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Abstract
In agricultural and hydrological applications, daily reference evapotranspiration (ET) is a key parameter. Based on one, two, 
and three-day antecedent meteorological parameters including average air temperature (T), sunshine hours (S), average rela-
tive humidity (RH), average wind speed (W), and reference evapotranspiration (ET), this study develops a new model frame-
work for estimating daily ET magnitudes. The Long Short-Term Memory (LSTM) model was combined with the Feedforward 
Neural Network (FFNN) model in order to develop the hybrid approach, which was used to estimate daily ET values at two 
stations, Babolsar and Bandar Anzali, Iran, between 1990 and 2022. Additionally, 70% of the data in the present study were 
used for training purposes and 30% for testing purposes. Based on the statistical metrics, the proposed LSTM-FFNN model 
was benchmarked against the standalone LSTM model. Results from the comparison at Babolsar station indicated that the 
LSTM-FFNN model performed better than all scenarios with an error of approximately 1 millimeter per day in scenarios 
12, 15, and 16. According to the standalone LSTM model, scenarios 5, 8, 11, 15, and 16 had a 1.57 mm/day error rate, and 
likewise, for the Bandar Anzali station, the combined LSTM-FFNN model performed the best in scenarios 14 and 15 with 
the lowest error rates (RMSE=0.96 mm/day), while the standalone LSTM model performed better in scenarios 15 and 16. It 
was found, however, that the proposed LSTM-FFNN model outperformed the standalone LSTM model at both sites. These 
results suggest that the proposed LSTM-FFNN model is capable of accurately estimating daily ET magnitudes, which may 
assist in the optimal management of water resources within agriculture.
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Introduction

Agriculture is the biggest consumer of the world's freshwater 
reserves. Inadequate water availability and allocations affect-
ing crop growth and harvest would lead to reduced food 
production or even food scarcity (De Fraiture et al., 2010). 

The impacts of anthropogenic development, climate change, 
environmental degradation, and industrial water demand 
have placed enormous pressure on the already depleting 
freshwater resource. Hence, water conservation has been a 
major concern for irrigated agriculture (Hamdy et al., 2003). 
Planning, management, and regulation of agricultural water 
resources require an accurate estimation of water use over 
agricultural (Wanniarachchi & Sarukkalige, 2022). Proper 
water resources management can help mitigate these issues 
and promote equitable access to water resources for all 
activities.

In agricultural water management and the hydrological 
cycle, one of the most influential parameters is evapotranspi-
ration (ET). ET is the process by which water is transferred 
from the land surface and vegetation to the atmosphere 
through evaporation from soil and transpiration from plants 
(Chang et al., 2018). It plays a crucial role in regulating the 
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water balance of ecosystems (Wang et al., 2023). In order to 
optimize the water management system, accurate estimation 
of ET values is crucial (Reyes-Gonzalez, 2017). Accurate 
estimation of ET is essential for crop growth modeling, cli-
mate change impact studies, ecosystem management, esti-
mating crop water resource requirements, and subsequent 
irrigation scheduling (Hussain et al., 2020).

Direct point-based measurement of ET can be performed 
using a Lysimeter and then estimations care performed using 
the Bowen ratio–energy balance approach, and Eddy covari-
ance techniques (Todd et al., 2000). These methods have 
several inherent drawbacks such as the high cost of instal-
lation and maintenance of Lysimeter, the need for a large 
area of land with similar actual conditions, and the need for 
specialized skilled personnel to collect and process the data 
(Todd et al., 2000). It is also possible to indirectly estimate 
ET by using a set of climatological variables in order to 
define reference evapotranspiration (Zouzou & Citakoglu, 
2023). Estimating reference ET is commonly used in water 
management since it represents the amount of water that 
would be lost to the atmosphere by a hypothetical, well-
watered grass reference crop that completely covers the soil 
surface and experiences minimal water stress under optimal 
conditions (Hargreaves, 1994; Cobaner et al., 2017). The 
FAO-56 Penman–Monteith (FAO-56 PM) method is one of 
the stable and well-established techniques for determining 
ET (Allen et al., 1998). The FAO-56 PM method combines 
energy balance and aerodynamic principles to estimate ET 
based on meteorological data such as temperature, humid-
ity, wind speed, and solar radiation. This method was vali-
dated using the lysimeter technique in different climates, it 
can also be used to validate other ET computation methods 
(Landeras et al., 2008), yet proper calibration is necessary.

Alternatively, to save on costs, tedious calibration and 
validation processes, machine learning algorithms can 
reliably estimate and forecast ET (Roy, 2021; Bayram & 
Çıtakoğlu, 2023). Using machine learning algorithms, it is 
possible to identify complex relationships between mete-
orological parameters and ET values that are difficult to 
detect using traditional methods (Yamaç & Todorovic, 
2020; Citakoglu et al., 2014). In a study, Hu et al. (2022) 
investigated ET in Pakistan during the period 2015-2021 
using the Internet of Things (IoT) based on machine learn-
ing (ML) models including k-nearest neighbors (KNN), 
Gaussian Naive Bayes (GNB), artificial neural network 
(ANN), and support vector machine (SVM). Comparing 
and evaluating the results of this research indicated that 
the KNN model had more suitable performance compared 
to other ML models with an accuracy of 92%. Mehdizade 
et al. 2021  used the adaptive neuro-fuzzy inference sys-
tem (ANFIS) algorithm in combination with the shuffled 
frog-leaping algorithm (SFLA) and the invasive weed opti-
mization method (IWO) to estimate ET0. Results showed 

that these models outperformed classic ANFIS as well as 
empirical models, with ANFIS-SFLA demonstrating the 
best performance (RMSE = 0.15 mm.day-1, R2 = 0.99). 
Hadadi et al. (2022) in research, the performance of artifi-
cial intelligence models, including ANFIS and its hybrids 
with SFLA and grey wolf optimization (GWO) optimization 
algorithms, in determining monthly Actual evapotranspira-
tion (AET) in Iran is evaluated. By combining optimization 
algorithms with ANFIS, further accuracy was enhanced, 
resulting in promising results for estimating AET in arid 
climates. Talebi et al. 2023 developed an algorithm based 
on multilayer perceptrons (MLP) and MLP optimized with 
stochastic gradient descent (SGD) (MLP-SGD) for estimat-
ing daily ET0 in two different climates. Results showed that 
the hybrid model with SGD-MLP performed better than the 
single model with all input parameters. In another study, 
Kushwaha et al. (2022) evaluated additive regression (AdR), 
random subspace (RSS), and the M5P tree models for mod-
eling daily ET. The evaluation of the used parameters dem-
onstrated that with more input variables, the performance of 
the model increased. Also, among the implemented models, 
the AdR6 model, which had all meteorological variables 
as input during the test period, performed better than other 
models with a coefficient of determination of 0.998. In a 
recent study by Sabanci et al. (2023), the researchers aimed 
to estimate ET0 using different machine learning models, as 
an improvement over the FAO 56-PM approach. The study 
focused on 12 stations located in the Central Anatolian 
Region (CAR), which had diverse climate characteristics. 
To evaluate the performance of the models, the research-
ers used commonly used metrics such as R2, MAE, RMSE, 
and PI. Among the models tested, the LSTM, ANN, and 
multivariate adaptive regression splines (MARS) showed 
the best performance at eight, three, and one station(s), 
respectively. The selected models achieved impressive val-
ues for R2 (ranging from 0.987 to 0.999), MAE (ranging 
from 1.948 to 4.567), RMSE (ranging from 2.671 to 6.659), 
and PI (ranging from 1.544 to 4.018). Overall, this research 
provided valuable insights into accurately estimating ET0 for 
various climate conditions in the Central Anatolian Region. 
In addition, supervised machine learning algorithms from 
artificial neural networks (ANN) such as feedforward neural 
networks (FFNN) (Mahesh, 2020) are also very effective for 
ET forecasting. FFNNs have been used to estimate ET in 
many different studies. For predicting daily ET in northwest 
Algeria, Achite et al. (2022) compared the FFNN and Radial 
Basis Function Neural Network (RBFNN) and found that the 
FFNN model performed better than the Penman-Monteith 
model in predicting ET with a coefficient of determination 
of 0.992. In modeling and predicting water quality using 
adaptive neural fuzzy inference system (ANFIS) and FFNN 
Hmoud Al-Adhaileh and Waselallah Alsaade (2021) found 
that the FFNN model registered higher accuracy (100%) 
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for water quality classification (WQC) despite the ANFIS 
model having acceptable accuracy for predicting WQI water 
quality index values. The review of the conducted studies 
indicates that the FFNN model has performed well as a reli-
able model. The FFNN model has four major advantages: 
1. Adaptability: even without the presence of the user, there 
can be a high correspondence between observed and pre-
dicted values. 2. Non-linearity: it causes the relationship 
between parameters to be found in the best way. 3. Mapping 
between input and output: reduces the difference between 
input and output to the minimum possible value. 4. High 
strength: it reduces the amount of noise (Svozil et al., 1997).

With the emergence of advanced artificial intelligence 
techniques, deep learning approaches have been widely used 
recently. One such DL model, the Long Short-Term Memory 
(LSTM) is commonly used for time-series data analysis (Sun 
et al., 2019; Citakoglu, 2021; Uncuoglu et al., 2022). These 
DL algorithms can process large amounts of data quickly 
and with high accuracy, reducing the time required for 
manual calculations. It is particularly useful for modeling 
sequences of data where there are long-term dependencies 
between the inputs and outputs. During the training process, 
the LSTM model ‘learns’ to identify patterns in historical 
hydro-meteorological data that are associated with daily ET 
changes (Ferreira & da Cunha, 2020). The LSTM model 
has attracted the attention of scientists due to its appropri-
ate accuracy in recent years (Demir & Citakoglu, 2023). 
In a recent study, Alibabaei et al. (2021) modeled ET and 
reference soil water content using climate data by deep 
learning method. The results of this research indicated that 
LSTM achieved the best performance with a coefficient of 
determination of 0.9. Similarly, Chen et al. (2020) estimated 
daily ET based on limited meteorological data using deep 
learning and machine learning methods in the northeastern 
plain of China. The results of this study indicated that when 
temperature-based features were available, temporal convo-
lution neural network (TCN) and LSTM models performed 
significantly better than experimental temperature-based 
models beyond the study regions.

Scholars argue and have shown that hybrid models tend 
to have more suitable performance in comparison to stan-
dalone models. In research conducted by Jia et al. (2023), 
two hybrid models were introduced to predict ET at four 
climate stations in Shaanxi province, China. These mod-
els combined particle swarm optimization (PSO) with the 
LSTM network. To train the models, 40 years of historical 

data were utilized, with PSO optimizing the hyperparam-
eters within the LSTM network. The resulting optimized 
models were then employed to predict daily ETo in 2019, 
using different datasets. Therefore, predicting daily reference 
evapotranspiration with hybrid methods can be more cost-
effective and precise than classical models. Therefore, the 
primary objective of this study is to introduce an innovative 
hybrid model that integrates Feedforward Neural Networks 
with Long Short-Term Memory Networks for the accurate 
prediction of daily reference evapotranspiration (ET0). Even 
though coastal areas have a high potential for agricultural 
industry having humid climates, high rainfall, and fertile 
soil, estimating ET in these humid climates is a challenge. 
Hence the proposed model is tested at two distinct sites in 
the humid climates of Iran. To achieve the mentioned goal, 
the approach is based on meteorological parameters from 
one, two, and three-day antecedent periods. The next section 
of the paper presents materials and methods following are 
results and conclusions.

Materials and methods

Study area

Effective management of water resources in humid and 
extremely humid climates is critical to ensure sustainable 
and equitable utilization. As a result, two stations with a 
varied climate, including Bandar Anzali and Babolsar in 
Iran, were selected as the study sites. Bandar Anzali experi-
ences an average annual rainfall of 1733.9 mm and an aver-
age annual temperature of 16.4°C. In Babolsar, the average 
annual rainfall is slightly lower at around 902.9 mm, and 
the average annual temperature is slightly higher at around 
17.3°C (Fallah-Ghalhari & Shakeri, 2023). As the aim of 
the study was to develop modelling options for arid climatic 
conditions, the de Martonne aridity index was used to iden-
tify the stations. The de Martonne aridity index categorizes 
the stations on the basis of mean annual precipitation and 
mean temperature, which shows that both the Bandar Anzali 
and Babolsar stations are located in extremely humid and 
humid climates (Mehdizadeh, 2020). Also, in the present 
study, 70% of the data were used for the training phase and 
30% of the data were used for the test phase. Table 1 sum-
marizes the geographical characteristics of the study area, 
while Fig. 1 illustrates their respective locations.

Table 1   Geographical 
characteristics of the studied 
stations.

Station name Latitude (°N) Longitude (°E) Altitude (m) Mean annual pre-
cipitation (mm)

Climate type

Bandar Anzali 37.48 49.45 -23.6 1773.89 Extremely humid
Babolsar 36.72 52.65 -21 916.72 Humid
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FAO‑penman–Monteith (FAO‑PM)

A standard method for estimating ET is the FAO-PM equa-
tion. FAO-PM was calculated using Eq. 1.

where ET is the reference evapotranspiration (mm/day), Δ 
is the slope of the saturation vapor pressure curve (kPa/∘C) 
at the daily air temperature (∘C), Rn and G are the net solar 
radiation and soil heat flux density (MJ/m2 day), γ is the 
psychrometric constant (kPa/∘C), T is the daily temperature 
(∘C), U2 is the wind speed (m/s), 𝑒𝑠 is the saturation vapor 
pressure (kPa), and 𝑒𝑎 is the actual vapor pressure (kPa) 
(Allen et al., 1998).

Equation 1 is used for ET estimations that can only be 
performed after the magnitude of parameters such as Rn, 
G, U2, 𝑒𝑠, 𝑒𝑎, T, are known at the end of the day. In order to 
make effective decisions, prior knowledge is important at 

(1)ET =

0.408Δ
(
Rn − G

)
+ �

900

Tmin+273
U2

(
es − ea

)

Δ + �
(
1 + 0.34U2

)

the beginning of the day. Hence, this study tries to perform 
these estimations.

Long short‑term memory (LSTM) model

Long Short-Term Memory (LSTM) is designed to handle 
the disappearing gradient problem that exists in traditional 
recurrent neural networks (RNN) (Hochreiter & Schmidhu-
ber, 1997). LSTM networks use a memory cell to keep data 
over long periods and selectively forget or remember data 
based on input signals (Coşkun & Citakoglu, 2023). Three 
gates rule the memory cell: input gate, forget gate, and out-
put gate (Gers et al., 2000). These gates are controlled by 
sigmoid activation functions the outputs of which ranges 
between 0 and 1. The input gate controls the amount of new 
data that should be added to the cell state and is calculated 
as follows:

(2)it = �
(
Wi ∗

[
ht−1, xt

]
+ bi

)

Fig. 1   The location of the studied stations
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where it is the input gate vector at time t, σ is the sigmoid 
function, Wi is the weight matrix for the input gate, ht-1 is 
the previous hidden state, xt is the current input vector, and 
bi is the bias vector for the input gate.

The forget gate is calculated as follows:

where ft is the forget gate vector at time t, Wf is the weight 
matrix for the forget gate, ht-1 is the previous hidden state, 
xt is the current input vector, and bf is the bias vector for the 
forget gate.

The output gate determines the magnitude of the cell state 
that needs to be expelled to generate a new hidden state, 
which is calculated as follows:

where ot is the output gate vector at time t, Wo is the weight 
matrix for the output gate, ht-1 is the preceding hidden state, 
xt is the current input vector, and bo is the bias vector for the 
output gate.

The cell state (Ct) at time t can be updated using these 
gates as follows:

where • denotes element-wise multiplication and tanh rep-
resents hyperbolic tangent function. Wc and bc are weight 
matrix and bias vector respectively for updating cell state.

Finally, a new hidden state (ht) can be generated using 
this updated cell state as follows:

The structure of the LSTM model consists of multiple 
LSTM cells arranged sequentially. Figure 2 shows the struc-
ture of the standalone LSTM model. Each LSTM cell takes 
an input vector (x) and a hidden state (h) from its previous 
cell as inputs. The LSTM cell processes these inputs through 

(3)ft = �
(
Wf ∗

[
ht−1, xt

]
+ bf

)

(4)ot = �
(
Wo ∗

[
ht−1, xt

]
+ bo

)

(5)Ct = ft ∙ Ct−1 + it ∙ tanh
(
Wc ∗

[
ht−1,Xt

]
+ bc

)

(6)ht = ot ∙ tanh
(
Ct

)

its three gates (input gate “i”, forget gate “f”, and output 
gate “o”) to update its internal memory (cell state “c”). The 
updated memory then generates a new hidden state (output 
“h”). LSTM architecture can have multiple layers stacked on 
top of each other to form a deep LSTM network. The outputs 
from each layer are fed into subsequent layers terminating in 
the output layer that produces the final forecasts or classifica-
tions. LSTM architecture has been widely used in various 
applications such as speech recognition, natural language 
processing (NLP), image captioning, etc., where sequential 
data needs to be processed with long-term dependencies.

Furthermore, the optimization of the number of neu-
rons and epochs in the LSTM network and the batch size 
and learning rates was conducted through trial and error 
to enhance the overall accuracy. The implementation of a 
dropout layer serves as a regularization approach that is 
employed to mitigate the issue of overfitting within a neural 
network. During the training process, a subset of neurons 
is deliberately excluded or "dropped out" randomly, ena-
bling the neural network to acquire knowledge from diverse 
designs and neuron configurations. In the present investiga-
tion, a dropout rate of 3% was implemented on the input 
layer. The activation function known as Rectified Linear 
Unit (ReLU) is commonly used in the middle layer of neu-
ral networks. The ADAM optimizer method was utilized to 
adjust the weights. The number of epochs, batch size, and 
learning rate were configured at 400, 20, and 0.0075, respec-
tively. The results were selected via testing to enhance the 
level of accuracy of the network.

Feedforward neural network (FFNN) model

FFNN is a type of artificial neural network that consists 
of several layers with interconnected nodes so that each 
node performs a non-linear transformation on its inputs. 
The FFNN can learn complex patterns in the input data 
and extract useful features that can be used for prediction. 

Fig. 2   Structure of a typical LSTM model Fig. 3   Structure of a one-hidden layer FFNN model
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Figure 3 displays the general assembly of the FFNN model. 
Each FFNN model has an input layer, a number of hidden 
layers, and output layers. A simple case of one hidden layer 
is presented in Fig. 3. In this study, after rigorous trial and 
error, the number of hidden layers was considered as one.

In the present study, the interconnection between neurons 
in each layer was established through weighted connections 
to all neurons in the subsequent layer—training the neural 
network involved iteratively updating the weights. The neu-
rons in this architecture exhibited an inability to preserve 
the current condition. They only allowed for unidirectional 
signal propagation, perhaps due to the absence of internal 
interconnections and return loops. The experiment employed 
a guided test. The training strategies employed to generate 
the predictive models include Levenberg-Marquardt Back 
Propagation (LMBP), Bayesian Regularization, and the 
Scaled Conjugate Gradient approach. During the training 
phase, weighted connections propagated the input layer char-
acteristics to the subsequent layer. The data underwent pro-
cessing within the concealed layers and ultimately arrived 
at the output neuron. The computation involved determin-
ing the discrepancy between the output of the network and 
the intended target aim. This discrepancy was then used to 
update the layers' weights by propagating the error in a back-
ward manner. The training procedures were deemed com-
plete when no additional weight updates were observed. The 
Levenberg algorithm was employed to minimize mistakes 
within the framework of Levenberg's technique.

Furthermore, the neural network's activity was governed 
by the transfer function utilized in each layer. The trans-
fer functions employed for the initial and secondary hidden 
layers were sigmoid-tan and sigmoid-log. In addition, the 
output layer also incorporated the sigmoid-log transferring 
mechanism.

The proposed hybrid LSTM‑FFNN model architecture

A combination of optimization algorithms improves the 
accuracy of hydrological time series estimation (Moham-
madi, 2023). In this study, the long short-term memory 
(LSTM) network and the feedforward neural network 
(FFNN) are combined to develop the proposed hybrid 
LSTM- FFNN algorithm. The LSTM- FFNN algorithm 
works by first extracting the pertinent features from the 
input time series data using the LSTM model. Once the 
features are extracted, these are fed into the FFNN net-
work. The relationship between LSTM and FFNN lies in 
their architecture and application. While LSTM is used 
for tasks that involve sequential data, such as speech rec-
ognition or language translation, the FFNN is suitable for 
tasks that require processing static data, such as image 
recognition or text classification. In this study, both LSTM 
and FFNN are combined to create a hybrid model that can 

handle both sequential and static data. This hybrid LSTM-
FFNN algorithm is being used for time series estimation 
of daily ET values, which involves extracting pertinent 
features of a time-dependent variable and building a rela-
tionship based on its past values in predicting future val-
ues. Figure 4 displays the flowchart of the proposed hybrid 
LSTM-FFNN hybrid algorithm. Initially, the predictors 
are channeled into the algorithm and the assembly of the 
LSTM model is determined. Then the data training process 
begins. Once the least error criterion in training data is 
met, the process of testing commences. By determining 

Fig. 4   Flowchart of hybrid LSTM-FFNN modelling framework
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the structure of FFNN, the model starts evaluating training 
and testing again and then determines the prediction accu-
racy using evaluation criteria. Long Short-Term Memory 
(LSTM) models and their combination with Feedforward 
Neural Networks (FFNN) have proven to be effective in a 
wide range of sequence-based tasks, such as natural lan-
guage processing and time series forecasting. However, 
they do have several limitations: Computational com-
plexity, hyperparameter tuning, training time, overfitting 
(Nguyen et al., 2020).

The scenario‑based modelling approach

To test the pertinence of the LSTM-FFNN model, daily 
ET estimation was performed using one, two, and three-
day antecedent meteorological parameters. The param-
eters used include average air temperature (T), sunshine 
hours (S), average relative humidity (RH), average wind 
speed (W), and reference evapotranspiration (ET), while 
the integers -1, -2, and -3 in the parameters indicate a 
delay of one, two, and three days, respectively. The his-
toric data from 1990-2022 have been as predictor inputs 
in this study.

The heat plots based on Pearson's correlation coefficient 
were used to study the probable impact of different input 
variables on ET at Babolsar and Anzali stations as shown in 
Fig. 5. For Babolsar station, the comparison between input 
parameters demonstrated that temperature has the high-
est correlation with ET values. On the other hand, relative 
humidity showed a negative correlation with ET revealing 
its lowest correlation with ET. For Anzali station, the com-
parison between the input parameters showed that anteced-
ent evapotranspiration and then temperature had the highest 
correlation with ET followed by that was relative humidity, 
and then the wind speed had the lowest correlation with ET.

To have a comprehensive understanding of the influence 
of antecedent inputs on ET, a Scenario-based approach with 
incremental combinations of input series was used as shown 
in Table 2. For instance, in Scenario 1 (ETt-1, Tt-1) two input 
series were used including one-day antecedent ET and one-
day antecedent T. However, for Scenario 16 a total of 19 
inputs were used for daily ET estimations (Table 2).

Model evaluation criteria

Model evaluation is one of the most important aspects. As 
such different evaluation parameters were considered to 
accurately evaluate the performances of the proposed models 
for ET estimations. The first criterion, coefficient of determi-
nation (R2) varies from 0 to 1, is mathematically described 
as follows:

Another broadly used statistical parameter is the root 
mean square error (RMSE), and it can be determined as 
follows:

The mean absolute error (MAE) is an index that is used 
to evaluate the model error and varies from 0 to ∞. It can 
be showed as follows:

Nash-Sutcliffe coefficient (NS) can range from -∞ to 1. 
If NS = 1, it shows complete agreement (Nash & Sutcliffe, 
1970), expressed as:

While the Willmott's index of agreement (WI) ranges 
between 0 to 1. A value of 1 shows a complete correlation, 
and 0 shows a mismatch between the observed and predicted 
values (Willmott, 1981), expressed as:

In Eqs. 7-12, the Pi and Oi are the estimated and observed 
ith values, respectively. Also, P and O are the mean of esti-
mated and observed values, respectively.

In addition, graphical evaluation of the model perfor-
mances was also performed. The Taylor diagram, which is a 
graphical representation of the observed and predicted data, 
was used to check the accuracy of the used models (Taylor, 
2001) together with the scatter and violin plot.

Results

The performance of the hybrid LSTM-FFNN model is com-
prehensively evaluated for daily ET values at Babolsar and 
Anzali stations located in Iran using the inputs from 1990-
2022. The performance of the hybrid LSTM-FFNN model 
is compared with the standalone LSTM model.
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Fig. 5   Evaluation of ET fore-
casting using Pearson correla-
tion coefficient heat maps for 
Babolsar and Anzali stations

1 0.97 0.95 0.93 -0.47 -0.46 -0.44 -0.43 0.47 0.5 0.5 0.48 0.19 0.12 0.12 0.14 0.8 0.79 0.78 0.77

0.97 1 0.97 0.95 -0.4 -0.47 -0.45 -0.44 0.4 0.47 0.5 0.5 0.22 0.19 0.12 0.12 0.79 0.8 0.79 0.78

0.95 0.97 1 0.97 -0.38 -0.4 -0.47 -0.45 0.38 0.4 0.47 0.5 0.21 0.22 0.19 0.12 0.76 0.79 0.8 0.79

0.93 0.95 0.97 1 -0.38 -0.38 -0.4 -0.47 0.38 0.38 0.4 0.47 0.19 0.21 0.22 0.19 0.74 0.76 0.79 0.8

-0.47 -0.4 -0.38 -0.38 1 0.57 0.35 0.3 -0.63 -0.43 -0.29 -0.24 -0.064 -0.098 -0.15 -0.15 -0.49 -0.42 -0.41 -0.38

-0.46 -0.47 -0.4 -0.38 0.57 1 0.57 0.35 -0.38 -0.63 -0.43 -0.29 -0.097 -0.064 -0.098 -0.15 -0.58 -0.49 -0.42 -0.41

-0.44 -0.45 -0.47 -0.4 0.35 0.57 1 0.57 -0.28 -0.38 -0.63 -0.43 -0.15 -0.097 -0.064 -0.098 -0.49 -0.58 -0.49 -0.42

-0.43 -0.44 -0.45 -0.47 0.3 0.35 0.57 1 -0.26 -0.28 -0.38 -0.63 -0.12 -0.15 -0.097 -0.064 -0.44 -0.49 -0.58 -0.49

0.47 0.4 0.38 0.38 -0.63 -0.38 -0.28 -0.26 1 0.53 0.33 0.26 -0.032 0.0052 0.11 0.12 0.5 0.43 0.42 0.39

0.5 0.47 0.4 0.38 -0.43 -0.63 -0.38 -0.28 0.53 1 0.53 0.33 0.067 -0.031 0.0048 0.11 0.66 0.5 0.43 0.42

0.5 0.5 0.47 0.4 -0.29 -0.43 -0.63 -0.38 0.33 0.53 1 0.53 0.16 0.067 -0.032 0.0046 0.57 0.66 0.5 0.43

0.48 0.5 0.5 0.47 -0.24 -0.29 -0.43 -0.63 0.26 0.33 0.53 1 0.14 0.16 0.067 -0.032 0.49 0.57 0.66 0.5

0.19 0.22 0.21 0.19 -0.064 -0.097 -0.15 -0.12 -0.032 0.067 0.16 0.14 1 0.31 0.12 0.12 0.26 0.28 0.24 0.21

0.12 0.19 0.22 0.21 -0.098 -0.064 -0.097 -0.15 0.0052 -0.031 0.067 0.16 0.31 1 0.31 0.12 0.22 0.26 0.28 0.24

0.12 0.12 0.19 0.22 -0.15 -0.098 -0.064 -0.097 0.11 0.0048 -0.032 0.067 0.12 0.31 1 0.31 0.17 0.22 0.26 0.28

0.14 0.12 0.12 0.19 -0.15 -0.15 -0.098 -0.064 0.12 0.11 0.0046 -0.032 0.12 0.12 0.31 1 0.22 0.17 0.22 0.26

0.8 0.79 0.76 0.74 -0.49 -0.58 -0.49 -0.44 0.5 0.66 0.57 0.49 0.26 0.22 0.17 0.22 1 0.76 0.73 0.71

0.79 0.8 0.79 0.76 -0.42 -0.49 -0.58 -0.49 0.43 0.5 0.66 0.57 0.28 0.26 0.22 0.17 0.76 1 0.76 0.73

0.78 0.79 0.8 0.79 -0.41 -0.42 -0.49 -0.58 0.42 0.43 0.5 0.66 0.24 0.28 0.26 0.22 0.73 0.76 1 0.76

0.77 0.78 0.79 0.8 -0.38 -0.41 -0.42 -0.49 0.39 0.42 0.43 0.5 0.21 0.24 0.28 0.26 0.71 0.73 0.76 1

T
t

T
t-
1

T
t-
2

T
t-
3

R
H

R
H
-1

R
H
-2

R
H
-3 S
t

S
t-
1

S
t-
2

S
t-
3

W
S
t

W
S
t-
1

W
S
t-
2

W
S
t-
3

E
T

E
T
-1

E
T
-2

E
T
-3

Tt

Tt-1

Tt-2

Tt-3

RH

RH-1

RH-2

RH-3

St

St-1

St-2

St-3

WSt

WSt-1

WSt-2

WSt-3

ET

ET-1

ET-2

ET-3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Babolsar

1 0.97 0.95 0.93 -0.031 -0.096 -0.083 -0.063 -0.61 -0.58 -0.56 -0.55 0.53 0.55 0.54 0.53 0.82 0.8 0.8 0.79

0.97 1 0.97 0.95 0.013 -0.031 -0.095 -0.082 -0.55 -0.61 -0.58 -0.56 0.47 0.54 0.55 0.54 0.81 0.82 0.8 0.8

0.95 0.97 1 0.97 0.023 0.013 -0.03 -0.095 -0.54 -0.55 -0.62 -0.58 0.45 0.47 0.54 0.55 0.78 0.81 0.82 0.8

0.93 0.95 0.97 1 0.02 0.023 0.014 -0.03 -0.54 -0.54 -0.55 -0.62 0.44 0.45 0.47 0.54 0.76 0.78 0.81 0.82

-0.031 0.013 0.023 0.02 1 0.39 0.24 0.2 0.054 0.0047 -0.023 -0.011 -0.18 -0.053 0.016 0.014 0.012 0.036 0.043 0.051

-0.096 -0.031 0.013 0.023 0.39 1 0.39 0.24 0.028 0.053 0.0039 -0.024 -0.12 -0.18 -0.052 0.017 -0.033 0.012 0.036 0.043

-0.083 -0.095 -0.03 0.014 0.24 0.39 1 0.39 -0.028 0.028 0.051 0.0019 0.0061 -0.12 -0.18 -0.05 -0.026 -0.031 0.014 0.037

-0.063 -0.082 -0.095 -0.03 0.2 0.24 0.39 1 -0.029 -0.028 0.028 0.051 0.03 0.0061 -0.12 -0.18 -0.0067 -0.026 -0.031 0.014

-0.61 -0.55 -0.54 -0.54 0.054 0.028 -0.028 -0.029 1 0.64 0.51 0.46 -0.62 -0.47 -0.4 -0.41 -0.63 -0.57 -0.56 -0.56

-0.58 -0.61 -0.55 -0.54 0.0047 0.053 0.028 -0.028 0.64 1 0.64 0.51 -0.49 -0.62 -0.47 -0.4 -0.66 -0.63 -0.57 -0.56

-0.56 -0.58 -0.62 -0.55 -0.023 0.0039 0.051 0.028 0.51 0.64 1 0.64 -0.41 -0.49 -0.62 -0.47 -0.6 -0.66 -0.63 -0.57

-0.55 -0.56 -0.58 -0.62 -0.011 -0.024 0.0019 0.051 0.46 0.51 0.64 1 -0.35 -0.41 -0.49 -0.62 -0.57 -0.6 -0.66 -0.63

0.53 0.47 0.45 0.44 -0.18 -0.12 0.0061 0.03 -0.62 -0.49 -0.41 -0.35 1 0.58 0.41 0.36 0.6 0.51 0.48 0.45

0.55 0.54 0.47 0.45 -0.053 -0.18 -0.12 0.0061 -0.47 -0.62 -0.49 -0.41 0.58 1 0.58 0.41 0.68 0.6 0.51 0.48

0.54 0.55 0.54 0.47 0.016 -0.052 -0.18 -0.12 -0.4 -0.47 -0.62 -0.49 0.41 0.58 1 0.58 0.62 0.68 0.6 0.51

0.53 0.54 0.55 0.54 0.014 0.017 -0.05 -0.18 -0.41 -0.4 -0.47 -0.62 0.36 0.41 0.58 1 0.56 0.62 0.68 0.6

0.82 0.81 0.78 0.76 0.012 -0.033 -0.026 -0.0067 -0.63 -0.66 -0.6 -0.57 0.6 0.68 0.62 0.56 1 0.85 0.8 0.79

0.8 0.82 0.81 0.78 0.036 0.012 -0.031 -0.026 -0.57 -0.63 -0.66 -0.6 0.51 0.6 0.68 0.62 0.85 1 0.85 0.8

0.8 0.8 0.82 0.81 0.043 0.036 0.014 -0.031 -0.56 -0.57 -0.63 -0.66 0.48 0.51 0.6 0.68 0.8 0.85 1 0.85

0.79 0.8 0.8 0.82 0.051 0.043 0.037 0.014 -0.56 -0.56 -0.57 -0.63 0.45 0.48 0.51 0.6 0.79 0.8 0.85 1

T
t

T
t-
1

T
t-
2

T
t-
3

W
s

W
s
-1

W
S
-2

W
S
-3

R
H

R
H
-1

R
H
-2

R
H
-3 S
t

S
t-
1

S
t-
2

S
t-
3

E
T

E
T
-1

E
T
-2

E
T
-3

Tt

Tt-1

Tt-2

Tt-3

Ws

Ws-1

WS-2

WS-3

RH

RH-1

RH-2

RH-3

St

St-1

St-2

St-3

ET

ET-1

ET-2

ET-3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Anzali

4084 Earth Science Informatics (2023) 16:4077–4095



1 3

An evaluation of model performances on the basis of 
R2, RMSE, MAE, NS, and WI criteria for Babolsar station 
is presented in Table 3. Based on the results, the models 
performed better during the training period than during 
the test period in all scenarios. In the first scenario, LSTM 
and FFNN-LSTM models had the highest error compared 
to other scenarios. According to scenario one, the RMSE 
values for the LSTM model are 1.62 mm/day during train-
ing and 1.65 mm/day during testing, while those for the 
FFNN-LSTM model are 1.22 mm/day during training and 
1.26 mm/day during testing. In the second and third sce-
narios, all the evaluation criteria for the LSTM model had a 
constant value, which shows that both scenarios generated 
similar performance, however, for the FFNN-LSTM model, 
the error value (RMSE) increased from 1.21 to 1.23 mm/
day and the other metrics were almost constant. This shows 
that ETt-3 and Tt-3 parameters did not have much positive 
effect on the accuracy of both models. In the 4th scenario, the 
addition of the St-1 parameter to the inputs caused the error 
criterion to decrease by 3.7% in the standalone model and by 
6.7% in the hybrid model. From the 5th to the 12th scenario, 
the accuracy of the LSTM model remained constant and the 
addition of parameters did not produce a noteworthy effect 
on the accuracy of the standalone model. This lack of change 
indicates that the variables such as relative humidity and 
wind speed do not have much effect on the prediction accu-
racy of ET values for the standalone model. On the other 
hand, for the combined LSTM-FFNN model, the addition 
of the St-2 parameter in the 5th scenario decreased the model 
error from 1.15 to 1.02 mm/day whilst a slight improve-
ment in NS and WI criteria was observed. In the 6th and 7th 
scenarios, the addition of St-3 and RHt-1 parameters did not 

increase the accuracy of the combined LSTM-FFNN model 
and it also increase the RMSE values by about 3.9% reduc-
ing the model performances. In the 8th scenario, as in the 
previous two scenarios, the error of the combined LSTM-
FFNN model has increased from 1.07 to 1.11 mm/day and 
has caused the model's accuracy to decrease by 3.7%. In 
the 9th scenario, although the R2 and WI criteria remained 
constant, the RMSE and NS criteria improved by 8.5% and 
5.3%, respectively. On the contrary, in the 10th scenario, the 
addition of the Wt-1 input series increased the RMSE by 
8.5% and decreased NS by 5.3%, although R2 and WI cri-
teria remained unchanged. Both the 11th and 12th scenarios 
showed improved accuracy of the LSTM-FFNN model. In 
the 11th scenario, the error reduced from 1.11 to 1.05 mm/
day and in the 12th scenario the error reduced from 1.05 to 
1 mm/day. For the 13th scenario, adding the Tt input series 
increased the RMSE value by 3.1% and 18.2%, respectively, 
for both the standalone LSTM and combined LSTM-FFNN 
models, and other criteria also decreased relatively. On the 
other hand, in the 14th scenario, the RMSE for the LSTM 
model decreased from 1.63 to 1.58 mm/day and for the 
FFNN-LSTM model the decrease was from 1.2 to 1.02 mm/
day, which can be attributed to the addition of the St input 
series. The 15th and 16th scenarios had similar accuracy, yet 
in comparison to the 14th scenario, the error rate of both of 
the models decreased slightly.

Comparing and evaluating the results in the Babolsar 
station for the LSTM model also showed that the 5th, 8th, 
11th, 15th, and 16th scenarios performed better than other 
scenarios of the standalone model. The results of this study 
are in agreement with the results of Roy (2021), who used 
short-term memory networks to predict one step ahead 

Table 2   Scenarios used 
in the case study of daily 
evapotranspiration estimations

Scenario

1 ETt-1, Tt-1

2 ETt-1, ETt-2, Tt-1, Tt-2

3 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3

4 ETt-1, Tt-1, St-1

5 ETt-1, ETt-2, Tt-1, Tt-2, St-1, St-2

6 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, St-1, St-2, St-3

7 ETt-1, Tt-1, St-1, RHt-1

8 ETt-1, ETt-2, St-1, St-2, RHt-1, RHt-2

9 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, St-1, St-2, St-3, RHt-1, RHt-2, RHt-3

10 ETt-1, Tt-1, St-1, Wt-1

11 ETt-1, ETt-2, St-1, St-2, RHt-1, RHt-2, Wt-1, Wt-2

12 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, St-1, St-2, St-3, RHt-1, RHt-2, RHt-3, Wt-1, Wt-2, Wt-3

13 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, Tt

14 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, Tt, St-1, St-2, St-3, St

15 ETt-1, ETt-2, ETt-3, Tt-1, Tt-2, Tt-3, Tt, St-1, St-2, St-3, St, RHt-1, RHt-2, RHt-3, RHt

16 ETt-1, ETt-2, ETt-3, Tt, Tt-1, Tt-2, Tt-3, St, St-1, St-2, St-3, RHt, RHt-1, RHt-2, RHt-3, Wt, 
Wt-1, Wt-2, Wt-3
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evapotranspiration at Ghazipur station located in Bangla-
desh during 2004-2019 and showed that the bi-directional 
LSTM (Bi-LSTM) model with a correlation coefficient of 
0.99 and then the LSTM model with a correlation coefficient 
of 0.69 have high accuracy in predicting evapotranspiration. 
Both the standalone and the hybrid FFNN-LSTM models 
showed that the 12th, 15th, and 16th scenarios had the best 
performance compared to the rest of the scenarios. The per-
formance of the FFNN-LSTM model was higher in these 
scenarios with R2 = 0.79, RMSE = 1 mm/day, MAE=0.72 
mm/day, NS = 0.79, and WI = 0.94.

In addition to statistical evaluation, the graphical eval-
uation via the scatter plots for the best scenarios of both 
LSTM and LSTM- FFNN models for Babolsar station are 

illustrated in Fig. 6. The scatter plots reveal that the 16th 
scenario has a slightly higher correlation than the 5th, 8th, 
11th, and 15th scenarios registered by the LSTM model. In 
concurrence with the outcomes of Table 3, the 16th scenario 
has slightly higher accuracy than the 15th and 12th scenarios 
for the LSTM-FFNN model (Fig. 6). With that, the com-
bined LSTM-FFNN models registered better performance 
than the standalone LSTM model.

In the case of Bandar Anzali station, the performance 
evaluation of the proposed LSTM-FFNN and standalone 
LSTM models during the test phase are presented in Table 4. 
A comparison of the first and second scenarios for the LSTM 
model shows that the R2 criterion has increased a little and 
other criterion have remained unchanged. For the 3rd and 4th 

Table 3   Statistical evaluation of model performances during the training and testing period at Babolsar station

Model Scenario Training Testing

R2 RMSE 
(mm/day)

MAE (mm/day) NS WI R2 RMSE 
(mm/day)

MAE (mm/day) NS WI

LSTM 1 0.76 1.62 1.34 0.47 0.70 0.67 1.65 1.36 0.43 0.66
2 0.77 1.61 1.33 0.48 0.71 0.69 1.64 1.35 0.44 0.67
3 0.76 1.61 1.33 0.48 0.71 0.69 1.64 1.35 0.44 0.67
4 0.86 1.52 1.26 0.52 0.73 0.77 1.58 1.31 0.48 0.70
5 0.86 1.52 1.26 0.52 0.74 0.77 1.57 1.30 0.48 0.70
6 0.86 1.52 1.26 0.52 0.72 0.77 1.58 1.31 0.48 0.69
7 0.86 1.52 1.26 0.52 0.73 0.77 1.58 1.30 0.48 0.70
8 0.86 1.51 1.25 0.52 0.72 0.77 1.57 1.30 0.48 0.70
9 0.86 1.52 1.26 0.52 0.71 0.77 1.58 1.30 0.48 0.69
10 0.86 1.52 1.26 0.52 0.73 0.77 1.58 1.30 0.48 0.70
11 0.86 1.51 1.25 0.52 0.72 0.77 1.57 1.30 0.48 0.70
12 0.86 1.52 1.26 0.52 0.71 0.77 1.58 1.30 0.48 0.69
13 0.79 1.59 1.31 0.48 0.70 0.71 1.63 1.35 0.44 0.67
14 0.85 1.54 1.27 0.52 0.72 0.77 1.58 1.30 0.48 0.70
15 0.85 1.51 1.25 0.52 0.72 0.77 1.57 1.30 0.48 0.70
16 0.86 1.5 1.24 0.53 0.73 0.77 1.57 1.30 0.48 0.70

FFNN-LSTM 1 0.74 1.22 0.89 0.70 0.92 0.67 1.26 0.92 0.67 0.89
2 0.76 1.17 0.83 0.72 0.93 0.69 1.21 0.86 0.69 0.90
3 0.77 0.2 0.15 0.71 0.93 0.69 1.23 0.91 0.68 0.90
4 0.85 1.11 0.79 0.75 0.94 0.77 1.15 0.82 0.72 0.92
5 0.85 0.99 0.70 0.81 0.96 0.77 1.02 0.73 0.78 0.94
6 0.85 1.03 0.78 0.79 0.95 0.77 1.06 0.80 0.76 0.93
7 0.85 1.04 0.73 0.78 0.95 0.77 1.07 0.76 0.76 0.93
8 0.86 1.08 0.85 0.77 0.95 0.79 1.11 0.87 0.74 0.93
9 0.86 1 0.74 0.80 0.95 0.79 1.02 0.75 0.78 0.93
10 0.83 1.06 0.76 0.78 0.95 0.77 1.11 0.79 0.74 0.93
11 0.85 1.01 0.70 0.80 0.95 0.79 1.05 0.73 0.77 0.93
12 0.83 0.97 0.70 0.81 0.96 0.79 1 0.72 0.79 0.94
13 0.74 1.15 0.82 0.73 0.93 0.71 1.2 0.85 0.70 0.90
14 0.85 1.01 0.72 0.81 0.97 0.79 1.02 0.72 0.78 0.94
15 0.85 0.98 0.70 0.81 0.97 0.79 1 0.72 0.79 0.94
16 0.86 0.97 0.68 0.82 0.98 0.79 1 0.72 0.79 0.94
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Fig. 6   Scatter plots of the best 
scenarios in the testing period at 
Babolsar station
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scenarios, the WI criterion was constant, while the RMSE 
decreased by 1.2%. On the other hand, the NS indices 
increased by 4.1%, and the R2 also increased slightly. The 
WI index in the 6th scenario showed a slight increase com-
pared to the 5th scenario, while the other parameters did not 
change. In the 7th and 8th scenarios, only the R2 increased 
slightly among all criteria. The comparison between the 9th 
and 10th scenarios also shows that the addition of the Wt-1 
parameter did not improve the accuracy of the standalone 
LSTM model (slight increase in the RMSE index) and also 
a decrease in the R2 criterion was noted. Also, the examina-
tion of the performance of the 11th and 12th scenarios shows 
that the 12th scenario has performed better by reducing 
the amount of error to a small extent. For the 13th and 14th 

scenarios, the values ​​of all criteria except NS improved by 
about 1% and the RMSE error values reduced. These results 
persisted in the last three scenarios (Scenarios 14-16).

For the proposed hybrid LSTM-FFNN model, the evalu-
ation between the first and second scenarios showed that 
the addition of ETt-2 and Tt-2 parameters to the first scenario 
caused a slight increase in error while the other metrics 
remained unchanged. A comparison between the 3rd and 4th 
scenarios revealed that the error of the 4th scenario decreased 
compared to the third scenario and reached the value of 1.14 
mm/day, and the correlation coefficient R2 also increased 
slightly. A comparison between the 5th and 6th scenarios 
also indicated that the 6th scenario had a better performance 
registering an increase in R2, NS, and WI criteria by 2.4%, 

Table 4   Statistical evaluation of model performances during the training and testing period at Bandar Anzali station

Model Scenario Training Testing

R2 RMSE 
(mm/day)

MAE (mm/day) NS WI R2 RMSE 
(mm/day)

MAE (mm/day) NS WI

LSTM 1 0.83 1.69 1.45 0.52 0.74 0.76 1.71 1.47 0.49 0.71
2 0.85 1.68 1.45 0.53 0.74 0.77 1.71 1.47 0.49 0.71
3 0.85 1.69 1.46 0.51 0.74 0.77 1.71 1.47 0.48 0.71
4 0.86 1.66 1.43 0.53 0.74 0.79 1.69 1.46 0.50 0.71
5 0.86 1.66 1.43 0.54 0.73 0.81 1.69 1.45 0.50 0.71
6 0.88 1.66 1.43 0.54 0.75 0.81 1.69 1.45 0.50 0.72
7 0.85 1.66 1.43 0.54 0.75 0.79 1.69 1.45 0.50 0.72
8 0.86 1.66 1.42 0.54 0.75 0.81 1.69 1.45 0.50 0.72
9 0.85 1.65 1.42 0.54 0.75 0.81 1.68 1.45 0.50 0.72
10 0.83 1.66 1.42 0.54 0.75 0.79 1.69 1.45 0.50 0.72
11 0.86 1.66 1.42 0.54 0.75 0.81 1.69 1.45 0.50 0.72
12 0.85 1.65 1.42 0.54 0.75 0.81 1.68 1.45 0.50 0.72
13 0.86 1.64 1.41 0.55 0.75 0.81 1.68 1.45 0.51 0.72
14 0.86 1.63 1.40 0.55 0.76 0.83 1.67 1.44 0.51 0.73
15 0.88 1.62 1.40 0.55 0.76 0.83 1.66 1.43 0.52 0.73
16 0.90 1.62 1.39 0.56 0.76 0.83 1.66 1.43 0.52 0.73

FFNN-LSTM 1 0.86 1.1 0.77 0.8 0.96 0.77 1.14 0.79 0.77 0.93
2 0.86 0.11 0.08 0.8 0.96 0.77 1.15 0.79 0.77 0.93
3 0.88 0.11 0.08 0.81 0.96 0.79 1.15 0.85 0.77 0.93
4 0.90 0.09 0.07 0.8 0.96 0.81 1.14 0.90 0.77 0.93
5 0.90 0.05 0.04 0.81 0.97 0.81 1.08 0.82 0.79 0.94
6 0.92 1.08 0.75 0.85 0.98 0.83 1.01 0.70 0.82 0.95
7 0.90 1.09 0.75 0.85 0.97 0.81 1.02 0.70 0.82 0.95
8 0.90 1.08 0.84 0.81 0.96 0.83 1.12 0.87 0.78 0.94
9 0.92 0.95 0.66 0.86 0.97 0.83 0.99 0.69 0.83 0.95
10 0.90 0.99 0.68 0.85 0.97 0.81 1.03 0.70 0.81 0.95
11 0.92 0.98 0.68 0.87 0.97 0.83 1.01 0.70 0.82 0.95
12 0.92 0.96 0.67 0.87 0.98 0.83 1 0.70 0.82 0.95
13 0.90 1.06 0.82 0.8 0.96 0.81 1.11 0.85 0.78 0.94
14 0.94 0.93 0.66 0.86 0.97 0.85 0.96 0.68 0.84 0.95
15 0.94 0.93 0.67 0.86 0.98 0.85 0.96 0.68 0.84 0.95
16 0.96 1.15 0.93 0.79 0.96 0.85 1.18 0.96 0.76 0.93
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3.7%, and 1.1%, respectively, and a reduction in RMSE,and 
MAE error criteria by 6.7%,and 15.8%, respectively. On the 
other hand, the evaluation of the 7th and 8th scenarios showed 
that the 8th scenario had lower accuracy than the 7th scenario 
due to an increase in error by 9.4% and a decrease in the NS 
criterion by 5%. By increasing the RMSE value from 0.99 
to 1.03 mm/day, the 10th scenario also showed a decrease 
in performance accuracy. Examining the performance met-
rics of the 11th and 12th scenarios showed that the values 
remained unchanged except for the RMSE, which showed 
a very slight decrease in the 12th scenario. In comparison 
to the 13th scenario, the 14th scenario indicated that it has 
produced a better accuracy by reducing the RMSE,and MAE 
criterion by 14.5%, and 22.2 respectively, while an increase 
in R2, NS, and WI was recorded. The results in the 15th 
scenario were the same as in the 14th scenario. In contrast, 
in the 16th scenario, a decrease in the accuracy of the LSTM-
FFNN model was noted whereby the RMSE error increased 
by 20.6% compared to the 15th scenario.

Moreover, an evaluation of all scenarios for LSTM and 
hybrid LSTM-FFNN models revealed that the 14th and 15th 
scenarios registered the highest accuracy with the lowest 
error (RMSE=0.96 mm/day) for the combined LSTM-FFNN 
model. For the standalone model, the 15th and 16th scenarios 
had the highest performance (RMSE=1.66 mm/day) com-
pared to other scenarios. In a study, Granata and Di Nunno 
(2021) predicted evapotranspiration in different climates in 
the state of Florida using a set of recurrent neural networks 
including LSTM and nonlinear autoregressive networks with 
exogenous inputs (NARX). The results showed that in the 
humid subtropical climate of South Florida, the model based 
on LSTM performed better than the model based on NARX 
and showed good accuracy with R2=0.81. Therefore, in this 
study, the standalone LSTM model with R2=0.83 agrees 
with the study by Granata & Di Nunno (2021). Our study 
further ascertains that a hybrid modelling approach as the 
proposed LSTM-FFNN model is able to have better accura-
cies in comparison to the standalone one with R2=0.85.

Fig. 7   Scatter plots of the best scenarios in the testing period at Bandar Anzali station
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To further attest the better accuracy of the hybrid LSTM-
FFNN model, Fig. 7 shows the scatter plots of the best sce-
narios of standalone LSTM and the hybrid LSTM-FFNN 
models for the Bandar Anzali station. Although the accuracy 
in both the 15th and 16th scenarios is almost the same for the 
standalone LSTM model, the observed and predicted values 
are more correlated with each other. This important evalua-
tion could only be seen graphically. Also, for the combined 
hybrid LSTM-FFNN model, the scatter points in the 15th 
scenario are closer to the 45° (y=x) line with the gradient 
very close to unity (m = 0.847) and therefore have higher 
better accuracy.

Moreover, the violin plots for the best scenarios for 
respective models at Babolsar and Anzali stations are 

displayed in Fig. 8. In all the violin plots, the white squares 
and circles indicate the mean and median of the data series. 
The results of the LSTM models for the Babolsar station 
under all scenarios show that the forecasted values ranged 
between 1.5 to 2.5 mm/day, which are not as the observed 
ET values are distributed. The comparison of the scenarios 
also shows that there was the highest number of predicted 
data around ET=2 mm/day. For the FFNN-LSTM model, 
the estimated values in Scenario 16 closely followed the 
observed values ET with a narrow tail (extreme values) 
and more values concentrated around ET=1 mm/day. This 
revealed the better performance of the FFNN-LSTM model.

For the Anzali station, the evaluation of the plot related 
to the standalone LSTM model showed that the highest 
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Fig. 8   Violin plots for the best scenario in each model during the testing period
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dispersion of the LSTM estimated values in the best scenar-
ios was around ET=2.1 mm/day while the observed ET val-
ues had the highest dispersion around ET=1 mm/day. Also, 
even though the scenarios have a mean value almost the 
same as the observed value, all the scenarios have a higher 
median than the observed value. However, the combined 
FFNN-LSTM model again showed a better performance. 
The comparison of the scenarios showed that the combined 
FFNN-LSTM model was able to predict the ET values with 
acceptable accuracy. The violin plots also revealed that the 
14th and 15th scenarios were very similar and were closest 
to the distribution of observed ET values providing the best 
prediction scenario.

Discussions

Taylor diagrams (Fig. 9) are also excellent at evaluating the 
performances of respective models. The Taylor diagrams 
in Fig. 9 present the best-case scenario of both the mod-
els during testing period. For Anzali station, a comparison 
between the models clearly showed that LSTM-FFNN under 
Scenario-15 had the highest correlation compared to other 
models. It provided the best forecast, followed by this was 
LSTM-FFNN under Scenario-14 with slightly lower correla-
tion and standard deviation. Among the standalone model 
scenarios, LSTM under Scenario-15 had the best perfor-
mance with the highest correlation. For Babolsar station, 
the comparison between the combined LSTM-FFNN models 
showed that although all three scenarios 12, 15, and 16 have 
the same correlation coefficient, the 16th scenario has a bet-
ter performance than the competing 15th and 12th scenarios. 
Among the standalone LSTM model scenarios, all scenarios 
had similar standard deviations, but the correlation coef-
ficients of scenarios 5, 8, 11, 15, and 16 slightly increased.

Comparing and evaluating the accuracy of scenarios for 
both stations showed that scenario 15 was the best scenario 
for both LSTM and hybrid LSTM-FFNN models registering 
the highest accuracy. Also, the investigation of the effective-
ness of the input variables for both stations showed that the 
sunshine hours were the most important variable in increas-
ing the accuracy of ET estimation, which significantly 
increased the accuracy of the models. The importance of 
the sunshine hours for daily ET estimations has been high-
lighted in other studies as well. Petković et al. (2015) deter-
mined the most influential weather parameters on reference 
evapotranspiration estimation with the adaptive neuro-fuzzy 
inference system (ANFIS) method. For this research, the 
weather data set from 12 meteorological stations in Serbia 
between 1980 and 2010 was used. The results indicated that 
sunshine hour is the most influential single parameter for 
estimating evapotranspiration (RMSE = 0.4398 mm/day). 
In another study, Biazar et al. (2019) analyzed the sensitivity 

of crop evapotranspiration in a humid region in the north of 
Iran. The results showed that the most important evapotran-
spiration parameter at Lahijan station was sunshine hours. 
One limitation of the current study was the unavailability of 
solar radiation data, hence was not used in this study. It is 
suggested solar radiation could be used as one of the inputs 
to the models in further studies.

The Wilcoxon signed-rank test is a non-parametric sta-
tistical test that compares two paired samples from a sin-
gle population (Taheri & Hesamian, 2013). The Wilcoxon 
signed-rank test was conducted to compare the perfor-
mance of two different models: LSTM and FFNN-LSTM 
in estimating ET0 at two stations, Anzali (Table 5) and 
Babolsar (Table 6). In summary, the Wilcoxon signed-
rank test results clearly indicate that the FFNN-LSTM 
model consistently and significantly outperforms the 
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Fig. 9   Taylor diagrams for the best modelling Scenarios at both study 
sites
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LSTM model in both positive and negative cases at both 
Anzali and Babolsar stations in all scenarios. These results 
highlight the effectiveness of the hybrid FFNN-LSTM 
approach in improving the accuracy of daily ET predic-
tions in these regions. It's worth noting that the "Test sta-
tistics" values in the tables (W and Z) indicate the degree 
of significance, with values significantly deviating from 
zero implying stronger statistical significance in favor of 
the FFNN-LSTM model.

Conclusions

The ever-increasing reduction of water resources requires 
precise information for prudent water resource management 
decisions. The ET provides valuable information that can 
aid tasks such as irrigation planning, ultimately contributing 
to more efficient and effective practices in the agricultural 
sector. Therefore, this study proposes and evaluates a new 
combined LSTM-FFNN method to predict daily ET in some 
coastal areas of Iran. The modelling is performed under 16 

Table 5   Wilcoxon signed-rank test for Anzali station

Scenario +/- LSTM FFNN-LSTM

Ranks Test statistics Ranks Test statistics

N Mean Rank Sum Rank W Z P-Value N Mean Rank Sum Rank W Z P-Value

1 Positive 1177 886.21 1043066 957934 -1.65 0.10 1047 924.24 967679 1033321 1.27 0.20
Negative 823 1163.95 957934 953 1084.28 1033321

2 Positive 1173 887.50 1041035 959965 -1.57 0.12 826 915.41 756126 1244874 9.46 0.00
Negative 827 1160.78 959965 1174 1060.37 1244874

3 Positive 1175 882.57 1037025 963975 -1.41 0.16 1352 1010.85 1366663 634337 -14.18 0.00
Negative 825 1168.45 963975 648 978.92 634337

4 Positive 1174 880.46 1033663 967337 -1.28 0.20 1463 1051.37 1538150 462850 -20.82 0.00
Negative 826 1171.11 967337 537 861.92 462850

5 Positive 1170 883.71 1033938 967062 -1.29 0.20 1397 1021.96 1427683 573317 -16.54 0.00
Negative 830 1165.13 967062 603 950.77 573317

6 Positive 1170 882.74 1032803 968197 -1.25 0.21 912 917.68 836923 1164077 6.33 0.00
Negative 830 1166.50 968197 1088 1069.92 1164077

7 Positive 1174 883.90 1037699 963301 -1.44 0.15 1030 980.59 1010012 990988 -0.37 0.71
Negative 826 1166.22 963301 970 1021.64 990988

8 Positive 1171 884.61 1035882 965118 -1.37 0.17 1496 1045.52 1564103 436897 -21.82 0.00
Negative 829 1164.20 965118 504 866.86 436897

9 Positive 1169 885.59 1035249 965751 -1.35 0.18 1159 966.46 1120122 880878 -4.63 0.00
Negative 831 1162.16 965751 841 1047.42 880878

10 Positive 1174 884.18 1038029 962971 -1.45 0.15 1038 995.59 1033420 967580 -1.27 0.20
Negative 826 1165.82 962971 962 1005.80 967580

11 Positive 1174 883.26 1036949 964051 -1.41 0.16 862 993.43 856338 1144662 5.58 0.00
Negative 826 1167.13 964051 1138 1005.85 1144662

12 Positive 1168 885.91 1034747 966253 -1.33 0.18 779 957.29 745726 1255274 9.86 0.00
Negative 832 1161.36 966253 1221 1028.07 1255274

13 Positive 1175 886.27 1041367 959633 -1.58 0.11 1465 1029.21 1507797 493203 -19.64 0.00
Negative 825 1163.19 959633 535 921.87 493203

14 Positive 1180 881.93 1040675 960325 -1.56 0.12 833 935.72 779456 1221544 8.56 0.00
Negative 820 1171.13 960325 1167 1046.74 1221544

15 Positive 1181 884.02 1044033 956967 -1.69 0.09 755 927.62 700350 1300650 11.62 0.00
Negative 819 1168.46 956967 1245 1044.70 1300650

16 Positive 1182 883.05 1043761 957239 -1.67 0.09 1653 1064.40 1759450 241550 -29.38 0.00
Negative 818 1170.22 957239 347 696.11 241550
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scenarios and the hybrid LSTM-FFNN is benchmarked 
with the standalone LSTM method. The correlation analy-
sis of meteorological parameters showed that air tempera-
ture had a high correlation with ET values. The outcomes 
reveal that the models at Babolsar station the LSTM-FFNN 
models (RMSE=1.57,1 mm/day) had the best performance 
in the 15th and 16th scenarios while for Bandar Anzali sta-
tion, the 15th scenario had better performance for both the 
hybrid LSTM-FFNN model (RMSE=1.66, 0.96 mm/day) 
and the standalone LSTM models. The evaluation of the 
two models showed that the hybrid LSTM-FFNN model 
can significantly improve the prediction accuracy of ET 
in humid conditions. The use of this LSTM-FFNN hybrid 

model is suggested to be explored in further studies at var-
ied sites to comprehensively evaluate model performance. 
There are some limitations to the study. The study focuses 
on specific coastal areas in Iran, and the model's applicabil-
ity to other regions with different climatic conditions has 
not been explored. Data limitations may affect the gener-
alizability of the findings since the accuracy of the models 
greatly depends on the quality and availability of meteoro-
logical data. The optimized hybrid models have significant 
potential to assist farmers and irrigation planners in making 
more informed and precise decisions as accurate prediction 
of the reference evapotranspiration parameter will lead to 
the design of efficient and high-efficiency irrigation systems.

Table 6   Wilcoxon signed-rank test for Babolsar station

Scenario +/- LSTM FFNN-LSTM

Ranks Test statistics Ranks Test statistics

N Mean Rank Sum Rank W Z P-Value N Mean Rank Sum Rank W Z P-Value

1 Positive 1238 903.55 1118601 882399 -4.57 0.00 1237 995.74 1231731 769269 -8.95 0.00
Negative 762 1158.00 882399 763 1008.22 769269

2 Positive 1235 910.63 1124630 876370 -4.81 0.00 1052 948.91 998253 1002747 0.09 0.93
Negative 765 1145.58 876370 948 1057.75 1002747

3 Positive 1236 909.15 1123707 877293 -4.77 0.00 1282 1008.01 1292268 708732 -11.30 0.00
Negative 764 1148.29 877293 718 987.09 708732

4 Positive 1208 914.42 1104625 896375 -4.03 0.00 623 794.47 494956 1506044 19.57 0.00
Negative 792 1131.79 896375 1377 1093.71 1506044

5 Positive 1212 911.74 1105024 895976 -4.05 0.00 1110 964.61 1070720 930280 -2.72 0.01
Negative 788 1137.03 895976 890 1045.26 930280

6 Positive 1212 910.57 1103609 897391 -3.99 0.00 1388 1012.13 1404839 596161 -15.65 0.00
Negative 788 1138.82 897391 612 974.12 596161

7 Positive 1212 910.63 1103689 897311 -3.99 0.00 787 857.63 674954 1326046 12.60 0.00
Negative 788 1138.72 897311 1213 1093.20 1326046

8 Positive 1210 913.26 1105050 895950 -4.05 0.00 1505 1051.94 1583167 417833 -22.56 0.00
Negative 790 1134.11 895950 495 844.11 417833

9 Positive 1214 908.21 1102571 898429 -3.95 0.00 1299 994.07 1291294 709706 -11.26 0.00
Negative 786 1143.04 898429 701 1012.42 709706

10 Positive 1215 909.27 1104768 896232 -4.04 0.00 604 819.39 494909 1506091 19.57 0.00
Negative 785 1141.70 896232 1396 1078.86 1506091

11 Positive 1211 912.16 1104627 896373 -4.03 0.00 835 865.19 722434 1278566 10.77 0.00
Negative 789 1136.09 896373 1165 1097.48 1278566

12 Positive 1210 911.81 1103288 897712 -3.98 0.00 1147 963.17 1104761 896239 -4.04 0.00
Negative 790 1136.34 897712 853 1050.69 896239

13 Positive 1234 908.08 1120576 880424 -4.65 0.00 1085 950.38 1031163 969837 -1.19 0.24
Negative 766 1149.38 880424 915 1059.93 969837

14 Positive 1218 905.90 1103387 897613 -3.98 0.00 1110 973.23 1080281 920719 -3.09 0.00
Negative 782 1147.84 897613 890 1034.52 920719

15 Positive 1219 903.61 1101495 899505 -3.91 0.00 1179 988.84 1165837 835163 -6.40 0.00
Negative 781 1151.73 899505 821 1017.25 835163

16 Positive 1215 904.64 1099132 901868 -3.82 0.00 843 919.33 774993 1226007 8.73 0.00
Negative 785 1148.88 901868 1157 1059.64 1226007
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