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Abstract
The performance of the Standardized Precipitation Index (SPI) is affected by the choice of an incorrect probability distribution
function, which can skew the values of the index, exaggerating or minimizing the severity of drought. This study aims to
test data fitability of ten statistical distribution functions (gamma, weibull, exponential, lognormal, gumbel, cauchy, logistic,
chi-square, burr, pareto) for SPI computation at time scales (TSs) of 3, 6, 9, 12, 15, 18, 21 and 24 months, and to quantify
the errors made if the gamma function were used by default as is the case in general. Monthly precipitation data collected
at 24 meteorological stations distributed in the five Agro-Ecological Zones (AEZs) of Cameroon were used for the period
1951-2005. The parameters of the distribution functions were estimated with the Maximum Likelihood (ML) method, and
the Kolmogorov-Smirnov (K-S) test was applied to assess how well these functions fit the data. The results show that the
logistic and burr distributions provide for several stations of the five AEZs the best data fits. A comparative study between
the SPIs from the appropriate distribution and the gamma functions shows a significant qualitative and quantitative difference
in several stations and the root mean square error (RMSE) increases with the TS and with the severity of drought.

Keywords Standardized precipitation index · Cumulative distribution functions · Kolmogorov-smirnov test ·
Maximum likelihood method · Time scale

Introduction

Drought, like other natural phenomena closely linked to cli-
mate change, is increasingly affecting the four corners of the
globe (Bhaga et al. 2020). It is one of the costliest natural dis-
asters in the world, affecting more people than other forms of
disasters (Zarei et al. 2021). Indeed it is a natural hazard that
begins slowly so thatweoften speak of a slowly evolving phe-
nomenon (Sylla et al. 2016). As a result, its manifestations
may take longer to make themselves felt (Han et al. 2019).
The impacts of drought vary according to regions, needs, and
disciplinary perspectives (Liu et al. 2012; Dai et al. 2020).
They depend on the socio-economic environment in which it
occurs, since each region has its own climatic characteristics
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(Maia et al. 2015; Gebremeskel Haile et al. 2019). Accord-
ing to climatologists and meteorologists, it is the state of
an environment facing a significantly long and severe lack
of water, less than normal with negative impacts on flora,
fauna and societies (Quenum et al. 2019). Although occa-
sional droughts have always been part of the earth’s natural
phenomena, higher temperatures, greater water evaporation
and less vegetation cover all contribute to exacerbating the
phenomenon (Ojha et al. 2021). Since drought can be ana-
lyzed and interpreted from different angles and different
perceptions (Liu et al. 2018), there is no single definition of
drought accepted worldwide (Wilhite and Glantz 1985). In
general, it is defined according to the situation experienced
from one area to another (Qin et al. 2015). Depending on
the manifestations observed, droughts are classified into four
types: meteorological, hydrological, agricultural and socio-
economic (Wang et al. 2016). The three first types refer to
the deficits in precipitation, in soil moisture and in stream-
flow, respectively (Dai et al. 2020) while socio-economic
drought refers to the insufficiency of water resources systems
to meet the water demand (Zhao et al. 2019). The current
study focuses on meteorological drought which, according
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to Wang et al. (2016) is the starting phase for other types of
droughts.

Since each region has its own climatic characteristics,
droughtmonitoring involvesmanydifferentmethods because
the amount of precipitation, the seasonal cycle and the nature
of the precipitation vary from region to region (Wilhite et al.
2007; Park et al. 2017; Bhaga et al. 2020). This complex-
ity in accurately describing the phenomenon has prompted
researchers to define drought indices ranging from the sim-
plest to the most complex. These indices make it possible
to characterize the drought by intensity, duration, spatial
extent, probability of recurrence (Spinoni et al. 2014; Huang
et al. 2017), and its detection at different stages of its evo-
lution (location, time of appearance and end) (He et al.
2018; Santé et al. 2019; Zhang and Li 2020). There are
several drought indicators, the choice of which depends on
the type of impact to be taken into account as part of the
mechanism for monitoring and understanding changes in
the vulnerability of the phenomenon (Huang et al. 2019;
Bae et al. 2019). Of these different indices, we can cite
the Palmer Drought Index (PDSI: Palmer (1965)), the Stan-
dardized Precipitation and Evapotranspiration Index (SPEI:
Vicente-Serrano et al. (2010)), the Standardized precipitation
index (SPI: McKee et al. (1993)), the rainfall anomaly index
(RAI: Van Rooy (1965)) and the Reconnaissance Drought
Index (RDI: Tsakiris and Vangelis (2005)). The SPI is rec-
ommended by the World Meteorological Organization as a
standard for characterizing meteorological droughts (Hayes
et al. 2011) because of the particular advantages: it offers
good flexibility of use for multiple TSs (Hayes et al. 1999;
Gidey et al. 2018; Guenang et al. 2019), it applies to all cli-
matic regimes and has good spatial consistency which allows
comparisons between different areas subject to different cli-
mates (Hayes et al. 1999; Pieper et al. 2020), its probabilistic
nature places it in a historical context which is well suited
to decision-making (Gebremichael et al. 2022). Due to these
exceptional advantages, the index have shown effectiveness
in detecting various historical drought events inmany regions
of the world (Dogan et al. 2012; Ndayiragije et al. 2022).
Motivated by all these strengths of the SPI and the fact that it
only depends on the precipitation for which data were avail-
able, it was used as a drought indicator in this study.

SPI proponents have suggested using the gamma distri-
bution to fit cumulative precipitation in the calculation of this
index, but many studies show the limitations of this distribu-
tion (Stagge et al. 2015; Touma et al. 2015; Blain et al. 2018),
and researchers have indicated that the applicability of theo-
retical distributions to describe cumulative precipitation was
inconsistent between different regions and climates (Raziei
2021). So, some findings point at the gamma and weibull
distributions to be the best suited for long periods (larger
than 3 months) and for short periods (smaller than 3 months)

respectively (Stagge et al. 2015). Other studies around the
world and in particular in Africa, have shown some distri-
bution functions more appropriate than the gamma function
which is in most cases used by default (Angelidis et al. 2012;
Guenang and Mkankam Kamga 2014; Okpara and Tarhule
2015; Pieper et al. 2020; Zhang and Li 2020). However, all
these studies are limited to a reduced number of distribu-
tion functions and the quantification of errors made by using
inappropriate distributions remains a real challenge.

The objective of this study is to find appropriate statisti-
cal rainfall distribution models for the computation of SPI
and to quantify the errors made on the SPI values if inap-
propriate statistical models of precipitation distribution were
used beforehand for its computation. Given that the study
area has a high rainfall variability, it was necessary to go fur-
ther by increasing the number of distribution functions to be
tested in order to increase the probability of finding the most
appropriate leading to a more accurate SPI. Subsequently,
the error made by using the default gamma function as is
most often the case was quantified. The next section (“Mate-
rials and methods”) shows materials and methods. “Results”
shows the results and “Discussion and conclusion” provides
the discussion and conclusion.

Materials andmethods

Study area

Located in the heart of Central Africa, between 1.40◦N and
13◦N of latitude and 8.30◦E–16.10◦E of longitude, at the
bottom of the Gulf of Guinea, Cameroon covers an area of
475, 650km2, including 466, 050km2 of continental area and
9, 600km2 of maritime area with a 402 km long maritime
facade. The country belongs to the junction area between
equatorial Africa in the south and tropical Africa to the north
(Net 2019). Cameroon is characterized by an extraordinarily
contrasting relief where high and low lands alternate. It is
traditionally divided into five AEZs which are defined on the
basis of their ecological, edaphic and climatic characteristics
(Nfornkah et al. 2021). Details on geographical and climatic
characteristics of these AEZs are presented in Table 1.

Data used

Monthly precipitation data ranging from 1951 to 2005 were
obtained from the database of the National Meteorological
Service of Cameroon. They are from 24 measuring meteoro-
logical stations and were successfully used in many studies
Penlap et al. (2004); Guenang andMkankam Kamga (2014).
The geographical positions of these stations and the topogra-
phy of the domain are shown in Fig. 1. The stations on which
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Table 1 Geographical and climatic characteristics of the AEZs of
Cameroon (Vondou et al. 2021)

AEZ Location Mean Annual
rainfall (mm)

AEZ1 Sudano-Sahelian Zone 885.8

AEZ2 High Savannah Zone 1604.0

AEZ3 Western Highlands Zone 2239.1

AEZ4 Dense humid forest zone 2458.6

with monomodal rainfall

AEZ5 Dense humid Forest Zone 1640.1

with bimodal rainfall

the study were focused are distinguished by a different color-
ing from the others. The selection of representative stations
by zone was made on the basis of the minimummissing values.

Computation of the SPI

The SPI is computed by fitting an appropriate probability
density function to the frequency distribution of precipita-
tion, summed over a considered TS (1, 3, 6, 9, 12, 15, 18, 21

and 24 months) and the adjusted distribution is transformed
into a normal standardized distribution, so that the average
SPI is equal to zero (Raziei 2021). TheMLestimationmethod
was used to find the optimal parameters of the distribution
functions to be tested and the K-S test was then performed to
choose the best fit distribution from the following ten func-
tions: gamma,weibull, exponential, lognormal, gumbel,
cauchy, logistic, chi−square, burr and pareto. The low-
est K-S statistics determines the best fit distribution. This was
afterwards used in the data generation to calculate the cumu-
lative distribution function (CDF) which were transformed
into normalized random variables, and then into SPI. The
same procedure is applied for each station and all TSs.

The period covered by the SPI varies according to the type
of drought subject to the analysis and applications envisaged
(Gebremichael et al. 2022). Thus, the interpretation of the
SPI indicates the anomalies, which are deviations from the
average of the total precipitation observed for any period.
However, precipitationwith high positive values corresponds
to very wet periods (positive SPI) while high negative val-
ues correspond to periods of extreme drought (negative SPI).
McKee et al. (1993), uses the SPI classification indicated in
Table 2 to define different drought categories.

Fig. 1 Study area with the
geographical location of the 24
precipitation stations (indicated
by numbers) in Cameroon
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Table 2 Classification of drought according to SPI values (Awchi and
Kalyana 2017)

SPI value Classification

2.0 and above Extreme wet

1,5 to 1,99 Severe wet

1,0 to 1,49 Moderate wet

0 to 0,99 Mild wet

-0,99 to 0 Mild drought

-1,0 to -1,49 Moderate drought

-1,5 to -1,99 Severe drought

-2.0 and below Extreme drought

TheMLmethod

TheMLmethod makes it possible to estimate the parameters
of a regression model, under the assumption that the true law
of distribution of said parameters is known (Streit and Lug-
inbuhl 1994). It consists, for a given sample, in maximizing
the likelihood function (joint density function) with respect
to the parameters. It seeks to find the parameter capable (with
a high probability) of reproducing the true values of the sam-
ple (those actually observed), i.e. to find themost likely value
of the parameter of a population starting from a given sample
(Horváth 1993). Applied to a set of data, it provides values
of the distribution parameter which maximize the likelihood
function (Meng et al. 2014).

Either a random sample X1, X2, X3, .., Xn from a distri-
bution F(x; θ1, θ2, ....θp). When they exist, the estimators
obtained by the ML method are the solutions θ̂1, θ̂2, ....θ̂p of
the system of p equations:

∂L(θ1, θ2, ....θp)

∂θr
= 0 (1)

with r=1,2,..,p; where the likelihood function is defined by:

L(θ1, θ2, ....θp) =
n∏

i

f (Xi , θ1, θ2, ....θp) (2)

It is often easier to maximize the logarithm of the likeli-
hood function than the likelihood itself. Either method leads
to the same maximum because the logarithmic function is a
monotonically increasing function.

ln L(θ1, θ2, ....θp) =
n∏

i

ln f (Xi , θ1, θ2, ....θp) (3)

TheMLmethod is considered to be a very efficient estima-
tor because it generates results with a lower variance value.
Moreover, in long series (n > 100) the results are even more

satisfactory. It has the desirable properties of a good esti-
mator; in fact it is correct (it tends in probability towards
the true value θ ), asymptotically unbiased (the mathematical
expectation of the estimator θ̂ is equal to the true value of the
parameter θ ) and asymptotically efficient (Horváth 1993).

Law of statistical distributions used to fit data

The gamma law

Several researches have beenmadeon the gamma law, in par-
ticular (Choi andWette 1969) deal in detail with the gamma
law. The random variable X follows a gamma distribution if
its probability density function (PDF) is:

f (x) = 1

β(α)�(α)
x (α−1) exp (−α

β
) (4)

To obtain the gamma cumulative function, we proceed as
follows:

F(x) =
∫ x

0
f (x) = 1

β(α)�(α)

∫ x

0
x (α−1) exp (−α

β
)dx (5)

with
⎧
⎨

⎩

α > 0 is the shape parameter
β > 0 is the scale parameter
� is the mathematical gamma function

α and β are obtained by the ML method as follows:

⎧
⎪⎨

⎪⎩

α̂ = 1
4A (1 +

√
1 + 4A

3 )

β̂ = −x
α̂

A = ln (−x) −
∑

ln (x)
n

(6)

With n the number of observation years. We also note
that for x = 0, this function is not defined, and its modified
cumulative function is in the form:

H(x) = q + (1 − q)F(x) (7)

With q the probability at each station of having zero pre-
cipitation over the entire considered period.

The weibull law

The PDF of a random positive variable X distributed accord-
ing to the Weibull law (Panahi and Asadi 2011) is:

f (x, α, β) = αβxα−1 exp (−βxα) (8)

Whereα andβ are respectively the shape and scale param-
eters which are obtained by the ML method seen above and
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which are presented in detail by Wu (2002). There is no
closed-formexpressions of theparametersα andβ, and there-
fore they are estimated by maximizing the log-likelihood
expression of the equation (Panahi and Asadi 2011). Its com-
plementary cumulative distribution function is a stretched
exponential function so its explicit form is given by:

F(x) = 1 − exp (−(
x

α
)β) (9)

The exponential law

A random variable X is distributed according to an exponen-
tial law if its PDF is given by:

f (x) = 1

β

exp [−(x − μ)]
β

(10)

with x ≥ μ and β > 0, where μ is the location parameter
and β the scale parameter (Rahman and Pearson 2007). The
scale parameter is often denoted λ = 1

β
and is called constant

failure rate. The PDF of the exponential law can therefore
be written:

f (x) = λ exp [−(x − μ)]λ (11)

Its distribution function is of the form:

F(x) = 1 − exp(−(x − μ))λ (12)

The parameters μ and λ are estimated from a random
and independent sample. The ML estimator is determined
by canceling the derivative of the logarithm of the likelihood
function of the exponential law, which leads to:

λ̂ = 1

x̄
(13)

with x̄ = 1
n

∑n
i=1 xi

The lognormal law

A positive random variable x follows a lognormal distri-
bution if the logarithm of the random variable is normally
distributed. The PDF of a lognormal distribution is defined
as (Mage and Ott 1984):

f (x) = 1

xσ
√
2π

exp [−(ln x − μ)2

2σ 2 ] (14)

with x > 0, σ > 0 and −∞ < μ < +∞
The term μ is the scale parameter that stretches or shrinks

the distribution, and σ 2 is the shape parameter that affects

the shape of the distribution. They can be determined by the
ML estimator method as follows:

{
μ̂ = 1

n

∑n
i=1 ln xi

σ̂ 2 = 1
n

∑n
i=1(ln xi − μ̂)2

(15)

The gumbel law

Also called doubly exponential law or law of extreme values,
a random variable X is distributed according to aGumbel law
(Cooray 2010) if its PDF is given by :

f (x) = 1

β
exp [− exp (− x − μ

β
)] exp (− x − μ

β
) (16)

with

⎧
⎨

⎩

μ > 0 is the position or mode parameter
β > 0 is the non-zero scale parameter, positive or negative
−∞ < x < +∞

The terms μ and β are estimated using the ML method.
Its cumulative distribution function is of the form:

F(x) = exp [− exp (− x − u

β
)] (17)

Gumbel’s law represents the maximum and minimum of a
number of samples of normally distributed data.

The cauchy law

A random variable X follows a Cauchy law or even a Lorentz
law if its PDF depending on the two parameters μ > 0 and
β > 0 (Schuster 2012) is defined by:

f (x) = 1

π
[ β

(x − μ)2 + β2 ] (18)

with −∞ < x < +∞. The particularity of this law is that
it has neither expectation nor variance. The term μ is the
position parameter and the term β the scale parameter, that is
the spread parameter. Likewise the termμ represents both the
mode and the median. These two parameters are estimated
by the ML method. Its cumulative distribution function is of
the form:

F(x) = 1

π
tan−1 (

(x − μ)

β
) + 1

2
(19)
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The logistic law

A random variable X follows a logistic law if its PDF is
given by Pérez-Sánchez and Senent-Aparicio (2018):

f (x) = exp −(x−α)
β

(α)(1 + exp −(x−α)
β

)2
(20)

−∞ < x < +∞, with α the shape parameter and β the scale
parameter non-zero and positive. Its cumulative distribution
function is given by:

F(x) = 1

1 + exp (
−(x−α)

β
)

(21)

The parameters α and β are estimated by the ML method
and were considered as starting value for the program α = 0
and β = 1.

The chi-square law

It is a continuous distribution with k degrees of freedom,
used to describe the distribution of a sum of squared random
variables (Robertson 1969). Similarly, its importance also
comes from its usefulness for independent data sets to test
the goodness of fit of a data distribution (Canal 2005). A
random variable X follows a chi − square distribution if its
PDF is given by:

f (x) = 1
2k
2 �( k2 )

x ( k2−1) exp (−1

2
x) (22)

with x ≥ 0. Its cumulative distribution function is :

F(x) = γ ( k2 ,
x
2 )

�( k2 )
(23)

with γ ( k2 ,
x
2 ) the lower incomplete gamma function

The burr law

The burr type XII distribution is a continuous and widely
known distribution because it includes the characteristics
of various well-known distributions such as for example
the weibull and gamma distributions (Pérez-Sánchez and
Senent-Aparicio 2018). A random variable X follows a burr
or burr type XII distribution if its PDF is:

f (x) = αγ

λ
(
x

λ
)α−1(1 + (

x

λ
)α)−γ−1 (24)

with

⎧
⎪⎪⎨

⎪⎪⎩

α > 0 is the shape parameter
γ > 0 is the shape parameter
λ > 0 is the scale parameter
x > 0

The estimation of these parameters with theMLmethod is
the most common (Ghitany and Al-Awadhi 2002). Its cumu-
lative distribution function is:

F(x) = 1 − (1 + (
x

λ
)α)−γ (25)

The pareto law

ArandomvariableX follows aPareto law if its PDF is defined
by the relation (Pérez-Sánchez and Senent-Aparicio 2018):

f (x) = αβα

xα+1 (26)

with β ≤ x ≤ ∞, α > 0 and β > 0. The terms α and β

are respectively the shape and scale parameters, which are
estimated by the ML method as follows:

{
β̂ = min1≤i≤n xi
α̂ = n∑

ln xi−n ln β

(27)

Its cumulative distribution function is :

F(x) = 1 − (
β

x
)α (28)

The K-S fit test

As mentioned by Stephens (1970), this test is inspired by
the statistics proposed by Kolmogorov (1933) for fitting to
a distribution. It determines to what extent the data Xi (i=1,
...n) follow a specific distribution law F(X). The K-S test
is a nonparametric test that can be used to compare a sam-
ple with a reference probability distribution or to compare
two samples (Mitchell 1971). The idea is to calculate the
maximum difference, in absolute value, between the empir-
ical cumulative distribution and the theoretical cumulative
distribution under the null hypothesis for the running sum
of the chosen TS. Under the H0 hypothesis, this difference
is small and the distribution of observations fits well into
a given distribution (Berger and Zhou 2014). For a specific
data set and distribution, the better the law fits the data, the
weaker the K-S test will be. So, for a law to be the best,
its K-S test must be considerably weaker than the others. It
quantifies a distance between the empirical distribution func-
tion of the sample and the cumulative distribution function
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of the reference distribution or between the empirical dis-
tribution functions of two samples. Therefore, the smaller
the D statistic, the closer the theoretical distribution is to the
empirical distribution (Massey Jr 1951; Ramachandran and
Tsokos 2015). For a distribution function cumulative F(x)
given, Stephens (1970) defined the statistic (K-S) by:

Dn = maxx‖Fn(x) − F(x)‖ (29)

with −∞ < x < +∞, and by Glivenko-Cantelli theorem
(DeHardt 1971),

Fn(x) = 1

n

n∑

i=1

I(−∞,x)(Xi ) (30)

where

⎧
⎪⎪⎨

⎪⎪⎩

n is the observation parameter in population x
Fn(x) is the empirical cumulative distribution function
F(x) is the theoretical cumulative distribution function
I(−∞,x) is the indicator function of the event x

Results

Determination of the adequate distribution
functions

Figures 2, 3 and 4 show comparative results of the CDF for
historical precipitation data and for each of the ten trial distri-
bution functions. The results are shown for six target stations
of the AEZs (Poli, Ngaounderé, Koundja, Bafia, Douala and
Nkongsamba) and for 3, 12 and 24 months TS. The follow-
ing abbreviations were adopted for the functions: gamma
(g),weibull (w), exponential (e), lognormal (ln), gumbel
(gu), cauchy (c), logistic (lo), chi−square (ch), burr (bu)
and pareto (p). The K-S test was applied and the results are
presented in Tables 3, 4 and 5 for 3, 12 and 24 months TSs
respectively.

The results show that at 3-monthTS (Table 3), the logistic
distribution is the best fit in the four stations namely Poli,
Ngaoundere, Bafia and Koundja. For the two other stations
Douala and Nkongsamba, burr and weibull are the best
fit respectively. At 12-month TS (Table 4), data from the
stations of Poli, Nkongsamba and Douala fit better with
the burr distribution; Koundja shows the gamma as the
best fit, while data from Ngaoundere and Bafia are better
suited to logistic distribution. At 24-month TS (Table 5),
the burr distribution is the best choice at Poli, Nkongsamba
and Bafia while Ngaoundere, Koundja and Douala show a
preference to logistic, gamma and gumbel as the best fits
respectively.

The results for all 24 stations and for eight TSs (3, 6, 9, 12,
15, 18, 21 and 24months) are presented inTable 6. In general,
the logistic and burr distributions are the most suitable for
most stations except for 9-month TSwhereweibull followed
by burr outperform the others. In Table 6, it is observed that
for short (3-month) and long (> 6-month) TSs , the logistic
and burr distributions are themost appropriates respectively.
From the statistical point of view and at all TSs, the function
burr is themost representative followed by logistic and then
gamma. Table 7 summarizes the best fits for all AEZs. It is
observed a few cases where functions that better fit the data
are in equal numbers.

Analysis of computed SPIs with adequate and
default gamma distributions

Time series of SPIs computed with adequate distributions

SPI time series were calculated using the best fit distribu-
tion at each station and results are shown in Figs. 5, 6 and 7.
The SPIs on a 3-month TS (Fig. 5) show for each station,
a high frequency of drought events ranging from mild to
extreme categories. For 12-month SPI (Fig. 6), each sta-
tion shows at least one extremely dry episode. Throughout
the study period, the six stations differ markedly in the fre-
quency of extreme drought periods (4 in Bafia and Poli, 3
in Nkongsamba, 2 in Ngaoundéré and Koundja, and none in
Douala). For 24-month SPI (Fig. 7) and during the first 30
years, Ngaounderé, Douala and Nkongsamba stations only
recorded very few drought but the following years recorded
more frequent drought events. The dramatic drought events
of the 1970s and 1980s are highlighted in each station and the
magnitude and duration of the drought increased, especially
from the mid-1970s.

Evaluating the shift in SPI values due to the use of gamma
function instead of the appropriate functions

Figures 5, 6 and 7 show SPIs computed using both gamma
and the best-fit distributions. At 3-month TS (Fig. 5), the val-
ues of SPIs obtained with the gamma distribution (SP Ig)
are in general smaller than those obtained with the best dis-
tribution (SP Ibd ), which means that gamma leads to an
underestimation of extreme humidity and an overestimation
of severe and extreme drought events. For the stations of
the AEZ4 (Douala and Nkongsamba) in the Littoral area,
the SPIs are less sensitive to the choice of the distribu-
tion function. Similar patterns are observed at 12-month TS
(Fig. 6), but the differences between both SPIs (SP Ig and
SP Ibd ) are higher and more depicted. As for 24-month TS
(Fig. 7), results are similar to those obtained at 3 and 12
months in the AEZs 1 and 2 (Poli and Ngaoundéré respec-
tively) while the reverse situation is observed in the AEZ4
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Fig. 2 Cumulative distribution
functions for 3-month aggregate
precipitation showing empirical
cumulative distribution function
and gamma, weibull,
exponential, lognormal,
gumbel, cauchy, logistic,
chi − square, burr , and
pareto distributions fitted to
station data from a) Poli
(AEZ1), b) Ngaoundere
(AEZ2), c) Koundja (AEZ3), d)
Bafia (AEZ5), e) Douala
(AEZ4), f) Nkongsamba (AEZ4)
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(Douala). However, in the AEZs 4 and 5 (Nkongsamba and
Bafia respectively), the gamma distribution leads to an over-
estimation of extremely humid and drought intensity.

Figure 8 shows the root mean square error (RMSE)
between the SPI values computed from the appropriate dis-
tribution function and the gamma function for 3, 6, 9, 12,
15, 18, 21 and 24 months TSs at each station. Results are
shown for the four drought categories. In general, the RMSE
increases with the severity of drought (from mild to extreme
drought) for each TS and in any AEZ; likewise, it increases
with TS for the AEZs 1, 2 and 5 (Poli, Ngaoundere and Bafia
respectively), but for other areas (AEZs 3 and 4) no consis-
tent increase with TS is observed and the RMSEs are the

lowest, sometimes equal to zero because gamma is the most
suitable and match the default function (gamma) or equal to
low values due to the fact that the appropriate distribution
function found has flexibility similar to the gamma function.

Discussion and conclusion

Discussion

In most studies on SPI, gamma is chosen by default as the
best fit without any comparison with other distributions. It
was shown that the SPI with the commonly used gamma
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Fig. 3 Same as in Fig. 2, but for
12-month aggregated
precipitation
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distribution leads to shortcomings in evaluating ensemble
simulations (Pieper et al. 2020). For West Africa, Okpara
and Tarhule (2015) verified that the type two gamma distri-
bution was a better model for adjusting precipitation over
the Niger basin. So, it is clear that several functions can
override the gamma distribution as the best fit in many
stations and provide better SPI values. From this current
study on a larger number of distribution functions, we found
that new functions (burr and logistic) are able to better
fit the data in some stations as compared to the findings of
Guenang andMkankamKamga (2014)where only four func-
tions (gamma,weibull, lognormal and exponential) were
tested. Therefore, the choice of the appropriate distribution

function depends on the geographical location of the station
and the TS considered. This is confirmed by the results of the
current study that show different distribution functions for
different areas. The results also corroborate those of Cindric
and Pasaric (2012), who suggested that it is not possible to
recommend a single, optimal distribution because the ratio of
skewness and the coefficient of variation of data precipitation
could be the indicator for the choice of the most appropriate
distribution for a particular region.Moreover, Angelidis et al.
(2012) and Stagge et al. (2015) suggested that the suitable
probability distribution is related with the TS of precipitation
data to be fitted.
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Fig. 4 Same as in Fig. 2, but for
24-month aggregated
precipitation
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Stagge et al. (2015) compared the seven probability distri-
butions and concluded that the gamma distribution produces
the best fit for precipitation with long period (>6 months),
while weibull is consistently the best for precipitation with
short period (1 to 3 month). In the present study, the logistic
distribution produces the best fit for precipitation with short
accumulation (3 months TS), while for long periods (> 6
months TS) the burr distribution performs the best. Pieper
et al. (2020) and Zhang and Li (2020) estimated that the
appropriate probability distribution is related to the number
of parameters of the PDF of the distribution to be fitted to
rainfall data. They demonstrated that distributions with three
parameters such as exponential weibull and log−logistic

respectively, perform better than the correspondents two-
parameter distributions, which is in agreement with the
results obtained in this paper where the three-parameter burr
distribution gave the best results in most cases. Some distri-
bution functions such as chi−square, cauchy, exponential
and pareto generally show poorer fit in the study area.
Guenang and Mkankam Kamga (2014) also found that the
exponential distribution is the least suitable for the domain.

Considering the effects of different probability distribu-
tions on SPI characteristics in comparison with the default
gamma distribution, it is observed that SPIs for mild and
moderate droughts are less sensitive to the distribution func-
tions used, than those corresponding to severe and extreme

123



Earth Science Informatics (2024) 17:725–744 735

Table 3 Values of the K-S fit
test for the ten distribution
functions and for 3-month TS

No Stations 3 month TS
g w e ln gu c lo ch bu p

1 Maroua 0.109 0.110 0.108 0.146 0.099 0.216 0.135 0.179 0.109 0.107

2 Kaelé 0.102 0.099 0.093 0.157 0.109 0.213 0.136 0.176 0.099 0.093

3 Garoua 0.129 0.110 0.140 0.169 0.093 0.157 0.090 0.160 0.111 0.139

4 Poli 0.147 0.136 0.141 0.186 0.103 0.159 0.099 0.257 0.136 0.141

5 Ngaoundéré 0.156 0.146 0.157 0.185 0.109 0.146 0.089 0.247 0.145 0.158

6 Meiganga 0.127 0.119 0.132 0.159 0.098 0.159 0.089 0.210 0.118 0.131

7 Tibati 0.139 0.125 0.146 0.171 0.093 0.148 0.079 0.228 0.125 0.146

8 Koundja 0.110 0.097 0.140 0.163 0.082 0.148 0.075 0.197 0.097 0.141

9 Yoko 0.154 0.127 0.184 0.191 0.096 0.123 0.072 0.187 0.127 0.184

10 Nkongsamba 0.075 0.065 0.106 0.122 0.071 0.168 0.096 0.191 0.066 0.106

11 Bafia 0.151 0.114 0.228 0.199 0.100 0.099 0.079 0.150 0.114 0.227

12 Nang-Eboko 0.114 0.085 0.196 0.156 0.082 0.109 0.056 0.111 0.085 0.196

13 Bertoua 0.127 0.086 0.218 0.167 0.089 0.098 0.054 0.119 0.086 0.218

14 Batouri 0.118 0.085 0.219 0.155 0.095 0.098 0.056 0.109 0.085 0.218

15 Ngambé 0.078 0.053 0.125 0.131 0.069 0.155 0.088 0.171 0.053 0.125

16 Douala 0.070 0.064 0.083 0.086 0.074 0.177 0.099 0.227 0.064 0.83

17 Abong-mbang 0.111 0.076 0.226 0.146 0.085 0.099 0.047 0.100 0.076 0.227

18 Yaoundé 0.121 0.081 0.207 0.156 0.095 0.104 0.052 0.107 0.082 0.206

19 Akonolinga 0.118 0.086 0.213 0.141 0.098 0.099 0.060 0.099 0.086 0.213

20 Eséka 0.114 0.072 0.228 0.155 0.088 0.098 0.052 0.113 0.072 0.229

21 Yokadouma 0.124 0.089 0.222 0.152 0.105 0.092 0.059 0.101 0.089 0.223

22 Lomié 0.114 0.076 0.225 0.139 0.098 0.089 0.053 0.118 0.076 0.225

23 Kribi 0.039 0.036 0.223 0.073 0.033 0.121 0.061 0.047 0.026 0.222

24 Sangmélima 0.102 0.059 0.244 0.132 0.088 0.092 0.039 0.135 0.060 0.245

Bold values indicate the lowest K-S statistics determining the best fit distribution

Table 4 Values of the K-S fit
test for the ten distribution
functions and for 12-month TS

No Stations 12 month TS
g w e ln gu c lo ch bu p

1 Maroua 0.050 0.086 0.494 0.041 0.060 0.091 0.059 0.287 0.047 0.495

2 Kaelé 0.063 0.084 0.473 0.069 0.071 0.111 0.067 0.254 0.061 0.473

3 Garoua 0.062 0.096 0.499 0.052 0.045 0.095 0.063 0.265 0.043 0.500

4 Poli 0.044 0.064 0.502 0.053 0.083 0.082 0.048 0.263 0.043 0.502

5 Ngaoundéré 0.062 0.040 0.507 0.072 0.117 0.084 0.029 0.279 0.030 0.506

6 Meiganga 0.037 0.077 0.531 0.035 0.062 0.102 0.047 0.243 0.040 0.530

7 Tibati 0.035 0.059 0.507 0.042 0.065 0.077 0.030 0.249 0.025 0.507

8 Koundja 0.042 0.059 0.534 0.048 0.066 0.091 0.045 0.259 0.044 0.534

9 Yoko 0.045 0.077 0.521 0.039 0.042 0.099 0.054 0.249 0.052 0.522

10 Nkongsamba 0.044 0.049 0.506 0.052 0.075 0.077 0.031 0.217 0.028 0.505

11 Bafia 0.049 0.088 0.503 0.056 0.097 0.072 0.032 0.264 0.037 0.503

12 Nang-Eboko 0.079 0.038 0.472 0.089 0.101 0.099 0.056 0.218 0.038 0.472

13 Bertoua 0.027 0.079 0.495 0.024 0.057 0.081 0.035 0.227 0.030 0.494
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Table 4 continued No Stations 12 month TS
g w e ln gu c lo ch bu p

14 Batouri 0.048 0.047 0.510 0.056 0.079 0.091 0.052 0.241 0.048 0.510

15 Ngambé 0.071 0.077 0.522 0.074 0.075 0.101 0.068 0.234 0.076 0.521

16 Douala 0.077 0.075 0.495 0.081 0.080 0.102 0.077 0.133 0.074 0.495

17 Abong-mbang 0.041 0.084 0.497 0.044 0.081 0.073 0.030 0.214 0.032 0.497

18 Yaoundé 0.029 0.051 0.506 0.037 0.068 0.081 0.026 0.241 0.022 0.505

19 Akonolinga 0.051 0.045 0.504 0.060 0.091 0.086 0.041 0.256 0.039 0.504

20 Eséka 0.038 0.085 0.535 0.030 0.045 0.103 0.037 0.226 0.033 0.535

21 Yokadouma 0.056 0.810 0.512 0.061 0.106 0.086 0.041 0.233 0.045 0.512

22 Lomié 0.039 0.093 0.516 0.035 0.072 0.075 0.025 0.269 0.030 0.517

23 Kribi 0.031 0.059 0.490 0.031 0.057 0.096 0.047 0.114 0.045 0.491

24 Sangmélima 0.035 0.098 0.524 0.027 0.044 0.096 0.038 0.257 0.032 0.524

Bold values indicate the lowest K-S statistics determining the best fit distribution

Table 5 Values of the K-S fit
test for the ten distribution
functions and for 24-month TS

No Stations 24 month TS
g w e ln gu c lo ch bu p

1 Maroua 0.033 0.080 0.529 0.031 0.067 0.087 0.035 0.281 0.034 0.529

2 Kaelé 0.094 0.118 0.504 0.092 0.073 0.105 0.102 0.232 0.107 0.505

3 Garoua 0.040 0.061 0.541 0.043 0.075 0.094 0.047 0.269 0.047 0.540

4 Poli 0.061 0.057 0.535 0.066 0.114 0.086 0.045 0.258 0.039 0.535

5 Ngaoundéré 0.058 0.054 0.527 0.066 0.132 0.104 0.046 0.267 0.054 0.526

6 Meiganga 0.068 0.106 0.543 0.071 0.069 0.106 0.078 0.222 0.082 0.544

7 Tibati 0.079 0.053 0.542 0.085 0.109 0.098 0.060 0.238 0.058 0.543

8 Koundja 0.054 0.065 0.556 0.058 0.076 0.100 0.065 0.269 0.070 0.556

9 Yoko 0.039 0.088 0.565 0.038 0.055 0.102 0.049 0.239 0.039 0.566

10 Nkongsamba 0.048 0.058 0.538 0.055 0.095 0.080 0.049 0.177 0.045 0.539

11 Bafia 0.060 0.083 0.556 0.065 0.094 0.081 0.060 0.261 0.057 0.555

12 Nang-Eboko 0.074 0.032 0.491 0.081 0.097 0.102 0.050 0.167 0.032 0.491

13 Bertoua 0.090 0.038 0.534 0.095 0.107 0.114 0.070 0.253 0.039 0.535

14 Batouri 0.053 0.091 0.541 0.054 0.065 0.107 0.063 0.234 0.077 0.542

15 Ngambé 0.054 0.049 0.551 0.056 0.097 0.102 0.063 0.200 0.054 0.552

16 Douala 0.092 0.106 0.521 0.093 0.075 0.107 0.100 0.084 0.098 0.522

17 Abong-mbang 0.051 0.034 0.536 0.057 0.094 0.089 0.045 0.248 0.036 0.537

18 Yaoundé 0.068 0.060 0.536 0.074 0.094 0.088 0.061 0.233 0.056 0.537

19 Akonolinga 0.090 0.092 0.553 0.093 0.093 0.129 0.084 0.289 0.092 0.552

20 Eséka 0.062 0.101 0.562 0.057 0.053 0.100 0.065 0.242 0.062 0.563

21 Yokadouma 0.028 0.060 0.542 0.035 0.094 0.086 0.025 0.223 0.029 0.543

22 Lomié 0.045 0.080 0.549 0.050 0.097 0.073 0.034 0.278 0.039 0.549

23 Kribi 0.063 0.092 0.522 0.057 0.055 0.116 0.067 0.101 0.070 0.523

24 Sangmélima 00.056 0.090 0.566 0.052 0.075 0.107 0.060 0.259 0.055 0.567

Bold values indicate the lowest K-S statistics determining the best fit distribution
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Table 6 Best distribution functions that better fit station precipitation data at different TSs

area No Stations TS
3 month 6 month 9 month 12 month 15 month 18 month 21 month 24 month

AEZ1 1 Maroua gu lo lo ln gu g w ln

2 Kaele p lo bu bu gu bu lo gu

3 Garoua lo lo w bu ln g bu g

4 Poli lo lo w bu g g bu bu

AEZ2 5 Ngaoundere lo lo w lo g g lo lo

6 Meiganga lo w bu ln g g g g

7 Tibati lo lo g bu g g g w

AEZ3 8 Koundja lo bu w g g lo g g

AEZ4 9 Douala bu bu w w ch g ch gu

10 Nkongsamba w w w bu ln g bu bu

11 Ngambe bu w w lo ln g g w

AEZ5 12 Yoko lo w g ln bu w g ln

13 Bafia lo bu g lo bu bu g bu

14 Nang-Eboko lo bu bu w bu bu bu w

15 Yaounde lo bu g bu bu g bu bu

16 Eseka lo g g ln g ln ln gu

17 Akonolinga lo g g bu g bu g lo

18 Bertoua lo bu ln ln bu bu lo w

19 Batouri lo lo w ln w g g ln

20 Abong-mbang lo bu bu lo lo bu g w

21 Yokadouma lo w bu lo lo bu g lo

22 Lomie lo lo lo g lo g g g

23 Kribi bu bu ln g ln ln ln gu

24 Sangmelima lo g bu ln g ln ln ln

droughts. This statement agrees with that of Angelidis et al.
(2012) who concludes that the consistency of the calculated
SPI with different distributions is good for normal periods,
while becoming poor for very dry or very wet periods. We
also found that different probability distributions lead to a
large difference in severe and extreme droughts. In fact, the
SPI time series patterns obtained with gamma lead to an
underestimation of extreme humidity and an overestimation
of severe and extreme drought events as compare to that
obtained with the best distribution. In a context of climate

change, particularly due to global warming, strong fluctu-
ations in average precipitation have a severe effect on the
occurrence of drought. The current study also found that the
magnitude and duration of drought increased with time for
both short and long TSs. This may be the consequence of
reduced precipitation resulting from climate change as sug-
gested byVicente-Serrano et al. (2010) andTirivarombo et al.
(2018) because temperature is also an important factor that
can influence the availability of water as it controls the rates
of evapotranspiration.

Table 7 Best distribution functions by AEZs at different TSs

AEZs T́S
3 month 6 month 9 month 12 month 15 month 18 month 21 month 24 month

AEZ1 lo lo w bu gu g bu bu, gu, g, ln

AEZ2 lo lo bu, w, g bu, lo, ln g g g lo, g, w

AEZ3 lo bu w g g lo g g

AEZ4 bu w w bu, lo, w ln g bu, g, ch bu, gu, w

AEZ5 lo bu g ln bu bu g bu, lo, w, g, gu, ln
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Fig. 5 SPIs at 3-month TS. It is overlaid SPI computed using appropriate distribution function to that from default gamma distribution function
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Fig. 6 Same as in Fig. 5, but for 12-month TS
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Fig. 7 Same as in Fig. 5, but for 24-month TS
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Fig. 8 RMSE between the SPI values of the appropriate distribution function and the gamma distribution function for each station and for 3, 6, 9,
12, 15, 18, 21 and 24 months TSs

Conclusion

This study was undertaken to contribute to the improve-
ment of mathematical tools for modeling drought which is
a dangerous phenomenon and whose adaptation is difficult
in developing countries such as Cameroon. The SPI used as
drought indicator was studied in this paper by examining the
relevance of using probability distribution functions differ-
ent from those commonly used to fit and describe observed
precipitation data, as preliminary step for SPI computation.
Ten statistical distribution functions were tested to find the
best fit in each of the 24 observation stations belonging to
the five AEZs of Cameroon over the period 1951–2005 and

for different TSs (3, 6, 12, 15, 18, 21 and 24 months). The
ML method was used to estimate the parameters of the dis-
tribution functions. The K-S statistic was used to select the
distribution functions that better fit station data, which were
then used to calculate the SPI. The results were used to
study drought occurrence and quantify the errors made if
non appropriate distribution functions were used.

The appropriate distribution function for precipitationdata
was found to depend on the location of the station and the
number of months in TS. The gamma distribution usually
used as default is not always the best fit for SPI compu-
tation if many functions were tested. It was found that the
logistic probability distribution remains the best choices in
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most cases for 3-month TS while above, burr shows the best
fit. For 12 months and more, gamma, burr and logistic are
found to be the best fits for many different stations. In all
cases, a significant difference was found between the SPIs
calculated with the best fit function and those calculated with
the default gamma distribution; the differences between both
SPIs are more significant from 12-month TS with higher val-
ues of the RMSEs.

This study raises the importance and the necessity of a
preliminary study consisting in finding the best distribution
functions fitting the data and using them for the calculation
of SPI in order to reduce errors and increase the accuracy of
the results.
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