on 
Ghost-Dilated Convolution. The G-ASPP module replaces the 
original convolutions in the ASPP module with Ghost-Dilated 
Convolution, further reducing the module's parameters and 
computational requirements. The G-ASPP module is illustrated 
in Fig. 3. The G-ASPP module adopts a parallel structure, pass-
ing through Ghost-Dilated Convolution with dilation rates of 
6, 12, and 18, and then concatenating the multi-scale features.

Compared to the ASPP module, the G-ASPP module 
demonstrates similar multi-scale feature extraction capabili-
ties while further reducing parameters and computational 
requirements. Placing the G-ASPP module in the backbone 
effectively enhances the network's detection performance for 
various scale targets.

Overall structure of the multi‑task network

When performing both vehicle detection and road segmenta-
tion tasks, a drone needs to run two networks simultaneously. 
Due to the lower performance of drone chips and the high 
cost of storage, running two neural networks concurrently 
is challenging and cannot guarantee real-time processing.

The emergence of multi-task networks effectively 
addresses the aforementioned issues. Currently, multi-task 
networks are predominantly designed with a parallel multi-
task network structure, as illustrated in Fig. 4. The parallel 
multi-task network structure reduces redundancy by shar-
ing convolutional layers. Moreover, the shared convolutional 
layers endow the network with the ability to extract features 
that are relevant to both tasks, thereby enhancing the detec-
tion and segmentation performance of the network.

Through the analysis of vehicle detection and road seg-
mentation tasks, it is observed that these tasks exhibit a cer-
tain level of correlation. Vehicles are usually on the road, 
aligning with the characteristics of multi-task networks. 
Therefore, a multi-task aerial drone network, named YOLO-
U, is proposed to perform vehicle detection and road seg-
mentation tasks simultaneously. The overall network struc-
ture includes a backbone, neck, and head.

The multi-task network simultaneously accomplishes 
both vehicle detection and road segmentation tasks. Hence, 
the network is designed with separate head networks for 
vehicle detection and road segmentation, while sharing a 
common backbone and neck network. The YOLO-U network 
structure is illustrated in Fig. 5.

Constrained by the performance of drone devices, light-
weight networks are chosen for the design of the multi-
task network as the backbone network. Currently, there are 
various lightweight network models designed for mobile 
devices, such as ShuffleNet (2018), MobileNet (1704), 
GhostNet (1511), etc.
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ShuffleNet introduces pointwise group convolution and 
channel shuffling mechanisms, reducing the parameters 
and computational requirements of convolutions. It also 
enhances the interaction between features, thereby improving 

the expressive capability of feature maps. MobileNet adopts 
depthwise separable convolutions instead of ordinary con-
volution, further reducing the parameters and computational 
requirements of convolution operations compared to point-
wise group convolutions. The MobileNetV3 version intro-
duces a lightweight Squeeze-and-Excitation (SE) attention 
mechanism, improving the focus on crucial features. Ghost-
Net analyzes the feature maps generated by convolutions 
and proposes a Ghost convolution with lower parameters, 
avoiding redundant feature mappings and enhancing network 
efficiency.

Similar to MobileNetV3, GhostNet also integrates the SE 
attention mechanism. The SE attention mechanism primarily 
focuses on the relationships between channels, allowing the 
network to concentrate more on the feature channels that are 
crucial for the task. In comparison, the Efficient Channel 
Attention (ECA) mechanism replaces the fully connected 

Fig. 3  G-ASPP module

Fig. 4  Parallel multi-task network architecture

Fig. 5  YOLO-U network structure
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layer in the SE attention mechanism with one-dimensional 
convolution. This not only reduces the computational and 
parameter requirements of the network but also enhances 
communication between channels.

ECA Attention Mechanism is illustrated in Fig. 6. Firstly, 
the input feature map undergoes global average pooling. 
Subsequently, a one-dimensional convolution operation 
with a kernel size of K is applied to the one-dimensional 
vector. The Sigmoid function is then employed to compute 
the convolution result, obtaining weights for each channel, 
as shown in Eq. (4). Finally, the original feature map is mul-
tiplied by the obtained weights, yielding a feature map that 
incorporates attention information.

In the above formula, � () denotes the Sigmoid func-
tion, C1Dk represents the one-dimensional convolution com-
puted through an adaptive convolution kernel, y signifies the 
channel after global average pooling, and � represents the 
weights for each channel.

The SE attention mechanism in GhostNet was replaced 
with the ECA attention mechanism, further enhancing the 
efficiency of the backbone network. The structure of the 
backbone network is presented in Table 1. The input image 
first undergoes the Focus module, which divides the image 
into several smaller blocks at a certain ratio, enhancing 
the detection performance for small targets. Subsequently, 
GhostNet further extracts abstract features, utilizing convo-
lution with a stride of 2 for downsampling the feature map, 
thereby reducing information loss caused by downsampling 
operations. Finally, the G-ASPP module is employed to 
extract and fuse multi-scale features, further strengthening 
the backbone network's capability to extract features from 
multi-scale targets.

The vehicle detection head network and neck network 
form a PAN structure. After feature extraction by the back-
bone network, a G-ASPP module is applied, and the neck 
network performs upsampling on the features, concatenating 
them with the features of the same scale from the backbone 
network. The vehicle detection head network undergoes 

(4)� = �(C1Dk(y))

multiple downsampling operations and concatenates with 
the neck network's features of the same scale. The network 
outputs four-scale feature vectors. The adoption of the PAN 
structure promotes the fusion and propagation of multi-scale 
features, improving the detection performance for multi-
scale targets. Unlike YOLO's three detection heads, the net-
work employs four detection heads, enhancing the detection 
performance for small targets.

The road segmentation head network, neck network, and 
backbone network together form a structure similar to the 
UNet network. The backbone network performs multiple 
downsampling operations on the image, and the neck net-
work and road segmentation head network perform upsam-
pling on the features extracted by the backbone network. 
The features of the same scale from the backbone network 
are concatenated, and the network outputs a segmentation 
result with a size of 640 × 640. The image segmentation 
network, adopting the UNet structure, fully utilizes shallow 
features, improving feature propagation and achieving better 
segmentation results compared to other image segmentation 
networks.

Both the neck network and the head network use the CSP 
module as the basic feature extraction module, as shown 
in Fig. 7. When the feature map passes through the CSP 
module, it goes through two branches before concatenation. 
The CSP module has a powerful feature extraction capabil-
ity, lower computational and parameter overhead, and can 
save memory access. To avoid the increase in computational 
and parameter overhead caused by transpose convolution, 
linear interpolation is employed to perform upsampling on 
the feature map.

The network, overall, benefits from the high sharing of 
the backbone and neck networks between the two head net-
works, promoting network coupling. This enables the net-
work to learn the correlation between tasks. The correla-
tion between road segmentation and vehicle detection tasks 
mainly manifests when vehicles are on the road. The visu-
alizations of vehicle detection labels and road segmentation 
labels are shown in Fig. 8. In the figure, the red area repre-
sents the road, and the green box represents the vehicles. It 

Fig. 6  ECA attention mechanism
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can be observed from the figure that there is a high degree 
of overlap between the object detection labels and road seg-
mentation labels, indicating an inherent correlation. When 
the network learns this correlation, it can avoid focusing on 
areas outside of the road, thereby reducing false detection 
rates for vehicles.

The model adopts GhostNet as the backbone network, 
which combines the ECA attention mechanism, mak-
ing the model lightweight. The use of G-ASPP module 

for multi-scale feature extraction not only has lower per-
formance overhead but also further enhances the model's 
ability to extract features at multiple scales. The detection 
head share the backbone network and neck network, further 
reducing performance overhead. Based on these character-
istics, the time complexity of the network is lower compared 
to other multi-task networks, thus meeting the real-time 
requirements of UAV devices for algorithms and having a 
stronger learning ability for relevant features.

Table 1  Lightweight backbone 
network architecture

Number Input Size Module Name Input Channels Up Channels Output 
Chan-
nels

ECA Module Stride

1 640 × 640 Focus 3 / 16 /
2 320 × 320 GhostBottleNeck 16 16 16 1
3 320 × 320 GhostBottleNeck 16 48 24 2
4 160 × 160 GhostBottleNeck 24 72 24 1
5 160 × 160 GhostBottleNeck 24 72 40 √ 2
6 80 × 80 GhostBottleNeck 40 120 40 √ 1
7 80 × 80 GhostBottleNeck 40 240 80 2
8 40 × 40 GhostBottleNeck 80 200 80 1
9 40 × 40 GhostBottleNeck 80 184 80 1
10 40 × 40 GhostBottleNeck 80 184 80 1
11 40 × 40 GhostBottleNeck 80 480 112 √ 1
12 40 × 40 GhostBottleNeck 112 672 112 √ 1
13 40 × 40 GhostBottleNeck 112 672 160 √ 2
14 20 × 20 GhostBottleNeck 160 960 160 1
15 20 × 20 GhostBottleNeck 160 960 160 √ 1
16 20 × 20 GhostBottleNeck 160 960 160 1
17 20 × 20 GhostBottleNeck 160 960 160 √ 1
18 20 × 20 G-ASPP 160 / 512 /

Fig. 7  CSP module structure

Fig. 8  Visualization of vehicle detection and road segmentation labels
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Experiments

Experimental setup

Dataset

Currently, there is a relative lack of multi-task datasets 
from the perspective of UAV. To address this issue, we con-
structed a multi-task Dataset for UAV aerial object detec-
tion and road segmentation. Initially, UAV were deployed to 
capture ground-level footage, resulting in video data. Frames 
were extracted from the video data at fixed intervals of 10 s, 
yielding a total of 395 images containing vehicles and roads. 
The vehicles and roads were manually annotated using 
the LabelImg software, as illustrated in Fig. 9. The object 
detection task focuses on single-class object detection, and 
the distribution of anchor box sizes for object detection is 
depicted in Fig. 10, revealing a concentration of medium 
and small targets.

After augmenting the dataset through data augmenta-
tion techniques, we divided the dataset into training, valida-
tion, and test sets in an 8:1:1 ratio. Since multi-task dataset 
annotation is relatively difficult, it is relatively small. To 
enhance the model's generalization, pre-training was per-
formed using publicly available datasets like Visdrone2019 
(2019) and CHN6-CUG Road (2021a), which are closely 
related to the tasks.

Experimental environment and parameter settings

The experiments in this paper were conducted on a Dell Pre-
cision T7920 tower graphics workstation with an Intel Xeon 
Silver 4100@2.10 GHz × 16 CPU. The GPU used was the 
Nvidia Quadro P5000 with 16 GB of memory. The system 
had 64 GB of RAM, and the storage configuration included a 

512 GB SSD along with an 8 TB hard drive. The parameters 
related to model training are shown in Table 2.

Loss functions

Since the multi-task network has different output results, it 
requires joint loss functions corresponding to each task. The 
loss function for the vehicle detection task is defined as follows 
in Eqs. (5)-(8).

where Lconf  represents the confidence loss, Lcls represents the 
classification loss, Liou represents the IOU loss, and �1, �2, �3 
are weight parameters.

The loss function for the road segmentation task uses the 
Cross-Entropy (CE) Loss Function, as shown in Eq. (9):

In the above equations, yi represents the ground truth for 
the i-th sample, and y′

i
 represents the predicted value for the 

i-th sample.

(5)Lconf =

s2
∑

i=0

B
∑

j=0

I
obj

ij
(Ci − C

�

i
)
2

(6)Lcls =

S2
∑

i=0

B
∑

j=0

I
obj

ij

∑

(pi(c) − p
�

i
(c))2

(7)Liou = IoU(B,Bgt) −
�2(B,Bgt)

c2
− �v

(8)Ldet = �1Lcls + �2Liou + �3Lconf

(9)Lseg = −

N
∑

i=1

[yi(log y
�

i
) + (1 − yi)log(1 − y

�

i
)]

Image Seg_Label Det_label

Fig. 9  Multi-task dataset for vehicle detection and road segmentation
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Combining both tasks, the joint loss function is given by 
Eq. (10).

In the above equation, Lall represents the joint training 
loss, and �1 , �2 represents weight parameters.

Evaluation metrics

In this article, we evaluate the model using precision (P), 
recall (R), mean average precision (mAP), intersection over 
union (IOU), mean IOU (mIOU), as well as metrics related 
to model complexity such as parameter count and compu-
tational complexity. Specifically, P, R, and mAP are used 
as evaluation metrics for vehicle detection. The calculation 
formulas for P, R, and mAP are given by Eqs. (11), (12), and 
(13), respectively.

(10)Lall = �1Ldet + �2Lseg

(11)P =
TP

TP + FP

(12)R =
TP

TP + FN

where TP represents the count of correctly detected bound-
ing boxes. FP represents the count of bounding boxes mis-
takenly classified. FN represents the count of bounding 
boxes wrongly classified as background. APi denotes the 
model's average precision for the i-th class. In the context of 
a single-class detection task, mAP is numerically equivalent 
to AP.

Using IOU and mIOU as evaluation metrics for road seg-
mentation, the calculation formulas for IOU and mIOU are 
as shown in Eqs. (14) and (15).

where TP represents the number of correctly predicted road 
pixels, FP represents the number of background pixels 
incorrectly predicted as road, FN represents the number of 
road pixels incorrectly predicted as background, and N rep-
resents the total number of classes, specifically referring to 
the road and background classes in this context.

Model training

Due to the relatively small size of the annotated dataset, 
the training of the network suffers from the issue of weak 
generalization performance. To address this, pretraining is 
conducted on a dataset closely related to the task. Initially, 
the road segmentation head of the network is frozen, and a 
multitask network comprising backbone, neck, and detec-
tion networks is trained using the VisDrone2019 dataset, 

(13)mAP =
1

N

N
∑

i=1

APi

(14)IOU =
TP

TP + FN + FP

(15)mIOU =
1

N + 1

N
∑

i=1

TP

FN + FP + TP

Fig. 10  Distribution of vehicle detection annotations sizes

Table 2  Training-related 
parameters

Training-related 
parameters

Value

Optimizer Adam
Learning rate 1e-2
epoch 480
BatchSize 3
ImgSize 640 × 640
Momentum 0.937
�1, �2, �3 [1,1,1]
�1, �2 [1,1]
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with the epoch set 240. Subsequently, the backbone, neck, 
and detection networks are frozen, and the road segmen-
tation head is trained using the CHN6-CUG Road data-
set, with the epoch set 240. Finally, the entire network is 

trained using a multitask dataset for UAV target detection 
and road segmentation, with the epoch set 240. The hyper-
parameters for each training session remain unchanged. 
The pretraining algorithm is outlined in Algorithm 1.

Algorithm 1. Training of multi-task neural network

Experimental results

Exploration experiment on task relevance

To further validate the correlation between road and vehicle 
positions, this section calculates the percentage of intersec-
tion between vehicle detection labels and road labels using 
algorithms. It also compares the percentage of intersection 
between detection boxes and road labels output by single-task 
network and multi-task network. The experimental results are 
shown in Table 3. The data in the table indicates that 98.5% of 
vehicle labels are located within the road in proportion to the 
ground truth. The percentage of detection boxes output by the 
multi-task network is 4.1% higher than that of the single-task 
network, indicating that the multi-task network has learned 

the correlation between road and vehicle positions, focusing 
more on road areas.

In addition, it's noted that YOLO-UD refers to the model 
with the segmentation head removed, and YOLO-US refers 
to the model with the detection head removed.

In addition to the data comparison, visualizing the fea-
ture maps extracted from the backbone network, as shown 
in Fig. 11, reveals that the network focuses its attention pri-
marily on the road area. This indicates that the network has 

Table 3  Distribution of output 
labels in different networks

Rate/%

True Label 98.5%
YOLO-UD 92.1%
YOLO-U 96.2%
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learned the correlation between tasks, thereby improving the 
accuracy of network detection and segmentation.

Comparison experiment of lightweight backbone 
networks

To further investigate the impact of different lightweight 
backbone networks on the multitask network, this section 
conducts experiments using popular lightweight networks 
as the backbone. The experimental results are summarized 
in Table 4.

MobileNetV3 has the fewest parameters compared to 
other networks, but its computational cost is higher than 
GhostNet. In terms of object detection accuracy compari-
son, the GhostNet ECA model demonstrates the best per-
formance. It outperforms MobileNetV3, ShuffleNetV2 by 
6.3%, 5.0% respectively, while achieving similar perfor-
mance to FastNet-T0 but with lower computational and 
parameter requirements. Compared to GhostNet, it shows 
a 1.6% improvement. As for road segmentation accuracy 
comparison, the differences in performance among the net-
works are relatively small, with ShuffleNetV2 exhibiting the 
lowest performance.

The GhostNet network with the ECA attention mecha-
nism significantly reduces the number of parameters, 

decreasing by 1.51 million. Considering the overall data, 
GhostNet ECA exhibits superior performance in detection 
accuracy, segmentation accuracy, and computational cost. 
This validates the effectiveness of the improvements made to 
GhostNet and underscores the efficiency of using GhostNet 
as the backbone network.

G‑ASPP module ablation experiment

To validate the effectiveness of the proposed G-ASPP 
module and Ghost-Dilated convolution module, ablation 
experiments are designed. SPP module, ASPP module, and 
G-ASPP module are compared, and the experimental results 
are presented in Table 5.

Compared to the SPP module, the ASPP module 
improves the mAP metric by 4.2% and the mIOU metric 
by 0.5%. However, it comes with a substantial increase 
in parameters and computational cost, with a rise of 3.52 
million parameters and 1.37 GFlops in computational cost.

By refining the ASPP module, the G-ASPP module slightly 
reduces the mAP and mIOU metrics compared to the ASPP 
module, showing a 1.2% decrease in mAP and a 0.1% decrease 
in mIOU. Nevertheless, there is a significant reduction in 
parameters and computational cost, with a decrease of 1.1 
million parameters and 0.44 GFlops in computational cost.

(a)YOLO-UD (b)YOLO-US (c)YOLO-U

Fig. 11  Differences in attention distribution between multi-task and single-task networks

Table 4  Comparison results of 
lightweight backbone networks

P(%) R(%) mAP(%) IOU(%) mIOU(%) Parameter(M) Flops(G)

MobileNetV3 79.9 75.4 73.9 88.7 92.2 8.49 12.33
ShuffleNetV2 79.4 75.7 72.6 86.1 90.4 14.01 14.65
FastNet-T0 72.2 83.6 79.0 89.4 92.7 13.07 15.49
GhostNet 79.0 80.0 77.3 87.8 91.6 10.80 11.77
GhostNet ECA 78.7 81.3 78.9 88.9 92.3 9.29 11.77
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The experimental data above demonstrates the effective-
ness of the lightweight improvement made to the ASPP 
module through the G-ASPP module.

Comparison with other networks

To validate the effectiveness of the proposed method, 
comparisons are made with mainstream object detection 
algorithms,image segmentation algorithms and Multitasking 
Algorithms.The experimental results are presented in Table 6.

In the comparison of object detection models, the YOLO-
UD model proposed in this paper outperforms YOLOv5s 
and YOLOv8s, showing a 2.5% and 1.2% improvement in 
mAP, respectively. Additionally, it reduces the number of 
parameters by 1.47 million and 5.47 million, and decreases 
computational cost by 7.72 GFlops and 19.82 GFlops. Com-
pared with the TPH -YOLOv5 (Zhu et al. 2021b) model, 
which also performs well in drone aerial target detection, 
although there is a similar results in detection accuracy, 
the parameter and computational complexity of our model 
are much lower than those of TPH -YOLOv5. While the 
SSDLite (Sandler et al. 2018) with a lightweight backbone 
network has lower parameters and computational com-
plexity, its detection accuracy is poor and cannot meet the 
requirements of the detection task.

In the comparison of image segmentation models, the 
YOLO-US model proposed in this paper significantly out-
performs UNet and MobileUNet models in various metrics. 
It achieves a 12.3% and 10.3% improvement in mIOU com-
pared to UNet and MobileUNet, respectively, while main-
taining relatively smaller parameter and computational 

costs. Compared with DeepLabV3-MobileNet (Chen et al. 
1706), the IOU and mIOU metrics have improved by 2.9% 
and 2.0% respectively, while the model's parameter count 
and computational workload have decreased by 2.68 M and 
36.14Gflops respectively. It is worth noting that the multi-
task model YOLO-U has shown a slight decrease in seg-
mentation accuracy compared to YOLO-US, which may be 
attributed to the imbalance of multitasking caused by highly 
shared lower-level networks, leading the network to be more 
inclined towards vehicle detection tasks.

To further validate the superiority of the multitask 
model proposed in this paper under the perspective of 
UAV, a comparison was made with the YOLO-P (Wu et al. 
2022) model, which has lane detection head removed. In 
terms of vehicle detection task, YOLO-U achieved a 2.5% 
higher mAP than YOLO-P. As for road segmentation task, 
both models performed similarly. In terms of parameters 
and computational cost related to real-time performance, 
although the parameter quantity of YOLO-U increased by 
0.59 M, its computational cost decreased by 0.72 Gflops 
compared to YOLO-P. Overall, these data indicate that 
compared to the YOLO-P model, YOLO-U is more suit-
able for vehicle detection and road segmentation tasks from 
the perspective of UAV.

Visualization comparison experiment

To further validate the effectiveness of the proposed method, 
visual results are compared with mainstream object detec-
tion and image segmentation algorithms. The vehicle detec-
tion results are shown in Fig. 12.

Table 5  Comparison results of 
G-ASPP module

P(%) R(%) mAP(%) IOU(%) mIOU(%) Parameter(M) Flops(G)

SPP 76.3 77.0 74.7 88.1 91.8 5.77 10.40
ASPP 78.7 81.3 78.9 88.9 92.3 9.29 11.77
G-ASPP 78.3 80.7 77.7 88.3 91.9 8.19 11.33

Table 6  Comparison results 
between YOLO-U and other 
networks

P(%) R(%) mAP(%) IOU(%) mIOU(%) Parameter(M) Flops(G)

SSDLite 76.2 69.2 64.0 / / 3.1 2.77
YOLOv5s 85.3 64.7 73.4 / / 7.2 16.5
YOLOv8s 90.9 65.3 74.7 / / 11.2 28.6
TPH -YOLOv5 74.2 80.3 77.1 / / 45.3 260.8
YOLO-UD 77.1 79.3 75.9 / / 5.73 8.78
UNet / / / 80.4 81.2 31 167.65
MobileUNet / / / 82.9 83.2 13.11 37.83
DeepLabV3-MobileNet / / / 87.7 91.5 5.81 41.3
YOLO-US / / / 90.6 93.5 3.13 5.16
YOLO-P 78.7 77.4 75.3 88.0 91.7 7.60 12.05
YOLO-U 78.3 80.7 77.7 88.3 91.9 8.19 11.33



3266 Earth Science Informatics (2024) 17:3253–3269

In the task of vehicle detection, YOLOv5s exhibits the poor-
est detection performance, missing almost all small objects in 
the distance. YOLOv8s, while slightly better than YOLOv5s, 
still shows cases of missed detections with relatively low detec-
tion confidence. Thanks to the use of small object detection 
heads in the model, both YOLO-UD and YOLO-U models 
have good detection performance for distant small targets. 
However, YOLO-UD also has a few missed detections, while 
YOLO-TPH has a few false alarms. Overall, YOLO-U outper-
forms other models in terms of comprehensive performance.

Simultaneously, a visual comparison of road segmenta-
tion is conducted, as shown in Fig. 13. In the road segmen-
tation task, UNet exhibits cases where some roads are not 
segmented, and the overall segmentation completeness is 
the poorest. Although MobileUNet segments all roads, it 

falsely detects green belts in the center of roads as part of 
the road. Both the DeepLabV3-MobileNet, YOLO-US, and 
YOLO-U models demonstrate similar overall performance. 
They accurately and completely segment the roads without 
encountering the issues observed in UNet and MobileUNet.

Visual comparison with the YOLO-P model, which is 
also a multitask model, as shown in Fig. 14. Due to the lack 
of optimization for small object detection and multi-scale 
feature extraction capabilities in the YOLO-P algorithm, 
there are missed detection issues when performing target 
detection from the perspective of unmanned aerial vehicles.

During the experiment, it was found that the model also has 
some deficiencies. As shown in Fig. 15, when there are a large 
number of vehicles in the area outside the road in the image, on 
one hand, it will interfere with the result of road segmentation 

(a)True Label (b)YOLOv5s (c)TPH-YOLO

(d)YOLOv8s (e)YOLO-UD (f)YOLO-U

Fig. 12  Visualization results of vehicle detection models

(a)True Label (b)UNet (c)DeepLabV3-MobileNet

(d)MobileUNet (e)YOLO-US (f)YOLO-U

Fig. 13  Visualization comparison results of road segmentation models
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task, causing areas with more vehicles to be incorrectly seg-
mented as roads. On the other hand, for vehicle detection out-
side the road, there are missed detections in the model.

Ablation experiment

To better understand the impact of each module on the net-
work, ablation experiments were designed. As shown in 
Table 7, after adding the small object detection head, the 
network's mAP indicator increased by 1.3%. This indicates 
that the small object detection head further improves the net-
work's ability to detect small object. The backbone network 
with ECA attention mechanism achieved improved detection 
and segmentation accuracy, with a 1.6% increase in mAP and 
a 0.7% increase in mIOU. Replacing the ASPP module with 
the G-ASPP module resulted in a slight decrease in detection 
and segmentation accuracy by 1.2% and 0.4%, respectively, 
but reduced the parameter count by 1.1 M and computational 
cost by 0.44GFlops. Furthermore, pre-training on multiple 
datasets further enhanced model generalization, leading to a 

2.5% increase in mAP and a 0.8% increase in mIOU metrics. 
The results of these ablation experiments fully validate the 
effectiveness of each proposed module.

Conclusions

This paper addreses the performance limitations of current 
UAV running simultaneous object detection and road seg-
mentation networks, unable to extract correlated features 
between tasks. The proposed multitask model for vehicle 
detection and road segmentation, named YOLO-U, leads to 
the following conclusions:

(1) The paper introduces a lightweight Ghost-Dilated 
convolution that combines the advantages of Ghost 
convolution and dilated convolution, maintaining a 
large receptive field with a lower parameter count. 
By addressing the parameter and computational cost 

(a)True Label (b)YOLO-P (c)YOLO-U

Fig. 14  Visualization comparison results of road multitask models

Fig. 15  Failed case

(a)True Label (b)YOLO-U

Table 7  Comparative results of melting experiment

GhostNet Small 
Object 
Head

ECA G-ASPP pretrain P(%) R(%) mAP(%) IOU(%) mIOU(%) Parameter(M) Flops(G)

√ 77.8 78.0 76.0 88.8 92.2 10.79 11.71
√ √ 79.0 80.0 77.3 87.8 91.6 10.80 11.77
√ √ √ 78.7 81.3 78.9 88.9 92.3 9.29 11.77
√ √ √ √ 78.3 80.7 77.7 88.3 91.9 8.19 11.33
√ √ √ √ √ 84.3 82.6 80.2 89.5 92.7 8.19 11.33
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increase issues associated with the ASPP module, a 
lightweight multiscale feature extraction module, 
G-ASPP, is proposed, effectively reducing the model's 
parameter count and computational cost.

(2) GhostNet is chosen as the backbone network due to its 
effective feature extraction capabilities. An improved 
version, GhostNet ECA, is introduced by integrating 
the ECA module, resulting in a further reduction of 
parameters and increased detection accuracy. Lev-
eraging these improvements, the YOLO-U model is 
proposed for multitask UAV aerial vehicle detection 
and road segmentation, sharing the backbone and neck 
networks between tasks to enhance feature correlation 
learning, leading to improved detection and segmenta-
tion results. Pretraining using self-built aerial vehicle 
detection and road segmentation datasets, combined 
with similar single-task datasets, further enhances 
model detection accuracy on the test set.

(3) Experimental results demonstrate that GhostNet ECA, 
as the backbone network, outperforms GhostNet by a 
1.6% improvement in vehicle detection accuracy with a 
lower parameter count. The proposed G-ASPP module 
outperforms SPP and ASPP modules, improving detec-
tion accuracy while reducing parameter and computa-
tional costs by 1.1 million parameters and 0.44 GFlops, 
respectively. Comparisons with other single-task net-
work models, both numerically and visually, show that 
the proposed YOLO-U model achieves superior accu-
racy and completeness in vehicle detection and road 
segmentation tasks. This validates the advantages of 
the proposed model.

Currently, our model also has some shortcomings, such 
as task imbalance and missed detection of targets outside the 
road. Additionally, there are issues with subsequent embed-
ded porting that require further research in order to enhance 
the practical value of the model. This paper focuses on Deep 
Learning network models from the perspective of UAV and 
provides a direction for multitask networks carried by UAV.
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