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Abstract
Accurately estimating evaporation is essential for water managers to formulate effective rules and policies. The complexity 
arising from intricate interactions within the soil-atmosphere system makes evaporation a challenging parameter to predict. 
In the past decade, Machine Learning techniques rooted in soft computing have emerged as potent tools for addressing the 
intricacies and non-linearities in hydrology. Surprisingly, there has been no prior research exploring the impact of reservoir 
water temperature on evaporation modeling. Consequently, this study aimed to employ a hybridized Adaptive Neuro-Fuzzy 
Inference System (ANFIS) integrated with four optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO), Harris Hawks Optimization (HHO), and Salp Swarm Algorithm (SSA). The focus was on modeling the monthly 
evaporation of the Boukourdane Dam in Algeria for the period of September 1996 to August 2016 and examining how the 
reservoir's water temperature influences model performance based on four performance indicators, Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), scatter index (SI) and Correlation Coefficient (R). The findings underscored the 
significance of incorporating the water temperature parameter. Among the models, ANFIS-HHO demonstrated the highest 
accuracy with MAE, RMSE and R values of 1.28, 1.21 mm and 0.92, respectively during test period. Moreover, results 
revealing a notable impact of reservoir water temperature on evaporation forecasting and the addition of this parameter 
provide an increase in R and decrease in RMSE about 4.54% and 17.98% respectively.

Keywords  Evaporation prediction · Water temperature · Machine learning · Hybrid adaptive neuro-fuzzy inference system · 
Meta-heuristic algorithms

Introduction

Evaporation is the process of converting water from a liquid 
state to a vapor state (Feng et al. 2020; Singh et al. 2021; 
Moayedi et  al. 2021), and it is a key component of the 
water budget for reservoirs (Duan and Bastiaanssen 2017; 
Moazenzadeh et al. 2018; Friedrich et al. 2018; Allawi et al. 

2019; Seifi and Soroush 2020). Furthermore, evaporation 
plays an important role in reservoir management because 
it directly affects their storage efficiency (Piri et al. 2016a, 
b; Althoff et al. 2019; Zhao and Gao 2019). Therefore, it 
is imperative to consider the volume of water lost through 
evaporation when designing and operating reservoirs 
(Khosravi et al. 2019; Yaseen et al. 2020; Eshetu et al. 2023). 
In addition, providing an accurate estimation of evaporation 
is crucial for water managers to develop effective key rules 
and policies.

Evaporation is considered the most challenging parameter 
to estimate due to complex interactions between the com-
ponents of the soil-atmosphere system (Wang et al. 2007; 
Rezaie-Balf et al. 2019; Shabani et al. 2020; Dong et al. 
2021). The estimation of evaporation can be categorized 
into two main approaches. In the first one, i.e., the direct 
method, evaporation is measured directly using instruments 
such as the pan. However, this method has its drawbacks: 
operational difficulties (inaccessibility in some regions), 
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limitations in instrument devices (a limited number of sta-
tions), and high installation and maintenance costs (Seifi and 
Soroush 2020; Shabani et al. 2020; Abed et al. 2021). The 
second approach is the indirect method, where evaporation 
is estimated through empirical equations based on meteoro-
logical variables such as air temperature, relative humidity, 
solar radiation, wind speed, and rainfall (Singh et al. 2021; 
Ahmadi et al. 2021; Mohamadi et al. 2020; Tikhamarine 
et  al. 2019). However, also this method has limitations 
mainly based on climate variation and data availability (Seifi 
and Soroush 2020; Soroush et al. 2020; Malik et al. 2020; 
Dong et al. 2021).

In the last decade, Machine Learning (ML) techniques 
based on soft computing have been considered powerful 
tools to address the complexity and non-linearity in hydrol-
ogy, in particular in the evaporation modeling problem (Deo 
et al. 2016; Ghorbani et al. 2018; Rezaie-Balf et al. 2019; 
Adnan et al. 2021a, b, 2022a; Cappelli et al. 2023; Sahoo 
et al. 2023; Mohammadi 2023 and Eshetu et al. 2023). These 
techniques, including Multilayer Perceptron (MLP), Sup-
port Vector Machines (SVM), Extreme Learning Machine 
(ELM), and Adaptive Neuro-Fuzzy Interface System 
(ANFIS), have shown their capability to develop reliable and 
robust intelligent predictive models of evaporation (Wang 
et al. 2017; Ghorbani et al. 2018; Tikhamarine et al. 2019; 
Wu et al. 2019; Shabani et al. 2020; Yaseen et al. 2020).

ANFIS is one of the powerful ML models adopted for 
implementing evaporation prediction. Based on the combi-
nation of Artificial Neural Networks (ANN) and fuzzy sys-
tems (FS), ANFIS has the advantage of including all factors 
not involved in an ideal model while eliminating certain 
factors considered in physically based models (Hundecha 
et al. 2001; Samanataray and Sahoo 2021). The capacity of 
ANFIS to learn and classify the input-target data is prom-
ising (Yaseen et al. 2017; Jasmine et al. 2022; Haznedar 
and Kilinc 2022; Adnan et al. 2022b). From the literature, 
many researchers have employed ANFIS in the modeling of 
evaporation (Kisi and Ozturk 2007; Shiri et al. 2011; Kisi 
et al. 2014; Keshtegar et al. 2018; Malik et al. 2017; Wang 
et al. 2017; Eray et al. 2018; Maroufpoor et al. 2018; San-
ikhani et al. 2018). However, the drawback of ANFIS to get 
trapped in a local minimum during the training phase has a 
high probability (Mohamadi et al. 2020; Ghose et al. 2022; 
Haznedar and Kilinc 2022; Adnan et al. 2022a). Moreover, 
determining the best weights for membership functions has 
limitations (Khosravia et al. 2019; Dehghani et al. 2019 and 
Nou et al. 2020). Therefore, combining ANFIS with evolu-
tionary and nature-inspired algorithms solves this weakness, 
enhances the model's performance, avoid the over parame-
terisation (Parsaie et al. 2019) and finds optimum parameters 
such as bias values, weight connections, linear and nonlinear 
parameters (Chen et al. 2017; Niu et al. 2019; Mosavi et al. 

2018; Alizamir et al. 2020; Moghaddas et al. 2021; Riahi-
Madvar et al. 2021; Pham et al. 2023).

The hybridization of ANFIS with various optimization 
algorithms has been employed in many research studies in 
the field of hydrological modeling, such as precipitation 
(Azad et al. 2019; Calp 2019; Phama et al. 2020; Chaudhury 
et al. 2022), flood prediction (Bui et al. 2018; Zhou et al. 
2019; Sahoo et al. 2021; Tabbussum and Dar 2021; Ghose 
et al. 2022), and streamflow forecasting (Yaseen et al. 2017; 
Mohamadi et al. 2020; Riahi-Madvar et al. 2021; Samana-
taray and Sahoo 2021; Haznedar and Kilinc 2022; Adnan 
et al. 2022a).

To enhance the accuracy of evaporation predic-
tion, numerous bio-inspired evolutionary algorithms are 
employed. Piri et al. (2016a, b) used the Cuckoo Algorithm 
(CA) to train both ANFIS and ANN for predicting daily 
pan evaporation in Iran. Zounemat-Kermani et al. (2019) 
integrated five metaheuristic algorithms with the ANFIS 
model in evaporation modeling. They reported that the Par-
ticle Swarm Optimization (PSO) and Genetic Algorithm 
(GA) were better at estimating evaporation compared to the 
Artificial Bee Colony (ABC), Firefly Algorithm (FA), and 
Continuous Ant Colony Optimization (CACO). Mohamadi 
et al. (2020) used Shark Algorithm (SA) and Firefly Algo-
rithms (FFAs) to train ANFIS, Multilayer Perceptron (MLP) 
models, and Radial Basis Function (RBF) models for the 
prediction of monthly evaporation. They found that ANFIS-
FFA provided more accuracy compared to the other hybrid 
models. Azar et al. (2021) hybridized ANFIS with the Har-
ris Hawks Optimization (HHO) algorithm and demonstrated 
its superior performance in evaporation modeling compared 
to Least Square-Support Vector Regression (LS-SVR) 
and ANFIS models. Seifi et al. (2022) hybridized ANFIS 
with four meta-heuristic algorithms: Seagull Optimization 
Algorithm (SOA), Crow Search Algorithm (CA), Firefly 
Algorithm (FA), and PSO. They used them as inputs for 
employing ensemble Copula-based Bayesian Model Aver-
aging (CBMA). Additionally, this technique yielded the 
highest prediction accuracy. Adnan et al. (2022a, b) com-
bined ANFIS with Whale Optimization Algorithm (WOA) 
for predicting pan evaporation at three stations located in 
China. They found that the ANFIS-WOA models outper-
formed the Harris Hawks Optimization (HHO) and PSO 
algorithms. Jasmine et al. (2022) used the Firefly Algorithm 
(FFA) to train ANFIS for evaporation modeling in Arizona 
State, USA. They found that the ANFIS-PSO and ANFIS 
models were slightly better than ANFIS-FFA and ANFIS-
GA. Kayhomayoon et al. (2022) investigated the effect of 
climate change on evaporation and optimized ANFIS using 
the Arithmetic Optimization Algorithm (AOA) and HHO. 
They concluded that this hybridization had more efficiency 
in predicting the amount of evaporation in other reservoirs.
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The temperature of water in the reservoir influences con-
siderably the evaporation. Reservoir characteristics such as 
area, depth, water quality, water temperature and water cir-
culation, can affect the rate of evaporation (Terzi 2013 and 
Al Domany, 2017). Knapp et al. (1984) reported that the 
evaporation rate is influenced by water temperature. There-
fore, in the higher water temperature, more molecules close 
to the liquid surface tend to escape to the layers of air, just 
above this surface (Cosandey and Robinson 2012). Thus, 
the process of evaporation has a positive correlation with air 
temperature and water temperature; in other words, in the 
case of higher temperature of air and water, a greater amount 
of the vaporized water is formed (Friedrich et al. 2018). By 
adding the parameter of the water temperature with those of 
the air temperature, sunny hours, and air pressure, Keskin 
and Terzi (2006) estimated in their study of daily evapora-
tion modeling, on the Egirdir lake in western Turkey, that 
the best structure of the model were obtained based on these 
four input data. In addition, compared to the other models, 
which were based only on wind speed and relative humidity.

Despite its direct effect in the evaporation process, up to 
now, no research has investigated the influence of the reser-
voir’s water temperature in evaporation modelling. Hence, 
the main objective of this study was to use a hybridized 
ANFIS with four optimization algorithms including: Genetic 

Algorithm (GA), particle swarm optimization (PSO), Har-
ris Hawks Optimization (HHO) and Salp Swarm Algorithm 
(SSA), in modeling the monthly evaporation of the Boukour-
dane Dam in Algeria and to investigate how the reservoir’s 
water temperature affects the performance of the models.

Materials and methods

The study area and the available data

The Boukourdane dam is selected as case study. The study 
area is situated in the north of Algeria (latitude 36° 31’ N, 
longitude 2° 18’ E, and altitude 119.5 m). The reservoir stor-
age and regulated volume of the Boukourdane dam are 105 
and 50 MCM, respectively. The localization of the Boukour-
dane dam is shown in Fig. 1.

The observed values of monthly meteorological data 
collected from the National Agency of dams (ANBT) in 
Algiers, for the period from September 1996 to August 
2016, include Maximum temperature (Tmax, °C), Mini-
mum temperature (Tmin, °C), Relative humidity (RH, 
%), Wind speed (W, km/h), Maximum temperature of 
water (Twmax, °C) and Minimum temperature of water 

Fig. 1   Localization of case study



1782	 Earth Science Informatics (2024) 17:1779–1798

(Twmin, °C). Such variables were considered as input in 
the modelling processes, whereas the target variable was 
the Evaporation (Ev, mm/day). Figure 2 shows the vari-
ation of the observed monthly evaporation in the Bouk-
ourdane dam.

The statistical parameters of training and testing data 
for the both meteorological data are presented in the 
Table 1. The used data is divided into two different sets. 
The training dataset from September 1996 to August 2012 
and the testing dataset from September 2012 to August 
2016.

The investigated methodologies

Adaptive Neural‑Fuzzy Inference System (ANFIS)

The approach of ANFIS consists on the hybridization of an 
adaptive ANN with a Fuzzy Inference System (FIS). Intro-
duced by Jang (1993), the performances of the ANFIS are 
widely proved in many studies to solve nonlinear problems. 
By training the current input-output data, the mechanism of 
ANFIS provides the optimal parameters of the Membership 
Function (MFs).

Fig. 2   Time series of observed 
evaporation
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Table 1   Statistical properties of 
investigated variables

Monthly meteorological variables

Statistical properties Tmax Tmin W Hr Twmax Twmin Ev

(°C) (°C) (%) (m/s) (°C) (°C) (mm/day)
All data set
Minimum 10 4 0 25 8 2 0.77
Maximum 32 25 9 76.5 34 26.4 9.63
Median 21 12.5 3.4 50 20 10 3.54
Mean 21.46 14.01 3.91 49.85 20.29 14.02 4.19
Standard deviation 5.98 5.57 2.27 7.142 6.05 5.87 2.31
Correlation with Ev 0.07 0.05 0.23 -0.01 0.01 0.09 1
Train data set
Minimum 10 4.5 0 32.5 10 5 0.97
Maximum 32 25 9 76.5 34 26.4 9.63
Median 20.5 12.5 5 50 20.5 13.45 3.95
Mean 21.24 13.87 4.41 50.29 20.85 14.51 4.42
Standard deviation 5.93 5.51 2.38 6.48 6.01 5.91 2.34
test data set
Minimum 11 4 1.05 25 8 2 0.77
Maximum 32 25 4.94 66.5 31 25 8.81
Median 22 12.75 2.34 49 18.5 11.6 2.99
Mean 22.12 14.42 2.38 48.52 18.61 12.57 3.51
Standard deviation 6.14 5.81 0.75 8.74 5.91 5.54 2.06
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The architecture of the ANFIS, as shown in Fig. 3, con-
sists of five layers. In layer 1, which is called fuzzifica-
tion, the inputs in each node j are transformed to a fuzzy 
membership function by an activation function μ (trian-
gular, trapezoidal, sigmoidal, Gaussian, etc.), according 
Eqs. 1 and 2.

where x, y are the inputs, Q1
j
 is the membership function and 

Aj and Bj are the membership values of μ. For this study, 
Gaussian membership function, given in Eq. 3 has been 
utilized,

Cj and σj, which are the mean Gaussian curve and the 
standard deviation, are considered as the premise parameters 
of the membership functions.

The weights wk for the membership functions is calculated 
in layer 2 by the Eq. 4 and the firing strength of the rules are 
provided

The layer 3 normalizes the firing strengths using Eq. 5.

(1)Q1
j
= �Aj(x) for j = 1, 2

(2)Q1
j
= �Bj−2(y) for j = 3, 4

(3)�(x) = exp

[

−

((

x − cj
)2

2�2
j

)]

(4)
Q2

k
= wk = μAj(x) × μBj(y) for k = 1,… .. 4 and j = 1, 2

(5)Q3
j
= wj =

wj
∑4

k=1
wk

for j = 1,… , 4

In layer 4, which is called defuzzification layer, the out-
put for each node j are evaluated by Eq. 6, and the conse-
quent parameters (p, q and r) of the firing strengths f are 
calculated.

The last layer calculate (using Eq. 7) the over-all output 
in a single node by assuming up all the incoming signals.

Genetic Algorithm (GA)

Invented by John Holland (1975), GA is basically inspired 
by the mechanisms of natural selection and genetic phenom-
ena. The renewal of populations is essentially due to the best 
individuals of the species. This mechanism starts from an 
initial population of coded points and uses three operators 
(crossing, mutation for the exploration of the space with 
potential solutions and selection) evolves the population 
towards the optima of the problem. The decision to termi-
nate the genetic algorithm’s execution is based on a number 
of criteria that depends on the problem types. The most fre-
quently criteria used are: the convergence of the adaptation 
mean of a population, the time available for the execution 
of a single GA, and the maximum number of generations or 
the maximum number of evaluation functions in GA test. 
The arbitrary generation of a population chain could scan 
a limited space of the solution domain, thus making it pos-
sible to increase the probability of detecting the optimal 

(6)Q4
j
= wjfj = wj

(

pjx + qjy + rj
)

for j = 1,… , 4

(7)Q5
j
= Σwj fj

∑4

j=1
wj fj

∑4

j=1
wj

Fig. 3   Architecture of ANFIS model
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solution and losing the neighborhood of the optimum dur-
ing the search. For this reason, the execution of GA must be 
repeated several times with different sets of random starting 
points, to ensure a greater probability that the optimal solu-
tion is detected.

Particle swarm optimization (PSO)

Developed by Kennedy and Eberhart (1995), the algo-
rithm of PSO is inspired from the nature social behavior 
and dynamic movements with communications of insects, 
birds and fish to combine self-experiences with social expe-
riences. The optimal solution is obtained according the best 
position encountered by a particle and that of its neighbors, 
and a predefined fitness function measure the performance 
of each particle, which quantifies the performance of the 
optimization problem.

The update equation is:

where, t: the current iteration, i: ith solution,xt
i
 : the position 

of ith solution in t th iteration, c1 and c2: acceleration coef-
ficients and r1: random value, r2:random value, pbest :the 
best solution that ith particle obtained so far and gbest: the 
best position of the total swarm and Vt+1

i
 : the velocity of ith 

solution in t th iteration.

Harris Hawks Optimization (HHO)

Developed by Heidari et al. (2019), HHO is a novel algo-
rithm based on swarm intelligence. Widely applied these 
recent years to solve complex nonlinear optimization prob-
lems, the mechanism of HHO mimics the hawk’s action 
searching their prey. HHO has two principal phases that are 
exploration and exploitation.

In the exploration phase, a set initial population of Harris 
hawks {X1, X2,……, Xn} is created randomly to track and 
detect the prey (rabbit) within the feasible space. According 
to the Eq. 10, both hawks and prey have the same chance q.

where X(t) and X(t+1) are the position of the Harris Hawk 
at the iteration t and t+1 respectively. Xrand is a randomly 
selected Harris Hawk among all available individuals, 
Xrabbit(t) is the position of the prey, q, r1, r2, r3 and r4 are 
random values varying between (0 and 1) and LB and UB 
are the lower and upper bands, respectively. Eq. 11 gives 

(8)vt+1
i

= w.vt
i
+ c1r1.

(

pbest − Xt
i

)

− c2r2.
(

gbest − Xt
i

)

(9)Xt+1
i

= Xt
i
+ Vt+1

i

(10)

x(t + 1) =

{

xrand(t) − r1[xrand(t) − 2r2x(t)] if q ≥ 0.5

xrabbit(t) − xa(t) − r3(UB − LB) if q < 0.5

the mean position Xm (t) of the total number N of the Harris 
Hawk.

During the hunt process, the escaping energy E of the 
prey decreases, and the transition from the exploration to 
the exploitation phase can be expressed by Eq. 12.

where E0 is the initial energy of the prey, ranged between -1 
and 1, and T is the maximum iteration

Exploitation is the second phase, which has the objec-
tive to improve the predefined solution that locally found. 
The attacked prey was surprised and tried to escape. 
Depending to the hawks’ chasing behavior, four scenarios 
can occur:

Soft Besiege  In the Soft Besiege case, the prey has energy, 
i.e. |E| > 0.5 and r >0.5, the soft Besiege can be occur fol-
lowing the Eq. 13.

where Δx represents the difference separating Hawk’s cur-
rent and the prey position in the t iteration and J is the prey 
random jump in the escaping process, given by Eq. 14.

where r5 is a number ranged randomly between 0 and 1.

Hard Besiege  When the prey is tired, i.e. it energy decrease. 
|E| < 0.5, their position becomes:

Soft Besiege with Progressive Rapid Dive  This case has the 
condition that the prey has the energy to escape (|E| < 0.5). 
The formulation of the Soft Besiege with Progressive Rapid 
Dive is given by:

where S is a random vector, LF is levy flight function with 
D is dimension.

As consequence, the position of the hawks is updated 
following the Eq. 17.

Hard Besiege with Progressive Rapid Dive:  In the last case, 
the prey did not have chance to escape, due to its low energy, 

(11)xa(t) =
1

N

∑N

1
xi(t)

(12)E = 2E0(1 − t∕T)

(13)x(t + 1) = Δx(t) − E
[

Jxprey(t) − 2x(t)
]

(14)J = 2(1 − r5)

(15)x(t + 1) = xprey(t) − En[Δx(t)]

(16)
Y = xprey(t) − E

[

Jxprey(t) − x(t)
]

Z = Y + S × LF(D)

(17)x(t + 1) =

{

Y f (Y) < f (y(t))

Z f (Z) < f (y(t))
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|E| < 0 and r < 0. The distance of the hawk and prey decrease 
and the stage of Hard besiege with progressive rapid dive 
occur as it follows:

Salp swarm Algorithm (SSA)

Salp swarm Algorithm (SSA) is a novel nature-inspired 
algorithm developed by Mirjalili (2017). SSA mimics the 
salps behavior’s during navigation and searching for food 
sources in the seas and oceans. In the mechanism of SSA, 
a set of initial population is created randomly and divided 
into two groups that are leader and followers. Leader salps 
are located at the top of the salp chain and lead the swarm 
towards the food location F (which considered as target). The 
rest of salps follow the leader during the aggregate phase.

The position of the salp leader xj
1 is updated by Eq. 19.

Fj represents the best food solution in the jth dimension; 
ubj and lbj represent the upper and lower bounds in the 

(18)x(t + 1) = x(t + 1) =

{

Y f (Y) < f (y(t))

Z f (Z) < f (y(t))

(19)x1
j
=

{

fj + c1((ubj − lbj)c2 + lbj) C3 ≥ 0

fj − c1
(

(ubj − lbj)c2 + lbj
)

C3 < 0

jth dimension respectively, c2 and c3 are random numbers 
ranged between 0 and 1. c1 is a parameter that varied with 
the following expression (Eq. 20):

where t and T represent the current iteration and maximum 
number of iterations respectively.

Finally, the position of the followers xj
i is updated by Eq. 21.

where i ≥2 and xji represent the position of the ith follower 
at the jth dimension.

The steps of the SSA are listed in Fig. 4.

Hybridization of the ANFIS

The main objective of the present study is to provide a model 
for Boukourdane dam evaporation forecasting with a high 
efficiency and accuracy. For this, four metaheuristic algo-
rithms (GA, PSO, HHO and SSA) were utilized to train the 
ANFIS and optimize the both parameters: premise and con-
sequent, given in the Eqs. 3 and 6 respectively. The flowchart 
of the hybrid ANFIS with the four metaheuristic algorithms 
optimization is shown in Fig. 5.

(20)c1 = 2e
−
(

4t

T

)2

(21)xi
j
=

1

2
(xi

j
+ xi−1

j
)

Fig. 4   Pseudocode of the Salp 
swarm Algorithm (SSA)
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The key steps of the ANFIS hybridization procedure are 
described as in the following: we start by classification of 
the inputs and output data into two parts, training and test-
ing sets. In this study: maximal and minimal air tempera-
ture, relative humidity, wind speed and water temperature 
are selected as inputs variables, whereas the evaporation 
is selected as the single output. Secondly, we generate the 
initial fuzzy inference system (FIS) by the fuzzy c-mean 
(FCM) clustering approach to extract a set of initial rules 
and determinate the number of the membership function 
MF. The next step is the optimization of FIS parameters 
by different heuristic algorithms and training the ANFIS 
structure using the optimized parameters as it follows: (I)-
Generate initial population for an algorithm optimization. 
(II)-Evaluate the optimal parameters of the algorithm by 
minimizing the objective function (OF). In this study, the 
Root Mean Square Error (RMSE) given in Eq. 22, is con-
sidered as OF. (III) Take the optimal parameters of the 
heuristic algorithm to form ANFIS structure. (IV) Run the 
algorithm till meeting the stop condition (i.e. maximum 
number of iterations) to obtain the optimal structure of 
ANFIS. If not, the algorithm returns to (II). The fourth 
step was carried out on the training of the best ANFIS with 
all algorithms optimization to generate the output data for 
train and test period. Finally, the statistical indexes such as 
RMSE, MAE, SI and R (expressed in Eqs. 22, 23, 24 and 
25, respectively) was calculated based on the output data, 
to compare the performance of the hybridization.

Root Mean Square Error (RMSE):

Mean Absolute Error (MAE):

Scatter Index (SI):

According to Li et  al. (2013), the model accuracy 
was characterized as following: SI<0.1 (excellent), 
0.10<SI<0.20 (good), 0.20<SI<0.30 (fair) and SI>0.30 
(poor).

Correlation Coefficient (R):

where, Where Yc and Yo are calculated and observed val-
ues of evaporation and N is the quantity of data.

(22)
RMSE =

�

�

�

�

�

∑N

i=1

�

Y0i − Ŷci

�2

N

(23)MAE =
∑N

i=1
(Y0i − Yci)∕N

(24)SI =
RMSE

1

N

∑N

i=1
Yoi

(25)R =

∑N

i=1

�

�YCi−YOi

��

Yci−Y0i

�

�

�

∑N

i=1

�

Y−Yci

�2
��

∑N

i=1

�

Yci−Y0i

�2
�

(−1 < 1)

Fig. 5   Flowchart of the hybrid ANFIS and the proposed algorithms optimization
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Also, radar charts and Taylor diagram radar charts were 
plotted to compare the prediction performance for all com-
bination inputs. In particular, the Taylor diagram chart is a 
visual tool that provides comprehensive evaluation of the 
predicted evaporation results using three (criteria (stand-
ard deviation (SD), correlation (R) and RMSE) in a sin-
gle diagram. The observed evaporation is plotted along the 
horizontal axis (based on the standard deviation) and model 
performance for such algorithm is spotted from the graph, 
more being closer to the reference point, more the model has 
the best accurate prediction.

Finally, we employed the Discrepancy Ratio (DR), that 
is a statistic indicator proposed by White et  al. (1973), 
expressed by Eq. 26, to perform the sensitivity analysis of 
the evaporation models performance.

where, Ypi and Yoi are the predicted and observed evapora-
tion respectively. According to Eq. 26, if DR = 0, the pre-
dicted value is identical to the measured value. Otherwise, If 
the DR is larger than 0, the predicted value is overestimated, 
and if the DR is smaller than 0, it is underestimated. To 
avoid utilization of negative or zero observed values, Devel-
oped Discrepancy Ratio (DDR) was proposed, as given in 
Eq. 27:

Results

In this study, four metaheuristic algorithms (GA, PSO, HHO 
and SSA) were utilized to train ANFIS for forecasting the 
monthly evaporation of the Boukourdane dam in Algeria. 
In order to examinate the effect of the reservoir’s water 

(26)DR = log
Ypi

Yoi

(27)DDR =
(

Predicted value

Observed value

)

− 1

temperature, two scenarios were considered. In the first one 
‘‘scenario I’’, the temperature of the water in the reservoir 
Twmax and Twmin are added as input with the meteorological 
variables including: maximal and minimal air temperature, 
relative humidity and wind speed. While, in ‘‘scenario II’’, 
the reservoir’s water temperature is neglected. The inputs 
and output data utilized in this study were divided into two 
parts, training (80%) and testing (20%) sets. Moreover, four 
models were proposed for each scenario.

Table 2 resumes these models (M1, M2, M3 and M4 for 
each scenario) based on the combination of the variables’ 
inputs, while optimal algorithms parameters are listed in 
Table 3.

Table  4 reports the overall performance of the four 
hybridized algorithms in terms of the RMSE, MAE, SI and 

Table 2   Input combination for 
the models Model SCENARIO I

Input combinations Output
M1 Tmax Tmin U Rh Tw max Tw min Evap
M2 Tmax Tmin U Tw max Tw min Evap
M3 Tmax Tmin Rh Tw max Tw min Evap
M4 Tmax Tmin Tw max Tw min Evap
Model SCENARIO II

Input combinations Output
M1 Tmax Tmin U Rh Evap
M2 Tmax Tmin U Evap
M3 Tmax Tmin Rh Evap
M4 Tmax Tmin Evap

Table 3   Optimal Algorithms parameters

Methods Parameters Values

ANFIS Error goal 0
Increase rate 1.1
Initial step 0.01
ANFIS- Decrease rate 0.9
Maximum epochs 100

GA Crossover percentage 0.9
Mutation percentage 0.5
Mutation rate 0.1
Selection pressure 0.4

PSO Cognitive component (C1) 2
Social component (C2) 1.8
Inertia weight 0.4-0.9

HHO β 1.5
E0 ϵ [-1,1]

SSA C2 and C3 0 - 1
All algorithms Population 50

Number of iterations 500
Number of run for each Algorithms 10
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R, for the first scenario during the training and testing stages, 
while Table 5 reports the same information for the second 
scenario.

For the first scenario (Table 4), the results indicate that 
M1, which including all variables input, gave more accu-
racy of evaporation prediction than other models. The results 
show that among the algorithm applied, ANFIS-HHO model 

provided the best results in estimating the evaporation with 
an RMSE, MAE and R equal to 0.85 mm 1.09 and 0.88 
respectively in the training, while in test period, RMSE, 
MAE and R are equal to 0.89 mm 0.73 and 0.92 respec-
tively. Moreover, and according to Table 4, it can been seen 
a decrease in the accuracy for both M2 and M3, where in the 
training period, RMSE, MAE and R are equal to 0.98 mm 

Table 4   Results of the models’ 
performance for the first 
scenario

Bold entries shows the minimum values of MAE, RMSE and SI and the maximum values of R² for each model

SCENARIO I

Models Methods Training period Test period

MAE RMSE (mm) SI R MAE RMSE (mm) SI R

M1 ANFIS-GA 1.22 1.11 0.25 0.88 1.16 1.08 0.30 0.89
ANFIS-PSO 1.17 1.08 0.24 0.88 1.04 1.07 0.30 0.90
ANFIS-HHO 1.09 0.85 0.19 0.88 0.73 0.89 0.25 0.92
ANFIS-SSA 0.95 1.19 0.27 0.85 0.75 0.95 0.27 0.91

M2 ANFIS-GA 1.13 1.06 0.24 0.88 1.28 1.21 0.34 0.87
ANFIS-PSO 0.92 0.98 0.22 0.89 1.94 1.39 0.39 0.84
ANFIS-HHO 0.98 1.06 0.24 0.88 1.92 1.33 0.38 0.86
ANFIS-SSA 1.03 1.15 0.26 0.86 1.95 1.33 0.38 0.86

M3 ANFIS-GA 1.13 1.09 0.24 0.88 1.98 1.42 0.41 0.81
ANFIS-PSO 1.18 1.09 0.24 0.88 1.42 1.53 0.44 0.84
ANFIS-HHO 0.91 1.08 0.24 0.89 1.11 1.22 0.35 0.87
ANFIS-SSA 0.94 1.23 0.27 0.84 1.14 1.24 0.35 0.85

M4 ANFIS-GA 1.45 1.22 0.27 0.85 1.33 1.44 0.41 0.81
ANFIS-PSO 1.42 1.21 0.27 0.86 1.89 1.56 0.44 0.82
ANFIS-HHO 1.54 1.22 0.27 0.84 1.05 1.22 0.35 0.85
ANFIS-SSA 1.53 1.24 0.28 0.84 1.06 1.24 0.35 0.84

Table 5   Results of the models’ 
performance for the second 
scenario

Bold entries shows the minimum values of MAE, RMSE and SI and the maximum values of R² for each model

SCENARIO II

Models Methods Training period Test period

MAE RMSE (mm) SI R MAE RMSE (mm) SI R

M1 ANFIS-GA 1.13 1.06 0.24 0.86 1.23 1.11 0.30 0.89
ANFIS-PSO 1.09 1.03 0.23 0.89 1.07 1.05 0.29 0.89
ANFIS-HHO 0.91 1.18 0.27 0.86 0.79 1.09 0.31 0.88
ANFIS-SSA 0.97 1.22 0.28 0.85 0.83 1.16 0.33 0.88

M2 ANFIS-GA 1.19 1.15 0.26 0.87 1.89 1.24 0.35 0.85
ANFIS-PSO 1.21 1.09 0.25 0.88 1.55 1.24 0.35 0.84
ANFIS-HHO 1.89 1.17 0.26 0.86 1.92 1.19 0.34 0.82
ANFIS-SSA 1.95 1.23 0.29 0.84 1.95 1.21 0.35 0.83

M3 ANFIS-GA 1.32 1.15 0.26 0.87 2.41 1.55 0.44 0.76
ANFIS-PSO 1.41 1.19 0.27 0.86 1.67 1.33 0.38 0.82
ANFIS-HHO 1.53 1.31 0.29 0.86 1.11 1.29 0.37 0.84
ANFIS-SSA 1.55 1.37 0.30 0.79 1.12 1.39 0.40 0.81

M4 ANFIS-GA 1.71 1.31 0.30 0.82 2.71 1.64 0.47 0.78
ANFIS-PSO 1.57 1.25 0.28 0.83 2.14 1.46 0.42 0.78
ANFIS-HHO 1.73 1.32 0.30 0.82 1.07 1.32 0.38 0.83
ANFIS-SSA 1.89 1.39 0.30 0.79 1.12 1.41 0.40 0.81
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0.92 and 0.89 respectively, obtained by ANFIS-PSO for M2 
while for M3, ANFIS-HHO models gives RMSE, MAE and 
R corresponding to 1.08 mm 0.91 and 0.89 respectively. In 

the test period. RMSE, MAE and R are equal to 1.21 mm 
1.28 and 0.87 respectively obtained by ANFIS-GA for M2 
while for M3, ANFIS-HHO models gives RMSE, MAE and 

Fig. 6   Radar chart for Scenario 
I

M1                  M2

M3                                                                             M4

Fig. 7   Radar chart for Scenario 
II

M1                                                                            M2

M3                                                                             M4
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R corresponding to 1.22 mm, 1.11 and 0.87 respectively. In 
addition, the lowest performance in the evaporation predic-
tion is recorded for M4, where ANFIS-PSO model provided 
the best accuracy with an RMSE, MAE and R correspond-
ing to 1.21 mm, 1.42 and 0.86 respectively in the training 
period, while in the test period, ANFIS-HHO provided the 
best accuracy with an RMSE, MAE and R corresponding to 
1.22 mm, 1.05 and 0.85 respectively.

Finally, results of Table 4 indicate that among the all 
algorithms, ANFIS-HHO hybridization gives a good accu-
racy, where the value of SI is equal to 0.19 for the M1 model 
in the training period, and for the other algorithms the accu-
racy was fair. While in the test period, the accuracy was fair 
for the all algorithms. In addition, we can notice that the 
accuracy for M2, M3 and M4 models was fair in the train-
ing period, while in the test period, the accuracy was poor 
for these models.

For the second scenario (Table 5), similar results were 
found and the best accuracy of the evaporation prediction 
was obtained for the M1 model. The results indicate that 
among the algorithm applied, ANFIS-PSO model provided 
the best results with an RMSE and R corresponding to 1.03 
mm and 0.89 respectively in the training period, while in 

the test period; they are corresponding to 1.05 mm and 
0.89 respectively. In addition, according to Table 5, we can 
observe a decrease in the accuracy of the evaporation for 
the M2, M3 and M4 model. ANFIS-PSO model provided 
the best accuracy with an RMSE, MAE and R correspond-
ing to 1.09 mm, 1.21 and 0.88 respectively in the training 
period for M2 model, while in the test period; ANFIS-GA 
provided the best accuracy with an RMSE, MAE and R cor-
responding to 1.24 mm, 1.89 and 0.85 respectively. For the 
M3 model, ANFIS-GA model provided the best accuracy 
with an RMSE, MAE and R corresponding to 1.15 mm, 
1.32 and 0.87 respectively in the training period, while in 
the test period; ANFIS- PSO provided the best accuracy 
with an RMSE, MAE and R corresponding to 1.29 mm, 
1.11 and 0.84 respectively. In addition, M4 had the worst 
performance in the evaporation prediction. From table 5, the 
results indicate that ANFIS-PSO model provided the best 
accuracy with an RMSE. MAE and R corresponding to 1.25 
mm 1.57 and 0.83 respectively in the training period, while 
in the test period. ANFIS-HHO provided an RMSE, MAE 
and R corresponding to 1.32 mm, 1.07 and 0.83 respectively.

Finally, the values of SI presented in Table  5 indi-
cate that, for all algorithms, the accuracy was fair in the 
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Fig. 8   Scatterplots of observed and predicted evaporation for the best input combination in the test period – scenario I
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training period for all models, while in the test period, 
except for the ANFIS-PSO hybridization where the accu-
racy was fair in M1 model, we notice that for the all mod-
els, the accuracy was poor.

The performance of the best models in the test period is 
presented on radar charts in Fig. 6 for the first scenario and 
in Fig. 7 for the second scenario. It is clear from Figs. 6 
and 7 that radar plot illustrate graphically the results 
given in Tables 4 and 5 for the scenario I and scenario II 
respectively.

Figures 8 and 9 show the scatterplots of observed and 
predicted evaporation provided by the best hybrid algorithm 
in the test period for both scenario I and scenario II.

According to the results in Fig. 8 (scenario I), it can be 
seen that M1 model (including all input variables) had the 
least scattered predictions, followed by M2. M3 and M4. 
Furthermore, the hybridization ANFIS-HHO for M1 model 
provided the closest linear fit to the diagonal line compared 
to other models. The results in Fig. 9 were similar to those 
in Fig. 6, and the convergent tendency of 1:1 line was sig-
nificantly spotted for M1 model compared to other models.

Figures 10 and 11 show the best predicted evaporation 
along the observed during the test period for both scenario I 
and scenario II. As displayed in Fig. 10, the predicted evapo-
ration provided by M1 overlaps more with that observed 
compared to the other models. Similarly, with Scenario I, 
the predicted values of the evaporation for the M1 model in 

scenario II (Fig. 11) were much closer to the observed values 
in the time variation.

Concerning the model testing, Figs. 12 shows the results 
of the Taylor diagram analysis for the evaporation predic-
tion in the test period, for both scenario I and scenario II, 
respectively.

As seen from the Fig.  12a, the results showed that 
ANFIS-HHO model performs better than the other mod-
els for the evaporation forecasting with considering water 
temperature inputs (first scenario), by providing higher SD 
and correlation coefficient (R superior to 0.9) and lower 
RMSE. In addition, among the other hybrid ANFIS mod-
els, the results provided by ANFIS-HHO were closer to the 
observed point. For the second scenario (where the water 
temperature is neglected). Figure 12b shows that the ANFIS-
GA model had the greatest correlation coefficient and SD 
and the least RMSE, which indicates higher accuracy of this 
model. Moreover, the results found by ANFIS-GA are nearer 
to the observed one in comparison with the other hybrid 
ANFIS models.

Finally, concerning the Developed discrepancy ratio sta-
tistic (DDR), Table 6 presents the statistical indices of the 
DDR values in test period for the best model.

According to Table 6, results indicate that the lower value 
of the variance in scenario I (equal to 0.0789) is provided 
by ANFIS-HHO, while in scenario II, the lower value of the 
variance (equal to 0.0580) is provided by ANFIS-GA.

Fig. 9   Scatterplots of observed 
and predicted evaporation for 
the best input combination in 
the test period – scenario II
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The value of DDR for all algorithms in scenario I and 
scenario II are presented in Fig. 13.

Discussion

In this study, the reservoir’s water temperature (TW) influ-
ence on the evaporation prediction was investigated. Com-
bining four heuristic algorithms (GA, PSO, HHO and SSA) 
with ANFIS, the comparison between scenario I (with TW) 
and scenario II (without TW) (see Tables 4 and 5) show an 

increase in R about 4.54, 2.35, 3.57 and 2.41% correspond-
ing to M1, M2, M3 and M4 respectively. In addition, we 
noticed a decreasing in RMSE about 17.98, 5.74, 3.57 and 
8.19% corresponding to M1, M2, M3 and M4 respectively. 
This demonstrates the effect of the TW parameter on the 
prediction performance.

On the other hand, it can be concluded that the number 
of variables input affect the prediction performance. It was 
found that decreasing the number of inputs from M1 model, 
with all variables input, to M4 model with only two inputs, 
passing by M2 and M3 models, with three variables input, 

Fig. 10   Predicted evaporation 
for the Scenario I in the: a) M1. 
b) M2. c) M3 and d) M4
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both for the scenario I and scenario II, reduces the prediction 
accuracy. The results resumed in Table 4 (scenario I) show 
a decrease of about 5.43% of R for M2 and M3 models, and 
8.23% for M4 model respectively, compared to M1 model 
and also an increase of RMSE of about 35.95% for M2 and 
M3 models, and 37.08% for M4 model respectively, com-
pared to M1 model. Similarly, results in Table 5 (scenario 
II) show a decrease of about 4.94% of R for M2 and M3 
models, and 7.22% for M4 model respectively, compared to 
M1 model and also an increase of RMSE of about 22.86% 
for M2 and M3 models, and 20.45% for M4 model respec-
tively, compared to M1 model. This demonstrates that the 
evaporation prediction is more accurate when using more 
input parameters. Same results are noticed in the researches 
of Wang et al. (2017), Ghorbani et al. (2018), Moazenzadeh 

et al. (2018), Khosravia et al. (2019), Shabani et al. (2020), 
Abed et al. (2021), and Adnan et al. (2022a, b).

As been reported previously, the application of ML has 
been shown as a powerful tool for evaporation modeling. As 
well as, training ANFIS using heuristic algorithms optimiza-
tion algorithms provides better performances and enhance 
the prediction accuracy. The findings of this research report 
that during the test period, ANFIS-HHO proved the best 
accuracy in three models (M1. M3 and M4) for the scenario 
I and two models (M3 and M4) for the scenario II. Fol-
lowed by ANFIS-GA, which proved two best models (M2 
for both scenario I and II) and finally ANFIS-PSO, which 
proved one best model (M1 for the scenario II). This empha-
sizes the superiority of ANFIS-HHO model compared to 
the others models. The findings of this study were also in 

Fig. 11   Predicted evaporation 
for the Scenario II in the: a) 
M1. b) M2. c) M3 and d) M4
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close agreement with the study performed by Azar et al. 
(2021) which found that hybridized ANFIS with HHO algo-
rithm had superior performance in evaporation modeling 
at the Doroudzan dam in the central of Iran compared to 
ANFIS and LS-SVR (least square-support vector regression) 
models. Also, Kayhomayoon et al. (2022) concluded that 
hybridization of ANFIS with HHO had more efficiency in 
predicting the amount of evaporation at the Mahabad dam in 
the Northwestern of Iran compared to ANFIS and ANFIS-
AOA (Arithmetic Optimization Algorithm) algorithms. 
Moreover. Adnan et  al. (2022a, b) trained ANFIS with 
several algorithms optimization and found that the ANFIS-
HHO and ANFIS-WOA (Whale Optimization Algorithm 
WOA) models (with an R2 > 0.81 and RMSE < 1.04 mm) 
outperformed the ANFIS and ANFIS-PSO algorithms in 

Fig. 12   Taylor’s diagram for the 
predicted evaporation in the test 
period using hybrided ANFIS 
techniques for the: a) Scenario I 
and b) Scenario II

Table 6   Statistical indices of the DDR values in test period for the 
best model

Model Statistical Carachteristics

Average Minimum Maximum Variance

Scenario I
ANFIS-HHO -0.0071 -0.7261 0.7266 0.0789
ANFIS-PSO 0.0129 -0.6315 0.9219 0.3206
ANFIS-GA 0.0364 -0.4737 1.0132 0.0847
ANFIS-SSA 0.0313 -0.5758 1.0284 0.3319

Scenario II
ANFIS-HHO 0.1579 -0.3496 1.6386 0.1530
ANFIS-PSO 0.0734 -0.5455 0.8576 0.0972
ANFIS-GA 0.0011 -0.4555 0.6475 0.0580
ANFIS-SSA 0.1362 -0.4345 1.9451 0.2059
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forecasting the pan evaporation at three stations located in 
China. Finally, the results of Khosravia et al. (2019) reported 
that the ANFIS-GA model performance was superior in the 
evaporation prediction at two meteorological stations in Iraq 
compared to ANFIS. ANFIS-ICA (Imperialistic competi-
tive algorithm) and ANFIS-DE (Differential evolution algo-
rithm) models.

Based on the SI indicator, our results reveal that the accu-
racy of the models was fair during the test period, for the all 
algorithms applied, when considering the reservoir water tem-
perature, and was poor in the case where this parameter has 
neglected. As recommendation to overcome this gap, other 
technical was proposed in order to enhance the evaporation pre-
diction accuracy. In this point, we can suggest the application 
in the future studies, the proposed methods: Gene Expression 
Programming (GEP), Least Squares Support Vector Regression 
(LSSVR) or the Long- Short Term Memory (LSTM).

Conclusions

Accurate prediction of evaporation is one of the key 
problems in reservoir management. The knowledge of the 
effect of the reservoir’s water temperature on evapora-
tion is important in deriving the best reservoir operating 
rules. Therefore, in this study, we have investigated the 
influence of the reservoir’s water temperature (TW) on the 
evaporation prediction. Four heuristic algorithms namely 

GA, PSO, HHO and SSA were combined with ANFIS to 
derive the best model for evaporation forecasting of the 
Boukourdane Dam in Algeria. The results revealed that the 
addition of TW parameter affect the evaporation forecast-
ing performance with an increase in R and a decrease in 
RMSE about 4.54% and 17.98% respectively. Comparing 
the models’ performance, the results indicated that the 
performance of the ANFIS-HHO model in the test period 
with RMSE = 0.89 mm. MAE = 0.73 and R = 0.92 dem-
onstrated best performance with more accuracy in compar-
ison to ANFIS-GA. ANFIS-PSO and ANFIS-SSA models. 
The findings illustrated that the number of variables input 
affect the prediction performance. Decreasing the number 
of inputs reduces the prediction accuracy. Finally, among 
the models. ANFIS-HHO demonstrated the highest accu-
racy, followed closely by ANFIS-GA.
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Fig. 13   The DDR values in test 
period for: a) Scenario I and b) 
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