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Abstract
Over the past thirty years, Nashik, India, witnessed rapid urbanization, elevating Land Surface Temperatures (LSTs). This 
study presents a comprehensive approach for analyzing the spatiotemporal dynamics of LST in Nashik by utilizing Thermal 
Infrared Radiation bands from LANDSAT datasets. Regional LST maps from mid-May in 1992, 2003, 2013, and 2022, 
produced using the single channel algorithm, analyze LST changes and distributions. Land Cover Maps are developed to 
analyse the LST changes across different Land Classes. Further, statistical relationships are established across LSTs and 
landscape indicators like Normalized Difference Built-Up Index (NDBI), Normalized Difference Bareness Index (NDBaI), 
Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). A consistent increase 
in citywide LST is detected as the area coverage for hottest (40–45)°C LST band grew from 30.47  km2 in 1992 to 132.16 
 km2, 141.47  km2 and 174.85  km2 in 2003, 2013 and 2022 respectively. In contrast the cooler (30–40)°C band coverages 
fell from 305.39  km2 in 1992 to 203.12  km2, 194.66  km2and 144.82  km2 in 2003, 2013 and 2022 respectively. In 2022, an 
unprecedented 16.25  km2 area experienced extreme LST (45–50)°C, a trend unseen in prior decades. Noteworthy, Built-up 
areas and Barelands showed much higher (40–45)°C LSTs than vegetated areas and water bodies (30–40)°C. Statistical 
relations also affirm these patterns: Stronger LST corelations (ρ = 0.66) to NDBI indicate higher temperatures in densely 
built-up areas. In comparison, negative LST correlations with NDVI (ρ = -0.61) and NDWI (ρ = -0.66) signify cooler zones 
with vegetation and water bodies. These findings emphasize water-rich areas with vegetation moderating temperatures, 
while built-up areas elevate heat. Thus, municipalities must prioritize awareness, green spaces, water conservation, cooling 
technologies, and zoning regulations to counteract this warming trend.

Keywords Nashik · Land Surface Temperature · LANDSAT · Single Channel Algorithm · LST Change Detection · 
Correlation-Regression Analysis

Introduction

Rapid urbanization in various Indian cities, driven by grow-
ing urban populations seeking residences and better eco-
nomic opportunities, has led to substantial changes, con-
verting natural landscapes into vast urban expanses (Kumari 
et al. 2020; Chanu et al. 2021). Urbanization, industriali-
zation, and infrastructure advancements have a profound 
impact on urban environmental systems, modifying Land 
Use Land Cover (LULC) and changing energy interactions at 
the Earth's surface. This rapid alteration of the natural land-
scape transforming vegetation, agriculture, trees, and forests 
into impermeable surfaces like concrete and asphalt during 
urban expansion diminishes albedo and surface reflectivity 
(Gupta et al. 2020; Galve et al. 2022). Urban surfaces, unlike 
natural landscapes with higher surface albedo, absorb more 
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sunlight, resulting in increased solar radiation absorption 
and elevated Land Surface Temperature (LST). Moreover, 
the transition from vegetated areas, which usually provide 
cooling effects through evapotranspiration and shading, to 
heat-absorbing urban structures significantly contributes to 
heightened heat storage within these surfaces, further exac-
erbating the increase in LST (Chanu et al. 2021; Gupta et al. 
2020; Das et al. 2020).

Higher LSTs within city limits also exemplifies the Urban 
Heat Island (UHI) which negatively impacts the urban envi-
ronment and public health. UHIs characterize urban areas 
that exhibit higher temperatures than surrounding rural 
regions due to human-induced alterations to the city's built 
environment (Kumar et al. 2021; Gupta et al. 2021). UHIs 
exacerbate the energy demand for cooling buildings, strain-
ing existing electrical grids and increasing energy consump-
tion and greenhouse gas emissions. Further, high urban LSTs 
and UHI phenomenon amplifies health causing heat-related 
illnesses and respiratory problems, particularly affecting vul-
nerable populations and potentially increasing heat-related 
fatalities (Shukla and Jain 2019; Chaturvedi et al. 2022). 
Besides, UHIs can disrupt the natural water cycle, as higher 
temperatures increase evaporation rates and affect rainfall 
patterns potentially leading to reduced water availability and 
drought conditions in urban areas (Kumar et al. 2021; Lakra 
and Sharma 2019). UHI also worsens social disparities, 
disproportionately affecting economically disadvantaged 
communities by reducing their access to cooling resources 
and green spaces, heightening health and social inequalities 
(Mathew and S. P, and S. Khandelwal  2021).

LSTs rise and UHI arise from increased urban density 
and infrastructure, including tall buildings with large sur-
face areas that absorb and store heat. Heat-absorbing mate-
rials like concrete and asphalt exacerbate the UHI effect 
by retaining and slowly releasing heat (Shukla and Jain 
2021; Saleem et al. 2020). The scarcity of vegetation, such 
as parks and trees, in urban areas disrupts natural cooling 
mechanisms, leading to higher LSTs. This effect is visible 
by studying the relationships between the Normalized Dif-
ference Vegetation Index (NDVI) and LST. NDVI, serving 
as a measure of vegetation density and health, underscores 
the influence of green cover on surface temperatures as 
higher NDVI values in areas abundant with vegetation, 
such as forests, parks, and agricultural lands, exhibit strong 
negative correlations with LSTs (Guha 2021; Malik et al. 
2019; Biswas and Ghosh 2022). Human activities, like 
industries, vehicles, and air conditioning, contribute sig-
nificantly to UHIs by generating additional heat. Further, 
declining urban water bodies worsen UHI (Shukla and Jain 
2019; Moumane, et al. 2021; Tariq et al. 2022). Natural 
water bodies (lakes, ponds, rivers) cool surroundings 
through evaporation and transpiration. However, urbani-
zation replaces or covers them, reducing cooling capacity 

(Gupta et al. 2019). Human activities' influence is evident 
through the assessment of Normalized Difference Built-Up 
Index (NDBI) and its inter-relationships with LST. NDBI 
assesses built-up areas and urban growth, offering insights 
into surfaces occupied by human-made structures. Sur-
faces with higher NDBI values, like roads, buildings, and 
paved areas, correspond to elevated LST values, highlight-
ing the impact of urbanization and impervious surfaces on 
higher temperatures in urban environments (Chetia et al. 
2020; Maity et al. 2020). Further, besides local effects 
rising LSTs are also linked to global climate change as 
rising global temperatures intensify the UHI effect, pos-
ing challenges in managing heat-related risks and energy 
consumption (Halder et al. 2021).

Urbanization lead transformation of urban landscape 
results in elevated LSTs. However, pace of LST change is 
not uniform and depends on regional characteristics. Thus, 
periodically monitoring the spatial and temporal variations 
of LST dynamics can help identify the magnitude of LST 
change across different time spans and also pinpoint the most 
vulnerable areas experiencing the highest LST rise (Harod 
et al. 2021; Thakur et al. 2021). This vital information is 
crucial for prioritising the allocation of urban resources. 
However, physically examining LSTs in urban areas is chal-
lenging, labour-intensive, and susceptible to errors caused 
by both system limitations and human factors. Moreover, 
the scarcity of historical surface temperature datasets hin-
ders the ability to conduct comprehensive comparative LSTs 
assessments (Chaturvedi et al. 2022; Das and Angadi 2020). 
In comparison, Remote Sensing (RS) offers a convenient 
approach to monitor LSTs, providing valuable data and 
insights into surface temperature patterns and their distri-
bution within urban areas (Parmar et al. 2021; Guha and 
Govil 2022). The evolution of remote sensing, particularly 
through satellite-based observations facilitated by LAND-
SAT, MODIS (Moderate Resolution Imaging Spectroradi-
ometer), and Sentinel series satellites, has streamlined the 
periodic analysis of environmental changes in urban regions. 
When combined with Geographic Information Systems 
(GIS) and spectral indices, these technologies enable precise 
monitoring of LST alterations (Sam and Balasubramanian 
2023; Nabizada, et al. 2022). RS leverages Thermal Infrared 
Radiation (TIR) sensors on satellites, allowing comprehen-
sive monitoring and analysis of LSTs on a large scale by 
capturing intricate thermal information emitted from the 
Earth's surface (Neog 2021). This technological capability 
supports observing temporal changes in UHIs across seasons 
and years, offering a longitudinal view of LST elevation and 
pinpointing hotspots within urban areas. The use of long-
term Remote Sensing datasets also aids in recognizing trends 
and assessing the effectiveness of implemented measures for 
mitigating urban heat over extended periods (Thakur et al. 
2021; Gohain et al. 2020).
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Further, RS facilitates the analysis of land surface charac-
teristics and land cover changes that influence LSTs. It iden-
tifies specific land use and cover types linked with increased 
surface temperatures, such as impermeable surfaces, bare 
soil, or limited green spaces. Further, RS GIS data, par-
ticularly multispectral imagery, enables LST estimation 
and its correlation with indices like Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Built-
Up Index (NDBI), Normalized Difference Bareness Index 
(NDBaI) and Normalized Difference Water Index (Nabi-
zada, et al. 2022; Guha and Govil 2021; Mukherjee and 
Singh 2020). These indices help predict LST distribution 
by delineating built-up areas, vegetation density, and water 
content. In urban regions, higher NDBI values indicate UHI 
effect, while lower NDVI and higher NDBaI values lead to 
increased LST due to reduced vegetation cover. Water bodies 
with high NDWI values exhibit lower LST due to the cooling 
effect (Jana, et al. 2020; Vani and Prasad 2020). However, 
site-specific analysis remains crucial owing to the complex-
ities and variations in these relationships. To summarize, 
RS-GIS furnishes essential insights for urban planners and 
policymakers, empowering them to prioritize interventions 
that can alleviate the escalation of LSTs and UHIs.

This study analysis the spatiotemporal LST changes in 
a rapidly developing city of Nashik, India during the past 
three decades. Nashik’s rapid urbanization categorised by 
the replacement of its natural landscape and water bod-
ies with impermeable concrete and asphalt materials has 
resulted in gradual warming of its urban environment pro-
ducing higher LST values. This study undertakes the follow-
ing three objectives.

RO1. Conduct a spatio-temporal assessment of LST 
change during 1992, 2003, 2013, and 2022.
RO2. Evaluate LST distribution patterns and correlations 
with landscape indicators.
RO3. Develop Regression models between LST with 
NDBI, NDBaI, NDVI and NDWI to assess relative influ-
ences.

This study's novelty stems from its innovative analysis of 
three decades of LST dynamics in Nashik, systematically 
correlating them with regional landscape indicators. This 
approach allows for a deeper understanding of how these 
landscape features influence the temperature changes within 
the urban environment. This region hasn't undergone a simi-
lar investigation before, making this study's findings vital for 
urban planners to manage escalating urban temperatures. 
The rest of the paper is structured as follows. The "Litera-
ture review" Section presents a focussed Literature Review 
highlighting the salient features of long term LST change 
assessment studies conducted across different regions. Fur-
ther the role of NDBI, NDVI, NDBaI and NDWI on LST 

estimation is also discussed. The "Materials and methods" 
Section describes the geographical and climatic conditions 
of Nashik region. Next, a stepwise methodology describing 
LANDSAT data retrieval, LST estimation, change detection 
and correlation and regression analysis between LST and 
NDBI, NDVI, NDBaI and NDWI is presented. The "Results" 
Section presents the specific results followed by pertinent 
discussions and mitigation measures in the "Discussions" 
Section to control region wide LST rise. Finally, the "Con-
clusions" Section presents the concluding remarks followed 
by the scope for further research.

Literature review

The spatiotemporal LST assessment using RS data has 
gained attention in recent years due to its utility in various 
fields like agriculture, urban planning, climate studies, and 
environmental monitoring (Shukla and Jain 2021; Arulbalaji 
et al. 2020). This approach synthesis RS-GIS technologies 
to capture thermal information and analyze the spatial and 
temporal variations of LST over different land cover types 
across diverse time periods. Several studies focused on the 
retrieval and analysis of LST from thermal infrared sensors 
on-board satellite platforms such as MODIS and LANDSAT 
(Das et al. 2020; Kumar et al. 2021; Mathew and S. P, and 
S. Khandelwal  2021). The spatial resolution of these sen-
sors allows for the identification of fine-scale temperature 
patterns within urban areas, rural landscapes, and natural 
environments (Chanu et al. 2021; Gohain et al. 2020).

For example, Chakraborti et al. (Chakraborti et al. 2019) 
utilised the LANDSAT ETM + and OLI satellite data from 
2002 and 2015 to analyse LST changes in Hyderabad by 
assessing neighbourhood-level landscape metrics using a 
Geographical Weightage Regression model. Gupta et al. 
(Gupta et al. 2020) studied LST changes in Jaipur from 
2008 to 2011 due to urban development, using MODIS data 
and analyzing LST variations alongside land use changes, 
especially impervious surface areas. John et  al. (John 
et al. 2020) examined LULC and LST changes in Way-
anad, India between 2004 and 2018 using IRS P6 LISS-
III imagery for LULC classification, and LST data derived 
from the ETM + thermal band. LULC changes had a dis-
cernible impact on LST, resulting in a significant 1.75 °C 
decrease, driven by a negative correlation with vegetation. 
Using MODIS LST data from 2001 to 2017, Ritesh et al. 
(Ritesh et al. 2020) investigated the evolution of coal fires 
in Jharia coalfields. Using trend decomposition models on 
LST pixel time series data, the study annually characterized 
coal fire trends and distinguished them from non-coal fire 
trends. Sam & Balasubramanian (Sam and Balasubramanian 
2023) used LANDSAT and MODIS to track LULC and LST 
changes (2000–2020) along Kanyakumari coast. Settlement 
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areas rose by 49.89%; Agriculture Land fell by 20.09%. 
Salt Pans peaked at 31.57 °C LST; Waterbodies remained 
cooler at 28.9 °C. Further, Ayanlade et al. (Ayanlade et al. 
2021) investigated urban LST changes in four Nigerian cit-
ies across various ecological zones. Using LANDSAT TM/
ETM data (1984–2012) and LANDSAT OLI/TIRS data 
(2015–2019) alongside RS-GIS techniques, they analyzed 
the influence of diverse land cover types on urban LST inten-
sity. Bala et al. (Bala et al. 2021) explored Varanasi's UHI 
dynamics from 1989 to 2018 using LANDSAT data, unveil-
ing an amplified UHI intensity rising from 0.36 to 0.87. The 
Land Cover Contribution Index highlights water and vegeta-
tion negatively impacted UHI while bare soil and built-up 
areas contributed positively.

LANDSAT's higher spatial resolution (15–30 m) com-
pared to MODIS (250 m to 1 km) allows more detailed LST 
estimations, making LANDSAT datasets a preferred choice 
for researchers studying the impact of LST changes on the 
urban landscape (Nabizada, et al. 2022). For example, Gupta 
et al. (Gupta et al. 2019) investigated the cooling impact of 
water bodies on LSTs in urban areas, with a focus on Sukhna 
Lake in Chandigarh and the Sabarmati River in Ahmedabad. 
Substantial temperature reductions were observed: an aver-
age decrease of 7.51 °C in summer and 3.12 °C in winter 
near Sukhna Lake, and 1.57 °C in summer and 1.71 °C in 
winter within 200 to 300 m of the Sabarmati River's bank. 
Neog (Neog 2021) used LANDSAT TM and OLI/TIRS data 
(2008–2018) to examine land use effects on LST in Agartala 
Municipal area and found growth in built-up areas and popu-
lation increased mean LST (25.71 °C to 26.29 °C in sum-
mer, 21.48 °C to 26.05 °C in winter). Correlation analysis 
revealed a stronger relationship between NDBI, NDVI, pop-
ulation density, and LST, highlighting LST amplification. In 
their study, Suhail and Khan (2019) (Suhail and Khan 2019) 
examined UHIs in NOIDA, India using LANDSAT-8 OLI-
TIRS data, identifying two UHI clusters in the city's north-
ern and mid-eastern areas linked to dense construction and 
industrial zones. The study highlighted a direct clear cor-
relation between urbanization and intensifying UHIs within 
city centres. Aha et al. (Aha et al. 2020) investigated Kol-
kata city urban expansion's impact on UHI Intensity using 
LANDSAT data. Findings show rising LST from 27.01 °C to 
33.86 °C and increased built-up areas from 6.93% to 27.10% 
between 1988–2018. Strong correlations (R2 = 0.84–0.99) 
between LANDSAT bands and LST were found. However, 
no clear link emerged between different built-up clusters and 
LST. LANDSAT datasets also enable seasonal LST change 
assessment. In their study, Guha et al. (Guha, Govil, Gill, 
et al., 2020) examined Raipur City's seasonal variations in 
LST and NDBI using 64 LANDSAT images from 1991 to 
2019. LST consistently correlated positively with NDBI with 
strongest correlations occurring post-monsoon (0.72), fol-
lowed by monsoon (0.69), pre-monsoon (0.67), and winter 

(0.57), varying across land types. Further, Guha et al. (Guha 
et al. 2020) reused the 64 LANDSAT images to assess the 
seasonal variations in LST and NDWI values across different 
land cover types. Again, post monsoon (0.42) NDWI values 
strongly correlated with LST followed by monsoon (0.34), 
pre-monsoon (0.25), and winter (0.04). NDBI-LST corre-
lations outweighed NDWI-LST, highlighting the greater 
influence of built-up areas on LST than water content in 
the landscape. (Kumari et al. 2020) utilized LANDSAT 8 
(OLI/TIRS) data for Mumbai, Chennai, Delhi, and Kolkata, 
investigating (LST) variations using the mono-window algo-
rithm (MWA) and split-window algorithm (SWA). The study 
analyzed correlations between NDBI and NDVI with LST 
patterns, revealing urban development and vegetation cover 
impacts. Maithani et al. (Maithani et al. 2020) used TIRS 
data to assess LST changes in Dehradun during COVID-
19 lockdown by comparing LSTs from April 2020 with 
those from April 2019, April 2018, and May 2017. Notable, 
high-density wards had minimal LST reduction, while open 
spaces and lower-density areas saw significant decreases. 
Likewise, Ghosh et al. (Ghosh et al. 2020) analyzed the 
Covid 19 lockdown effects on four Indian megacities. Utiliz-
ing remote sensing data, they constructed an Environmental 
Quality Index incorporating PM10, LST, NDMI, NDVI, and 
NDWI, highlighting the temporary enhancement in the cit-
ies' environmental quality during the stringent lockdown. 
Kumari et al. (Kumari et al. 2019) analysed the LST rise 
produced by the replacement of forests with thermal power 
plants in Singrauli, India. Elsewhere, Saleem et al. (Saleem 
et al. 2020) studied the UHI phenomenon in Lahore, Fais-
alabad, and Multan districts in Pakistan using LANDSAT 
data from 1998 and 2017. UHI effects were evident, with 
temperature rises of 2 °C in Lahore over two decades and 
similar trends observed in Faisalabad and Multan districts.

Notable, several computational techniques like single-
channel algorithms, split-window algorithms, and radia-
tive transfer models, CA, ANN have been adopted for 
extracting LST trends from RS datasets (Lastname, et al. 
2021). For example, Lakra and Sharma (Lakra and Sharma 
2019) applied the window algorithm to analyse the link-
age between LULC, elevation, and LST in Ajmer, India 
employing LANDSAT 5 and LANDSAT 8 satellite imagery. 
Abdullah-Al-Faisal et al. (Tariq and Shu 2020) employed 
Cellular Automata-Markov Chain models to analyze urban 
growth and LST changes in Faisalabad from 1990 to 2048 
using LANDSAT data. John et al. (John et al. 2021) applied 
the principal component analysis to study LULC and LST 
associations in Kerala, India, from 1990 to 2017 to screen 
key spatial and temporal patterns. Harod et al. (Harod et al. 
2021) investigated the influence of various surface emis-
sivity estimation methods on LST retrieval accuracy. Using 
LANDSAT data and ASTER GED, emissivity was esti-
mated through different vegetation index (VI) models. LST 
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retrieval employed Statistical Mono Window (SMW) and 
Generalized Single Channel (GSC) algorithms, validated 
against ground measurements in eight Indian sites. Minor 
differences were observed in LST accuracy among emissiv-
ity methods, with SMW outperforming GSC. Galve et al. 
(Galve et al. 2022) presented a comparative assessment of 
Single-Channel (SC) and Split-Window (SW) algorithms 
and a novel simplified Single Band Atmospheric Correction 
(L-SBAC) method based on atmospheric correction param-
eters and emissivity to estimate LSTs in Barrax, Spain. 
L-SBAC outperformed SC and SW algorithms. Noteworthy, 
each method has its own advantages and limitations, and 
the choice of method depends on the available data, sensor 
characteristics, and research objectives (Tariq and Shu 2020; 
Aithal et al. 2019; Njoku and Tenenbaum 2022).

Several authors also analyzed the relationships between LST 
and indices such as NDBI, NDBaI, NDVI, and NDWI provide 
valuable insights into the thermal behaviour of land surfaces 
(Halder et al. 2021; Das and Angadi 2020; Parmar et al. 2021). 
Guha and Govil (Guha and Govil 2021) examined the spati-
otemporal relationship between LST and NDVI in Raipur City, 
India, from 2002 to 2018. They find a consistent negative cor-
relation between LST and NDVI across the area, with varia-
tions in high and low LST zones. In the Narmadapuram region, 
Malik et al. (Malik et al. 2019) used LANDSAT-8 data to inves-
tigate the relationships between LST-NDBI and LST-NDVI 
across various seasons. They found strong positive correlations 
(R2: 0.965–0.991) between LST-NDBI and strong negative 
correlations (R2: 0.911–0.993) between LST-NDVI underly-
ing the NDBI's warming effect and NDVI's cooling effect on 
LST. Thakur et al. (Thakur et al. 2021) studied land use changes 
in the Indian Sundarbans using satellite images from 2000, 
2010, and 2017. Mangrove forests and plantations had lower 
NDVI, and settlements showed the most significant LST rise, 
indicating increased non-vegetated areas and ecosystem stress. 
Choudhury et al. (Choudhury et al. 2019) studied LST changes 
in West Bengal's Asansol-Durgapur Development Region from 
1993 to 2015, revealing strong correlations between LST and 
NDVI, NDBI, and NDWI. Mukherjee and Singh (Mukherjee 
and Singh 2020) explored Surat and Bharuch, India, finding 
increased built-up areas, reduced green spaces, and higher LST. 
They observed a negative LST-NDVI correlation, indicating 
that as urbanization expanded, green spaces reduced, and LST 
increased. Similarly, N. Das et al. (Das et al. 2021) in Asansol, 
eastern India, found rising annual temperatures due to urban, 
industrial, and coal mining expansion. They noted negative 
LST-NDVI and NDWI correlations but a positive association 
with NDBI, suggesting future temperature increases. Jana et al. 
(Jana, et al. 2020) in Doon Valley observed significant urbani-
zation, especially near the city center and roads, with significant 
negative LST-NDVI relationships, indicating urbanization's 
impact on temperature rise and ecological stability. Researchers 
also adopted other indicators to substantiate their findings. Like 

in 2022 study by Biwas and Ghosh (Biswas and Ghosh 2022) 
for Kolkata, LST showed strong positive linkages with NDBI 
and negatively correlated with NDVI and Modified Normalized 
Difference Water Index (MNDWI) underscoring the need for 
green city initiatives through sustainable land use planning. In 
Panaji and Tumkur, India Ramaiah et al. (Ramaiah and Manish 
2020) investigated the relationship between LST and urban fac-
tors like Enhanced Built-up and Bareness Index (EBBI), Modi-
fied Normalized Difference Water Index (MNDWI), and Soil 
Adjusted Vegetation Index (SAVI). The study revealed strong 
negative correlations between MNDWI-LST in Panaji and SAVI-
LST in Tumkur, highlighting water bodies and Urban Green 
Spaces cooling effects on LST in these two cities. Sultana & 
Satyanarayana (Sultana and Satyanarayana 2000) examined the 
spatiotemporal relationship across UHI and land use changes 
using indices like Enhanced Built-up and Bareness Index, Dry 
Built-up Index, and Dry Bare-Soil Index. Indices differentiated 
built-up areas (BA) from drylands (DL), showing consistently 
higher UHI intensities in DL compared to BA during summer 
and winter.

In most studies, NDBI derived from Near-Infrared (NIR) 
and Shortwave Infrared (SWIR) bands exhibited higher 
LSTs and intensified Urban Heat Island (UHI) phenom-
ena in densely built-up areas (Maity et al. 2020; Guha and 
Govil 2022). In comparison NDVI, obtained from NIR and 
red-light bands, indicates cooler temperatures due to veg-
etation, while NDWI, utilizing green and NIR bands, sug-
gests lower LSTs linked to water bodies, implying cooling 
effects in green or water-abundant regions (Vani and Prasad 
2020; Das and Das 2019). However, these correlations dif-
fer based on location, regional land cover, climate, sensor 
choice, atmosphere, calibration, and spatial scale. Hence, 
site specific investigations are necessary for developing 
exact inference. This study presents a comprehensive frame-
work to analyze the spatiotemporal LST dynamics in Nashik, 
India employing high-resolution LANDSAT datasets from 
1992 to 2022. LST changes are analysed both at the regional 
scale and at various land cover levels i.e., built-up areas, 
bare lands, water bodies, and vegetated lands. Further, cor-
relation-regression relationships are developed between LST 
and NDBI, NDBaI, NDVI, and NDWI indicators to under-
stand the role of ground features towards LST mitigation. As 
no past study focussed LST assessment in this region, this 
study’s findings shall guide urban planning efforts to combat 
rising LST and UHI phenomena.

Materials and methods

Study area

Figure 1 illustrates Nashik City, situated in Maharashtra, 
India, a historically and culturally significant area positioned 
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by the Godavari River. The city's geography is characterized 
by hills, valleys, and plateaus, with notable features such as 
Brahmagiri Hill and the Trimbakeshwar plateau. The climate 
in Nashik is classified as hot semi-arid, which is typical of 
the surrounding Deccan Plateau. Summers in Nashik are 
scorching, with temperatures soaring up to around 40 °C. 
Being situated in a rain shadow region, the city receives 
relatively lower rainfall compared to other parts of Maha-
rashtra. However, the monsoon season, spanning from June 
to September, brings moderate to heavy rainfall, revitalizing 
the region and contributing to its agricultural productivity. 
During the winter months, Nashik experiences cooler tem-
peratures, averaging between 8 and 10 °C, providing relief 
from the intense summer heat. The geographical features of 
Nashik, including its position along the Godavari River and 
amidst the Western Ghats, have played a significant role in 
the city's urban growth.

The river serves as a lifeline, supporting agricultural 
activities and contributing to the region's prosperity. The 
stunning backdrop of the Western Ghats adds to the city's 
charm and has influenced the development of its varied 
topography. Further, the city's strategic location, combined 
with its semi-arid climate and the seasonal rejuvenation 
during monsoon, contribute to the region's agricultural pro-
ductivity. Covering a total area of 337 km2 in and around 
Nashik, this study aims to comprehensively analyze the 
effects of both current and future developments. To visual-
ize the impact of peak thermal stresses in the region, the 
study specifically focuses on generating LST maps during 
the period from the 10th to the 15th of May, when LST 
levels are at their highest. This strategic timeframe allows 
for a detailed examination of the thermal dynamics and 
their implications in the area under study.

Datasets

In the initial stage of the research, a collection of mid-res-
olution (30 × 30 m) LANDSAT datasets is obtained from 
the Earth Explorer repository of the United States Geo-
logical Survey (USGS). The LANDSAT program, jointly 
operated by NASA and USGS since 1972, provides free 
mid-resolution datasets, facilitating periodic assessments 
of spatiotemporal changes (Wikipedia, “Landsat program” 
2021; Tarawally et al. 2019). Table 1 displays the specific 
datasets obtained for this research, which include LAND-
SAT 5, LANDSAT 7, and LANDSAT 8 corresponding to 
the years 1992, 2003, 2013, and 2022. For consistency, a 
uniform shape file is employed to clip the common area of 
interest in all images using Quantum GIS software.

Methodology

The methodology used for analyzing Land Surface Tempera-
ture Trends in Nashik from 1992 to 2022 includes five key 
steps, illustrated in Fig. 2.

STEP 1: LST MAPS GENERATION

LST Maps development involve the following steps.

1. PRE-PROCESSING: This involves pre-processing the 
TIR band data to correct for any atmospheric effects and 
to convert digital numbers (DN) to radiance values using 
the equation:

(1)
Radiance = DN ∗ (Radiance maximum − Radiance minimum)

∕ (DN maximum − DNminimum)

Fig. 1  Map representation of a Nashik's location within the Indian state of Maharashtra; b Extent of study area
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2. Conversion to Brightness Temperature: This stage 
involves converting the radiance values to brightness 
temperature using the equation:

K1 and K2 are sensor-specific constants provided in the 
LANDSAT metadata files. They account for sensor calibra-
tion and conversion factors.

3. Atmospheric Correction: The correction compensates 
for atmospheric effects on TIR data, ensuring accurate 
surface temperature information by removing influences 
like water vapour and aerosol attenuation.

(2)
Brightness Temperature = K2 ∕ ln((K1 ∕ Radiance) + 1)

4. Surface Emissivity Calculation: Surface emissivity 
estimation is crucial for precise LST retrieval, determin-
ing a surface's thermal radiation emission ability.

5. LST Retrieval: The Single Channel algorithm is used 
for temperature-emissivity separation, employing bright-
ness temperature and surface emissivity values to esti-
mate surface LST.

where: C1 is the first radiation constant (1.1910427 × 10^8) 
in μm * K. Wavelength is the wavelength of the TIR band 
used.

(3)

LST = Brightness Temperature ∕ (1

+ (Wavelength ∗ Brightness Temperature ∕ (C1 ∗ Wavelength)))

Table 1  List of data sources 
utilised in this study

Where TIR denotes Thermal Infrared Band

Dataset Time Stamp Source Resolution LST Band

LANDSAT 5 1992 United States Geological Survey (30 × 30) m TIR (Band 6)
LANDSAT 7 2003 (30 × 30) m TIR (Band 6)
LANDSAT 8 2013 (30 × 30) m TIR (Band 10)
LANDSAT 8 2022 (30 × 30) m TIR (Band 10)

Fig. 2  Research Methodology for spatiotemporal assessment of Nashik's LST dynamics during 1992–2022
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6. Post-processing and Mapping: After obtaining LST 
values, post-processing tasks such as spatial filtering, 
interpolation, or outlier removal are performed. Finally, 
different colour legends are assigned to represent differ-
ent temperature ranges.

STEP 2: LC MAPS GENERATION

Nashik region LC maps for 1992, 2003, 2013 and 2022 
were developed using the Maximum Likelihood Algorithm 
(MLC) within the QGIS-SCP Plugin. MLC relies on user 
supplied LC spectral signatures to classify unseen pixels. 
MLC execution involves three main steps namely data prepa-
ration, maximum likelihood estimation, and classification. 
In data preparation, training samples are collected for each 
class based on spectral signatures, and in the parameter 
estimation step, the MLC algorithm determines the prob-
ability distribution parameters for each class. By assuming 
a multivariate Gaussian distribution, the mean vector (μ) 
and covariance matrix are estimated for each class using the 
following equations.

where nk is the number of training samples for class k and 
Xi represent the Spectral feature vector of the i-th training 
sample. Further, T represents the transpose operation.

In the final classification phase, ML evaluates the prob-
ability of each pixel being associated with each class using 
the estimated parameters. The Likelihood (L_k) for a pixel 
with spectral feature vector X belonging to class k is calcu-
lated using the following multivariate Gaussian distribution 
equation.

where d signifies the dimensionality of the spectral fea-
ture vector, |Σ_k| implies the determinant of the covari-
ance matrix Σk , (Xi − μk ) denotes the difference between 
the spectral feature vector X and the mean vector μk and 
finally Σk

−1 represents the inverse of the covariance matrix 
Σk . Finally, each pixel is allocated to the class with the 
highest Likelihood. MLC algorithm assumes class inde-
pendence and normal distribution while not considering 
the spatial context. The chosen study area is categorized 
into four LC classes: Built-up, Vegetation, Water body, and 
Bareland. Built-up areas encompass roads, residential and 
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∑nk

i=1
Xi

(5)

Covariance matrix (Σ) for class k ∶ Σ_k =
1

n
k

∑n
k

i=1
(X

i
− �k).(Xi

− �
k
)T

(6)

Likelihood Lk(x) =
1(

(2π)
d

2 .
(||Σk

||
) 1

2

)
.e(−0.5(Xi−�k)

T
.Σ−1

k
.(Xi−�k)))

commercial, buildings whereas rivers, lakes, and wetlands 
encompass waterbodies. Further, Vegetation covers trees, 
gardens, forests, and cropped farmlands whereas Barelands 
include open areas, uncropped agricultural lands and other 
and remining land-cover types. LC map accuracy is assessed 
using Kappa statistics, quantifying agreement between clas-
sified and actual ground features. One hundred actual ground 
control points (25 per class) were selected across the entire 
study area to compare the actual and predicted LC class 
labels. A minimum kappa accuracy threshold of 0.80 was 
required to accept the MLC classification results.

STEP 2: LST CHANGE DETECTION

The second stage i.e., LST Change Detection involves a 
comparative assessment of LST maps during 1992, 2002, 
2013, and 2022. Further, Table 2 provides statistical prop-
erties, summarizing the minimum, average, and maximum 
temperatures for these periods. Area coverage under five 
LST intervals (ranging from 25 °C to 50 °C) is displayed 
in Fig. 3 and Table 3. LST maps for the four periods are 
presented in Fig. 4. The change in area coverage (in square 
kilometres) under each temperature band indicates the LST 
changes during the specified periods.

STEP 3: NDBI, NDBaI, NDWI and NDVI Maps Gen-
eration

This step includes computing landscape indices for the 
entire region using suitable frequency bands from the multi-
spectral LANDSAT dataset. NDBI identifies urban areas 
utilizing differences in Near-Infrared (NIR) and Shortwave 
Infrared (SWIR) reflectance. NDBaI evaluates bare land by 
utilizing SWIR and red bands. NDVI gauges vegetation den-
sity by measuring differences between NIR and red bands. 
NDWI recognizes water bodies by assessing differences in 
green and NIR bands.

(7)NDBI = (NIR − SWIR) ∕ (NIR + SWIR)

(8)NDBaI = (SWIR − Red) ∕ (SWIR + Red)

Table 2  Minimum, Mean and Maximum LSTs during 1992, 2003, 
2013 and 2022

Year Min LST (°C) Mean LST (°C) Max LST(°C)

1992 27.52 37.24 43.34
2003 25.87 38.72 47.00
2013 29.96 39.54 46.78
2022 27.63 40.32 50.23
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STEP 4: CORRELATION ANALYSIS

In this stage, a correlation matrix is developed to assess the 
relationship between LST and NDBI, NDBaI, NDVI, and NDWI. 
This involves calculating the values of these indices, extracting 
LST values, and computing correlation coefficients to understand 
their influence on temperature variations in the study area.

Step 1: Data Preparation: Nashik region is divided 
into a 50 mx 50 m grid covering 13444 ground points 
to extract LST and landscape indicators data. All five 
parameters are arranged in a tabular manner to develop 
13444 rows by 5 columns matrix.
Step 2: Compute the mean and Standard Deviation for 
each variable.

Mean of variable X measures the central tendency of 
the dataset.

(9)NDVI = (NIR − Red) ∕ (NIR + Red)

(10)NDWI = (Green − NIR) ∕ (Green + NIR)

Standard deviation of variable X measures the variabil-
ity or dispersion of the data points around the mean.

Step 3: Calculate the covariance between each pair of 
variables. Covariance measures the joint variability 
between two variables.

Step 4: Calculate the correlation coefficient (Pearson 
correlation) between each pair of variables. The correla-
tion coefficient ranges from -1 to + 1 and indicates the 
strength and direction of the linear relationship between 
two variables.

Correlation coefficient between variables X and Y:

Step 5: Assemble Correlation Matrix Create a matrix (n 
x n) to store the correlation coefficients for all pairs of 
variables.

The correlation matrix is analysed by studying the pair-
wise correlation values. Positive values (closer to + 1) indi-
cate a positive linear relationship, negative values (closer to 
-1) indicate a negative linear relationship, and values close 
to 0 suggest a weak or no linear relationship between the 
variables.

STEP 5: REGRESSION ANALYSIS

Several Linear Regression models are affixed between 
LST and four independents (NDBI, NDBaI, NDVI and 
NDWI) during the four periods to assess the relative influ-
ence of four inputs on the model output. Each of these mod-
els follows the concise form as shown by Eq. (16):

(11)X =

∑m
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Xi

m

(12)� =

�∑m
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2

m
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m

(14)p(X, Y) =
cov(X, Y)

�x.�y

(15)
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. . . . . .

. . . . . .

pnX pn1 pn2 . . 1
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(16)LST = β0 + β0 ∗ Independent Variable + ε

Fig. 3  LST Distribution plots for 1992, 2003, 2012 and 2022

Table 3  The computed Kappa statistic values for the four LC maps 
during 1992–2022

Land Cover Classwise Kappa Coefficient

1992 2003 2013 2022

Water Body 0.97 1.00 1.00 1.00
Built-Up 0.99 0.98 0.96 0.99
Vegetation 0.84 0.81 0.95 0.82
Bareland 0.98 0.98 0.99 0.87
Overall Kappa 0.92 0.92 0.97 0.90
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In this context, βo denotes the constant or intercept in 
the model, while β1 serves as the regression coefficient, pro-
viding insight into the influence of the corresponding inde-
pendent variable. Additionally, ε captures the error term, 
encompassing variations in LST that remain unexplained 
by the independent variable.

The primary objective of these linear regression models 
is to precisely estimate the coefficients ( βo and β1 ) that best 
fit the data for their respective years minimizing squared 
errors between predicted and actual LST values. Goodness 
of Model Fit ( R2 ) quantifies the proportion of LST vari-
ance explained by independent variables, with higher val-
ues indicating better fit. Higher R-squared values (closer to 
1) indicate a better fit. Notably, in this context, yi , yi , and 
ŷi represent actual, average, and predicted LST values as 
defined in Eq. 17.

(17)R
2 = 1 −

∑
i(yi − ŷi)

2

∑
i(yi − yi)

2

Results

LST change assessment

Table 2 illustrates the minimum, average, and maximum 
Land Surface Temperatures (LSTs) for the years 1992, 
2002, 2013, and 2022: (27.52, 37.24, 43.24)°C; (25.87, 
38.72, 47.00)°C; (29.96, 39.54, 46.78)°C; and (27.63, 40.32, 
50.23)°C, respectively. During 1992–2022, minimum LST 
ranged from lowest 25.87 °C in 2003 to highest 29.96 °C 
in 2013. Further, a clear warming trend is detected as the 
region's mean and max LST values rose consistently from 
1992 to 2022, growing by 8.06% and 15.36% respectively 
each decade. Further, the difference between the max and 
mean LST rose steadily by 20.02% each decade.

Figure 3 illustrates the LST distributions for 1992, 2003, 
2013, and 2022, represented by blue, yellow, green and red 
colours, respectively. The density plots indicate that the 
coolest LSTs were detected in 1992, while the hottest tem-
peratures were recorded in 2022. Further, LSTs during 2013 

Fig. 4  Land Cover Maps for the Nashik Region during 1992, 2003, 2013 and 2022
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were generally higher than 2003 signalling a warming trend. 
Noticeably, 1992 and 2003 contain a higher data density 
in the (35–40)°C band than later years showing major rep-
resentation in the (40–50)°C interval. Markedly, a gradual 
rightward shift is seen with the passage of time as recent 
LST histogram plots show greater density towards elevated 
temperature values than earlier years implying that LST 
increase is not a localised phenomenon and experienced in 
most areas of Nashik as the vast majority of data points 
display higher LST values than previous decades. Further, 
a prominent data density higher than 45 °C is seen for the 
first time during 2022.

LC maps were developed to classify LST changes across 
different LC classes across the four periods. MLC algo-
rithm was adopted to develop these four maps which are 
shown in Fig. 4. Further their classification accuracies are 
represented in Table 3. All four LC maps exhibited high 
kappa values exceeding 0.90, especially with Built-Up class 
achieving high kappa exceeding 0.95. In comparison, Kappa 
for Vegetation and Bareland ranged between (0.81–0.95) and 
(0.87–0.95) across the four years.

Built-up coverage has notably increased in the study area 
over the past three decades. Table 2 outlines the minimum, 
mean, and maximum Land Surface Temperatures (LSTs) for 
the four main land cover classes in the Nashik region. The 
mean LSTs for the years 1992, 2003, 2013, and 2022 exhibit 
consistent warming trends across different land types. Bare 
lands consistently display the highest mean LST, rang-
ing from 38.43 °C in 1992 to 41.15 °C in 2022. Built-up 
areas also show a steady increase in mean LST, rising from 
36.77 °C in 1992 to 40.52 °C in 2022. In contrast, water 
bodies maintain cooler LSTs, varying from 31.29 °C in 2003 
to 35.13 °C in 2022. Vegetated areas, while cooler, experi-
ence a gradual LST rise from 36.08 °C in 1992 to 38.84 °C 
in 2022.

The minimum and maximum LST values shown in Fig. 5 
display LST rise across different land cover types. Notably, 
water bodies constantly exhibit the lowest minimum LST, 
fluctuating from 25.87 °C to 30.16 °C. In comparison, built-
up and barelands show higher minimum LST values. The 
minimum LST values recorded for built-up and Barelands 
ranged from (30.8–32.3)°C and (28.8–33.6)°C, respectively. 
Similar to water bodies, vegetated areas displayed lower 
minimum LST values, ranging from 27.67 °C to 30.58 °C. 
Analyzing maximum LST values in Fig. 5, it is evident that 
unvegetated Barelands experienced the highest LST across 
all four periods rising from 43.34 °C in 1992 to 49.54 °C in 
2022. Built-Up areas comprising commercial buildings and 
human settlements also experienced high LST values and a 
consistent LST warming trend as LST rose from 41.07 °C 
in 1992 to 48.36 °C in 2022. Similar to min and mean LSTs 
tends, water bodies comprising rivers, ponds displayed the 
lowest values for maximum LST ranging from 38.48 °C in 

1992 to 41.19 °C in 2023. Vegetated maintains relatively 
stable maximum LST, varying from 41.83 °C to 44.3 °C 
were much found cooler than bare lands and built-up spaces.

The LST maps for the four periods are shown in Fig. 6, 
followed by area coverages in different LST intervals in 
Fig. 7 and Table 4. In the 1992 LST map (Fig. 7a), the larg-
est area of 248.30  km2 falls within the temperature range 
of (30–35)°C. The coolest LSTs ranging (25–30)°C are 
observed around the city center, particularly near Panchvati 
and Tapovan along the Godavari River, with several sur-
rounding areas like Thate Nagar, ISCON, Sahdev Nagar, 
and Police Colony experiencing cool temperatures ranging 
(30–35)°C. Similar cooling effect is seen in areas located 
near to Darna River along the south-eastern end. Adjoining 
these cooler zones, an area of 57.09  km2 is observed in the 
temperature range of (35–40)°C, encompassing places such 
as Mahatmanagar, Hirawadi, Maneksha, Samtanagar, and 
Tagorenagar. Smaller patches covering around 30.47  km2, 
characterized by elevated LSTs ranging from (40–45)°C, are 
visible along the Adagaon, Masrul, Vrindavan in the East 
and Wadalagaon and Pathardi along the Southwest.

Upon examining the 2003 LST map (Fig. 7b), it is evi-
dent that small patches of high LSTs observed in 1992, 
ranging from (40–45)°C, have extended inward toward the 
city center reaching areas up to Ayodhya Nagar in the East, 
Hanuman Nagar in the North, Kalpatru in the South, and 
Dhurav Nagar in the West. This expansion represents a sig-
nificant increase of 333%, equalling 132.16  km2. Further, 
the previously concentrated areas characterized by lower 
LSTs within (30–35) °C range, highlighted in green in the 
1992 map, have fragmented into smaller patches. As shown 
in Fig. 8, this fragmentation led to a reduction in coverage 
by 35%, with the area decreasing from the initial 57.09  km2 
to 35.66  km2. As observed in the 1992 map, cooler LST 

Fig. 5  Mean LST across Water, Built Up, Vegetation and Bareland 
areas
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Fig. 6  (a) Minimum and (b) Maximum LST across Water, Built Up, Vegetation and Bareland areas

Fig. 7  Land Surface Temperature Maps for the Nashik region during a 1992, b 2003, c 2013 and d 2022
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regions persist near the Godavari River, specifically along 
Panchvati, Tapovan, and Sawarkar Nagar. However, the most 
significant feature in the 2003 map is the inward expansion 
and consolidation of the high LST regions in the (40–45)°C 
range. This resulted in an 81  km2 reduction in the coverage 
of LSTs ranging from (35–40)°C and the fragmentation of 
lower LST regions in the (30–35)°C range. Additionally, in 
the 2003 LST map, new small patches of extreme high LSTs 
ranging from (40–45)°C appeared towards the southwest 
region near Pandav caves and Sidharth Nagar in the east.

Upon analysing the 2013 LST map (Fig. 7c), one of the 
most notable features is the significant decrease in cooler 
green patches, which has occurred due to the consolidation 
and expansion of hot yellow and orange patches. This shift in 
temperature distribution has led to a significant reduction of 
up to 75% in the coverage of LST falling within (30–35)°C 
range, resulting in the coverage area shrinking from 35.66 
 km2 to 8.65  km2. Consequently, this change resulted in 12% 
increase in the coverage of LST falling within the (35–40)°C 
range and a 7% increase in the area covered by LST within 

(40–45)°C range. The hottest LST ranging (40–45)°C is 
observed across Pandav Nagar to Samita Nagar in the south, 
Dhruvak and Jaswant Nagar in the west, Warvandi to Ayo-
dhya Nagar in the north, and Konark and Bapu Nagar in the 
east. In comparison, the coolest LST ranging (30–35) °C are 
concentrated in regions near water bodies, particularly near 
Panchvati, Jalapur, and Chendi, located close to the Darna 
river along the south-eastern end. Further, the coverage of 
extreme LST values, ranging from (45–50) °C, increased 
marginally than 2003 levels, near Narhar Nagar and Pandav 
caves.

The most recent 2022 LST map (Fig. 7d) for the Nashik 
region revealed a worrying trend as almost all areas expe-
rienced higher LST than previous decades. The coverage 
of the lowest LST band, ranging (30–35)°C reduced along 
the Godavari and Darna rivers along city center and south-
eastern ends. However cooler regions are spotted along the 
northern extent of the Godavari River and its tributary near 
Mungsare and Jalalpur regions. There has been a reduc-
tion of up to 32% in the coverage of LST falling within the 
(35–40)°C range, while the area covered by LST values rang-
ing from (40–45)°C has experienced a 23% increase. From a 
visual perspective, the LST band between 40 °C and 45 °C 
demonstrates a noticeable radial consolidation, expanding 
both in coverage and intensity. These warm regions extend 
from Hirawadi to Warwandi along north, Indira Nagar to 
Pathardi Gaon along south, Hirawadi to Sultanpur in east 
and Shramik Nagar to Mahatma Nagar along western part 
of the city. The most striking feature is the emergence 
of an area spanning 16.25  km2 under the extremely high 
(45–50)°C temperature band, which was previously unseen 
during past decades. Until 2013, the areas with extreme tem-
peratures were primarily concentrated along the city's south-
west direction, near Pandav Nagar. However, by 2022, such 
extreme temperatures have been detected in all directions. 

Table 4  Areas Coverages under different LST (°C) Intervals during 
1992, 2003, 2013 and 2022

LST (°C) Area ( km2)

Year

1992 2003 2013 2022

0–25 0.2 0.3 0.0 0.2
25–30 0.66 1.02 0.00 0.60
30–35 57.09 35.66 8.65 16.45
35–40 248.30 167.46 186.01 128.37
40–45 30.47 132.16 141.47 174.85
45–50 0.00 0.23 0.39 16.25

Fig. 8  Percentage Area Cover-
ages under different LST bands 
during 1992, 2003, 2013 and 
2022
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These high LST regions are now observed near Mhasural 
Gaon in the north, Konark Nagar and Sidhartnagar in the 
east, the airport area along the city's south, and Padav Nagri 
along the south-west. The expansion of these extreme LST 
areas poses a serious risk of severe thermal discomfort and 
can even prove fatal under prolonged exposure.

A consistent warming trend is seen across the four LST 
maps. While climate change contributes to Nashik region's 
LST increase, significant changes in land-use also play a cru-
cial role. This relationship is confirmed by linking LST with 
landscape indicators like NDBI, NDBaI, NDVI, and NDWI. 
Figure 9 displays NDBI values for the Nashik Region during 
1992, 2003, 2013, and 2022. NDBI quantifies urbanization, 
with negative NDBI values signify natural or non-built-up 
areas. The data reveals a significant range of variation in 
NDBI values across these years, underscoring changing 
urban dynamics. Across the three decades, NDBI ranged 
from a minimum of -0.45 in 1992 to a maximum of 0.64 
during 2022.

Figure 10 illustrates NDBaI maps delineating the non-
vegetated areas within the Nashik Region for the years 1992, 
2003, 2013, and 2022. NDBaI serves as a metric quantifying 

the presence of bare or non-vegetated terrain across the 
region. Notably, considerable variation exists in NDBaI 
values throughout these years, indicating dynamic shifts in 
bare land coverage. During the three decades the NDBaI 
ranged from a minimum value of -0.75 in 1992 to a maxi-
mum of 0.27 in 2003. Similarly, Fig. 11 illustrates NDVI 
maps portraying vegetation density changes in the Nashik 
Region across 1992, 2003, 2013, and 2022. Notably, the data 
showcases considerable variations in NDVI values, indicat-
ing shifts in vegetation cover. Across the three decades the 
NDVI values ranged from a minimum of -0.46 in 2022 to a 
maximum of 0.61 during 1991.

Figure  12 exhibits NDWI maps representing the 
Nashik Region across 1992, 2003, 2013, and 2022. 
NDWI serves as a crucial metric for assessing water con-
tent or the presence of water bodies within an area. The 
data presented in this figure reveals noteworthy varia-
tions in NDWI values, offering insights into changes in 
water bodies within the Nashik Region over time. Across 
the study period spanning three decades NDWI ranged 
between a minimum of -0.48 in 2013 to a maximum of 
0.61 in 1992.

Fig. 9  Normalized Difference Built-up Index Maps for the Nashik Region during 1992–2022
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Correlation analysis

The correlation matrices in Fig. 13 illustrate the association 
between LST and different landscape indicators. LST con-
sistently shows positive correlations with NDBI and NDBaI, 
while displaying negative correlations with NDVI and 
NDWI across all four periods. The correlations between LST 
and NDBI ranges from 0.65 to 0.78, and with NDBaI, the 
range was 0.073 to 0.29. In comparison, LST correlations 
with NDWI ranged from -0.76 to -0.45, and with NDVI, the 
range was -0.57 to -0.78. These findings clearly imply that 
LST were higher in bare lands and built-up spaces than veg-
etated areas and waterbodies. Further, the plots reveal strong 
positive associations between LST and NDBI, suggesting 
that built-up areas with concrete and paved surfaces expe-
rience the highest LST. Bare lands also exhibit high LST, 
though slightly lower than built-up spaces. Notably, LST's 
positive correlations with NDBI are considerably higher 
than with NDBaI, indicating that buildings, paved and con-
crete surfaces experience much higher LST than bare lands.

Conversely, LST shows negative correlations with NDVI 
and NDWI, indicating lower LST values in dense vegetated 
areas like parks and forests and water bodies like rivers, 

lakes, and ponds. Across all four periods, LST displayed 
stronger negative correlations with NDWI compared to 
NDVI, highlighting that water bodies have the most signifi-
cant cooling effect. Further strong positive correlations are 
visible between NDVI and NDWI across the four periods. 
However, negative correlations are seen across NDBaI and 
NDBI with NDVI and NDWI. This association between 
vegetation and water content suggests a complementary 
relationship where regions with abundant water resources 
tend to foster richer vegetation cover, leading to moderated 
temperatures. On the other hand, barren lands and paved sur-
faces with diminished capacity to retain moisture or promote 
green coverage reflect heat and radiation leading to higher 
LST in those areas.

Regression analysis

Regression analysis is conducted between LST and NDBI, 
NDBaI, NDWI, and NDVI to represent their associations in 
Fig. 14 and establish a statistical relationship among various 
parameters. Figure 14 visually summarizes these findings for 
the four time periods. In 1992, NDBI showed a reasonable 
positive correlation with LST  (R2 = 0.43, Correlation = 0.65), 

Fig. 10  Normalized Difference Bareness Index Maps for the Nashik Region during 1992–2022
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indicating a link to higher temperatures in built-up areas. 
NDBaI had a weaker relationship  (R2 = 0.03, Correla-
tion = 0.18), suggesting a lesser impact. NDVI exhibited a 
strong negative correlation  (R2 = 0.46, Correlation = -0.68), 
highlighting vegetation's cooling effect. NDWI displayed 
a moderately negative correlation  (R2 = 0.43, Correla-
tion = -0.65), emphasizing the cooling impact of water bod-
ies. In 2003, NDBI showed a strong positive correlation with 
LST  (R2 = 0.62, Correlation = 0.78), indicating urban devel-
opment's warming effect. NDBaI had a weaker relationship 
 (R2 = 0.08, Correlation = 0.29). NDVI exhibited a significant 
negative correlation  (R2 = 0.58, Correlation = -0.76), high-
lighting vegetation's cooling influence. NDWI also showed 
a strong negative correlation  (R2 = 0.62, Correlation = -0.78), 
emphasizing water bodies' cooling impact.

In 2013, NDBI showed highest positive correlation with 
LST  (R2 = 0.40, Correlation = 0.64), linking built-up areas 
to higher temperatures. NDBaI had a weaker relationship 
 (R2 = 0.07, Correlation = 0.26). NDVI exhibited a nota-
ble negative correlation  (R2 = 0.29, Correlation = -0.54), 
highlighting vegetation's cooling impact. Similarly, NDWI 
displayed a moderate negative correlation  (R2 = 0.40, 

Correlation = -0.64), emphasizing water bodies' cooling 
effect. Finally, in 2022, NDBI showed a moderate posi-
tive correlation with LST  (R2 = 0.33, Correlation = 0.57), 
linking built-up areas to higher temperatures. NDBaI had 
a weak relationship  (R2 = 0.01, Correlation = 0.07). NDVI 
exhibited a notable negative correlation  (R2 = 0.20, Correla-
tion = -0.45), highlighting vegetation's cooling impact. NDWI 
displayed a moderate negative correlation  (R2 = 0.33, Cor-
relation = -0.57), emphasizing water bodies' cooling effect. 
Across the four time periods, a consistent pattern emerges 
where NDBI consistently strongly correlated with LST, 
indicating a proportional direct between built-up areas and 
higher temperatures. Conversely, NDVI and NDWI consist-
ently indicates a reasonable negative correlation with LST, 
emphasizing vegetation and water bodies cooling effect.

Discussions

The rapid urban growth in Nashik region led to a substan-
tial LST rise during the past three decades. The step wise 
analysis presented in this study revealed the expansion 

Fig. 11  Normalized Difference Vegetation Index Maps for the Nashik Region during 1992–2022
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and consolidation of higher LST areas, particularly in the 
(40–45)°C range, leading to the replacement of lower LST 
regions with hotter ones. In 1992, just 9.1% of the region 
experienced LSTs exceeding 40 °C which rose to 39.27%, 
42.04%, and 51.96% in 2003, 2013, and 2022, respectively, 
indicating a concerning 35% increase each decade. Also, 
the presence of exceedingly high 45–50 °C LSTs in 2022, 
spanning 16.25  km2 and peaking at 50.23 °C, is concern-
ing. Over the four periods, built-up areas and barren lands 
consistently displayed significantly higher LSTs compared to 
vegetated areas and water bodies. The deficiency of moisture 
and vegetation led to reduced evaporative cooling, causing 
built-up and bare surfaces to absorb and retain more heat, 
consequently resulting in elevated temperatures. Statistical 
analysis also showed NDBI and NDBaI consistently corre-
lates positively with LST indicating urban warming. NDVI 
and NDWI consistently exhibits a strong negative correlation 
highlighting vegetation's cooling effect.

The surge in LSTs triggers an intensified UHI effect, 
impacting various dimensions directly linked to urban 
sustainability and human comfort. These rising tempera-
tures exacerbate water evaporation, contributing to soil 

aridification, which further compounds existing water scar-
city issues. The effect extends to agricultural productivity, 
with reduced water availability impacting crop yields and 
potentially affecting domestic water resources crucial for 
sustenance. Simultaneously, the amplified LSTs expedite 
the degradation of urban infrastructure, leading to thermal 
expansion-related damages in roads, buildings, and utilities. 
These damages, aside from elevating maintenance expenses, 
also pose a direct threat to structural integrity, compromis-
ing the safety and functionality of critical urban facilities. In 
addition to infrastructural challenges, the rising temperatures 
disrupt urban ecosystems. This disturbance affects biodi-
versity as habitats and migration patterns of various plant 
and animal species alter, causing imbalances in the delicate 
ecological equilibrium within the city. The agricultural sec-
tor also faces adverse effects as increasing LSTs cause heat 
stress in crops, negatively impacting agricultural production 
and reducing crop yields. Consequently, food security may 
get compromised, leading to economic and social challenges 
for the region.

As temperatures rise, the comfort and quality of life for 
residents’ decline, rendering outdoor activities less feasible 

Fig. 12  Normalized Difference Water Index Maps for the Nashik Region during 1992–2022
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and diminishing the city's liveability. People working out-
doors, such as labourers and construction workers, are hit 
hardest by the thermal distress caused by the rising LSTs, 
potentially leading to serious health issues and safety con-
cerns in the workforce. Moreover, potential declines in 
productivity across various sectors due to extreme heat can 
impact the overall economic landscape of the city. Higher 
LST also restrict outdoor recreation opportunities due to 
the health risks and discomfort posed by extreme heat. The 
surge LST also heightens heat-related fatalities, notably 
impacting vulnerable populations like the very young and 
elderly. Recent 2022 reports highlighted the highest heat-
stroke deaths in six years in Maharashtra, with Nashik docu-
menting 4 fatalities among 381 cases, signalling a notable 
local concern (Livemint, “Maharashtra 2022). Higher LSTs 
also increase the city-wide energy demands for building 
cooling. The heat released from these mechanical systems 
further increase urban LSTs creating a negating feedback 

loop. Vulnerable communities might face disproportionate 
impacts, amplifying disparities in resource access and resil-
ience to extreme heat, potentially widening the gap in quality 
of life between different segments of the urban populace.

Addressing the escalating LST in Nashik demands a mul-
tifaceted urban planning approach. Municipal and Urban 
Planning authorities should prioritize the creation and pres-
ervation of green spaces, such as parks and urban forests 
especially areas away from Godavari and Drona rivers expe-
riencing higher LSTs. Strategic placement of trees along 
streets and in parking lots can increase evapotranspiration, 
and reduce the absorption of solar radiation, effectively low-
ering surface temperatures. Further, preserving and creating 
water bodies like ponds and lakes is essential for Nashik's 
temperature regulation and heat reduction. Water bodies 
serve as heat sinks, provide evaporative cooling, and play a 
crucial role in maintaining groundwater levels, making them 
indispensable for sustainable urban planning. Moreover, 

Fig. 13  Correlation Matrices between NDBI, NDBaI, NDVI, NDWI and LST, during 1992- 2022



2125Earth Science Informatics (2024) 17:2107–2128 

Fig. 14  Correlation and Regression line plots between LST and NDBI, NDBaI, NDWI and NDVI during a 1992, b 2003, c 2013 and d 2022
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incorporating cool and reflective pavements, cool roofs, 
shading structures, and urban green infrastructure, such as 
green walls and vegetated facades, should be integrated into 
urban development plans to effectively mitigate heat absorp-
tion and enhance thermal comfort in Nashik. Finally, rein-
forcing urban planning zoning regulations to prioritize open 
spaces, greenery preservation, and restricting heat-absorbing 
materials in new developments will be pivotal in curbing 
rising temperatures and nurturing a more comfortable urban 
living environment in Nashik.

Conclusions

This research presented a comprehensive approach to ana-
lyze the spatio-temporal Land Surface Temperatures (LST) 
dynamics in Nashik, India during the past three decades. 
The single-channel algorithm was applied on LANDSAT 
datasets for the years 1992, 2003, 2013, and 2022 to gen-
erate regional LST maps. Further, Land Cover Maps were 
developed for the four periods to assess LST changes across 
different Land classes. Nashik’s water bodies, built up areas, 
vegetated and bare lands all experienced rising LSTs with 
2022 marking the highest values. Areas with LSTs exceed-
ing 40 °C surged from 9.1% to 51.96% between 1992 and 
2022, signifying a worrying 35% increase rate. Simultane-
ously, the warmer (30–40)°C areas decreased from 90.75% 
in 1992 to 43.03% in 2022, indicating a concerning loss 
of cooler green spaces. Moreover, in 2022, a 16.25  km2 
region experienced extreme LSTs ranging from (45–50)°C, 
an unprecedented event in previous decades. Further, cor-
relation and regression revealed higher LSTs in built-up 
and barren areas (positively linked with NDBI and NDBaI) 
but lower temperatures in vegetated zones and water bodies 
(negatively associated with NDVI and NDWI). Stronger LST 
correlation with NDBI suggests heightened temperatures 
in areas with concrete surfaces. Conversely, negative LST 
correlations with NDVI/NDWI indicate cooler zones with 
vegetation and water bodies, emphasizing the latter's cooling 
impact. Positive NDVI and NDWI correlations imply that 
regions abundant in water resources support richer vegeta-
tion, moderating temperatures, while barren lands and paved 
surfaces elevate temperatures by reflecting heat.

Elevated LSTs present multifaceted challenges to urban 
sustainability and human well-being. These rising tem-
peratures intensify water evaporation, exacerbating water 
scarcity and agricultural concerns. Concurrently, height-
ened LSTs contribute to urban infrastructure damage and 
disrupt ecosystems, impacting biodiversity. Heat stress 
diminishes crop yields, posing risks to food security. Addi-
tionally, soaring temperatures restrict outdoor activities, 
impact city liveability, and amplify heat-related fatalities, 
particularly among vulnerable populations, widening 

disparities in urban resources and affecting overall qual-
ity of life. Slowing the alarming trend of escalating LST 
in Nashik demands multifaceted urban planning led by 
Municipal and Urban Planning authorities. Prioritizing 
green spaces, strategic tree plantation, water body con-
servation, and implementing cooling technologies such as 
reflective pavements, cool roofs, and shading structures are 
imperative measures.

Reinforcing zoning regulations for open spaces and 
restricting heat-absorbing materials in new developments 
are pivotal steps to nurture a more comfortable urban liv-
ing environment in Nashik while curbing rising tempera-
tures. Finally, promoting public awareness and engagement 
shall be crucial for nurturing collective efforts towards cli-
mate resilience and mitigation. The current study adopted 
LANDSAT datasets to monitor long term LST changes 
spanning three decades. Follow up studies can adopt addi-
tional satellite datasets like Sentinel-2, MODIS, ASTER 
and GOES for LST mapping for this region. Further, future 
studies can study seasonal and diurnal LST patterns in 
the region. The utilization of higher-resolution datasets 
has the potential to enhance the precision of the findings. 
Moreover, researchers can also apply advanced Machine 
Learning algorithms to project future LST dynamics and 
their impact on health, energy and infrastructure.
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