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Abstract

This study explores soil water characteristic curve (SWCC) prediction through informatics and machine learning. Utilizing
these techniques, SWCC prediction was significantly simplified, enabled by the Orange.3 data mining software's integra-
tion of diverse soil properties. This integration eliminated the need for extensive programming, establishing a link between
scientific insights and engineering applications. Limitations emerged in models relying solely on matric suction for SWCC
prediction, evident through a Mean Absolute Error exceeding 0.08 and an R-squared value below 40% in the test dataset.
To enhance accuracy, a comprehensive approach encompassing various soil properties, such as bulk density, organic carbon
content, and micro-porosity characteristics, was employed. The Gradient Boosting algorithm excelled, yielding near-perfect
SWCC estimations with RMSE and P; values of 0.016 and 0.03, respectively. Likewise, AB, Random Forest, and Tree models
displayed highly accurate predictions with RMSE and P; values below 0.03 and 0.04, respectively. However, Neural Network,
SVM, kNN, and Linear Regression models showed no improvements, even with added soil properties. Feature importance
analysis highlighted matric suction's critical role in select models and soil micro-porosity characteristics' contribution to
lowering RMSE by up to 0.04. These findings are pivotal in understanding errors in SWCC prediction, especially in cases
of matric suctions surpassing the SWCC inflection point, with these errors, though present, minimally impacting model
efficacy due to diminishing variations at high matric suctions.

Keywords Data mining - Machine Learning - Prediction Feature importance - Predictive models - Soil water characteristic
curve

Introduction

By synergizing geospatial data, remote sensing techniques,
and diverse Earth science datasets, informatics plays a
Communicated by H. Babaie. pivotal role in fostering a holistic comprehension of natu-
ral systems and processes (Sermet and Demir 2019). In
the realm of engineering applications, this encompass-
ing knowledge significantly enhances the precision of
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ics facilitates the integration of soil behavior, geological
insights, and hydrological information into prognostic
models, thereby refining the design and evaluation of criti-
cal structures such as foundations, dams, and slopes (Pham
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The Soil Water Characteristic Curve (SWCC) offers valu-
able insights, both directly and indirectly, into the behavior
of water within unsaturated soils (Zhai and Rahardjo 2012).
The accurate determination of the SWCC for a given soil
necessitates a combination of precise measurement tech-
niques and predictive methodologies. Nonetheless, the field,
laboratory, and computer vision-based measurements of
SWCC are resource-intensive, laborious, time-consuming,
and occasionally unfeasible due to challenges concerning
scaling, spatial variability, and site inaccessibility (Achieng
2019). As a result, the utilization of modeling procedures
has become a widely adopted approach for predicting SWCC
(Dobarco et al. 2019).

The application of machine learning (ML) algorithms in
soil moisture research has witnessed a substantial upsurge.
These algorithms are favored for their non-parametric
essence and adeptness in capturing intricate and non-linear
associations (Padarian et al. 2019). ML techniques employed
to estimate SWCC predominantly fall within the realm of
supervised learning, which entails the provision of a labeled
training dataset containing known output values. The model
is then trained through algorithms applied to the input data-
set, enabling the prediction of the desired output. The train-
ing process continues until the model attains the intended
accuracy on the training dataset. Supervised learning finds
widespread application in tasks encompassing classification
and regression (Rani et al. 2022).

In various studies, researchers have used different algo-
rithms to understand the complex relationship between soil
properties and water content. These methods range from tra-
ditional models to advanced ones like artificial neural net-
works (ANN), support vector machines (SVM), random for-
ests (RF), and deep neural networks (DNN). Neural network
models consist of input, hidden, and output layers, with the
number of hidden layers determined by problem complexity.
For general geotechnical engineering, it's often found that a
single hidden layer suffices (Wang et al. 2022). Incorporat-
ing data preprocessing with Bayesian regularization neural
networks, Pham et al. (2019) showcased the capability to
enhance the precision of predicting SWCC and illustrated
that three-hidden-layer BRNN-PTF showed a consider-
able outperformance to predict the soil water content. The
effectiveness of these algorithms was assessed through met-
rics including the Root Mean Squared Error (RMSE) and
R-squared (R?) values, thereby furnishing insights into the
prognostic capacities of the models. A comprehensive syn-
thesis of these studies is presented in Table 1, outlining the
spectrum of employed ML algorithms, their corresponding
performance metrics, noteworthy observations, and the spe-
cific features assimilated within the models.

Several PTFs for predicting SWCC with acceptable
accuracy were proposed by researchers (Pachepsky et al.
2006; Leij et al. 2004; Bgrgesen et al. 2008). However,
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rare attention has been given to assessing the significance
of the features encompassed within the provided dataset.
While Pham et al. (2023) undertook the endeavor of deter-
mining the importance of database features to construct
their ML-PTFs and assessed its effectiveness in SWCC
estimation, they did not specifically focus on the role of
soil porosity in water retention within soil (Tuller et al.
2004).

The works by Fredlund and Rahardjo (1993) as well as
Hopmans and Dane (1986) underscore the significance of
matric suction in governing water dynamics and mechan-
ical responses within soils of varying compositions,
encompassing sandy and silty soils. While the assertion by
Achieng (2019) maintains that a deep learning approach
enables the exclusive prediction of SWCC using soil mat-
ric suction as the sole input feature, other investigations
posit that precise SWCC predictions frequently derive
advantages from a broader spectrum of input parameters,
obtained through laboratory analyses and image process-
ing methods. The incorporation of supplementary param-
eters like soil texture, porosity, particle size distribution,
and mineral composition augments the predictive efficacy
of ML models.

Nguyen et al. (2014) and Vereecken et al. (2010)
reached the conclusion that incorporating soil structure
information into Pedotransfer Functions (PTFs) holds the
potential to enhance their performance. They further rec-
ommended in-depth exploration to determine the robust-
ness of these improvements across various data mining
techniques and diverse categories of PTFs. Employing
Imagel's built-in capability for soil porosity analysis,
Bakhshi et al. (2023) demonstrated that the water reten-
tion capacity and SWCC pattern are contingent on soil
pore geometrics. This feature yields valuable output
parameters, encompassing porosity surface area (Total
Area of Porous Regions, cmz), volume (Total Number of
Porous Voxels X Voxel Volume, cm?), elongation (Major
Axis Length/Minor Axis Length, dimensionless), flatness
(Average Length of Major Plane/Average Length of Minor
Plane), sphericity (47 X area/perimeter?, dimensionless),
and compactness (volume of the porous region/surface
area of the porous region, dimensionless).

Building upon these findings, our study leveraged intri-
cate soil structural attributes derived from image analysis
as inputs for the ML technique employed. To this end, in
conjunction with other frequently employed algorithms, we
assessed the application of gradient boosting (GB) and Ada
Boost (AdaB) in estimating SWCC using ML within the
Orange.3 data mining software. The predictive exercise was
undertaken under two scenarios: 1) using matric suction as
the sole predefined input, and 2) integrating an array of input
parameters garnered from both laboratory measurements and
image analysis techniques.
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, Material and methods
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ANN and kNN approaches in modelling the relationship Organic carbon percentage
between soil and water as a complex system even when

a limited dataset is available

0.053-0.82

ANN
SVM

0.052-0.88

0.049-0.89

kNN

The RF algorithm showed the most robust machine

0.048-0.52

Gunarathna et al. 2019 ANN

learning algorithm for developing PTFs for tropical Sri

Lankan soils

0.046-0.57

kNN
RF

0.043-0.60

It was found that the RF method had a better performance Broad range of soil physical and hydraulic properties

~0.04—~0.98

RF

Rastgou et al. 2020

(P <0.05) than the NLR method in the training step of

the prediction of the SWRC

sieved to achieve a particle size of 2 mm, ensuring
uniformity in the analysis. Established methods were
employed to evaluate pivotal soil properties, vital for pre-
dicting SWCC. These properties included soil organic car-
bon (SOC) (Walkley and Black 1934), serving as an indi-
cator of organic matter content; particle size distribution
(PSD) (Gee and Or 2002), revealing soil texture composi-
tion; cation exchange capacity (CEC) (Rhoades 1983), a
measure of ions retention capacity; electrical conductivity
(EC) (Rhoades 1996), reflecting soil salinity; pH (Thomas
1996), indicating soil acidity; and parameters character-
izing soil porosity (a, n, 6, and 0,) (Dexter et al. 2008).
To preserve sample integrity, bulk density was determined
through the core method, utilizing Kopecky rings (5 cm
in height and 5 cm in diameter) (Grossman and Reinsch
2002).

Treatment preparation and experimental setup

The soil samples underwent a comprehensive range of
treatments, each meticulously designed to investigate spe-
cific soil responses. This included the application of vari-
ous levels of CaCOj, ranging from 0 to 5%, to assess the
influence of calcium carbonate on soil properties (Huang
et al. 2016). Similarly, Fe,05.7H,0, varying from 0O to
2%, was introduced to explore the effects of iron oxide (Li
et al. 2021). The incorporation of vermicompost, at vary-
ing levels (0% to 2%), allowed insights into how organic
carbon and nutrient content impacted soil characteristics
(Demir 2020). Furthermore, combined treatments involv-
ing CaCO3, Fe,05.7H,0, and vermicompost in specific
ratios (1.5%, 0.5%, and 1%, respectively), as well as higher
levels, were investigated. Additionally, treatments were
prepared based on Sarkar et al. (2014), where organic mat-
ter, iron oxide, and CaCO; were removed at specific levels.
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Cation treatment and structural degradation

To comprehend the influence of cations on soil structure,
solutions containing CaCl, and NaCl at concentrations of
0, 5, 10, and 20 meq L! (Mi et al. 2018) were employed
for irrigation during the incubation period. This facilitated
an examination of how varied cation levels affected soil
behavior. The study also encompassed a comprehensive
analysis of degraded treatments, achieved through a tai-
lored consolidation process designed to replicate condi-
tions resulting from natural degradation.

Incubation and testing

Following treatment application, the soil samples
were placed in pots and incubated at room temperature
(24 ~26 °C). To emulate real-world scenarios, the sam-
ples underwent numerous cycles of shrink-swell and wet-
ting—drying, a process repeated 20 times. Rigorous moni-
toring was conducted to capture any variations. Rewetting
was done until moisture content equal to field capacity
was achieved by carefully adding water to the sponge
cover placed on top of the columns to avoid disturbing
soil conditions.

Sample count and analysis

The study encompassed a total of 128 samples, involv-
ing diverse combinations of amendment treatments and
degraded treatments. A subset of samples was selected for
direct measurements of the SWCC, while others underwent
preparation for subsequent image analysis through impreg-
nation with a mixture of polyester resin, catalyst, hardener,
and fluorescent dye. For a comprehensive breakdown of spe-
cific treatments, consult Table 2.

Determination of the SWCC

The SWCC was constructed by combining the results
obtained for water content at both low matric suctions (0,
10, 20, 40, and 70 cm) using a sandbox apparatus (Cresswell
et al. 2008) and higher matric suctions (100, 300, 500, 1000,
3000, 5000, 9000, and 15,000 cm) using pressure plate/pres-
sure membrane apparatus (Dane et al. 2002). Despite the
acknowledged methodological limitations, this approach
stands as the most prevalent technique for SWCC measure-
ment (Schindler et al. 2012). Undisturbed samples were used
to determine the lower matric suctions ranging from 0 to
1000 cm, while disturbed samples were utilized for matric
suctions ranging from 3000 to 15,000 cm.

Table 2 Initial soil samples properties

pH

EC (uS.cm™) OC (%)

CEC

Structural and hydraulic properties

Particle size distribution

Soil Texture

(cmol™*.
kg™

Aem™ n()  B,@eghH 6 (gg)  hm)

Bulk Density

Sand (%)
(kg.m™)

Silt (%)

Clay (%)

8.12
7.49

0.12
0.42

782
426

4.8

70
300

0.058

0.247

2.07

1

0.023

1340
1290

12.1 53 82.6
48.1

Loamy Sand
Silty Clay

24.1

0.175

0.382

0.003

0.1

41.8

@ Springer



3844

Earth Science Informatics (2023) 16:3839-3860

Sample preparation, imaging, and image
preprocessing

A total of 128 soil samples, having undergone pre-treatment,
were subjected to a methodical impregnation procedure
involving a mixture of polyester resin and styrene in a 5:1
ratio (Eben et al. 2020), accompanied by suitable amounts of
hardener and catalyst. To enhance the visibility of soil pores
during the forthcoming digital imaging phase, a brightener,
2 g.L7! of fluorescent dye, was deliberately introduced into
the mixture (Ringrose-Voase 1996). This strategic inclusion
served to augment the luminance of pores under UV illumi-
nation, facilitating their subsequent visual analysis.

The impregnation process unfolded within plastic con-
tainers that were housed in a meticulously regulated environ-
ment within a vacuum desiccator. The desiccator underwent
an evacuation process set at 8 psi for a duration of 2 h. This
step assumed paramount importance, ensuring comprehen-
sive resin infiltration throughout the samples and the effec-
tive displacement of air from the pores. Consequent to this
evacuation, the samples were refilled with the impregnation
mixture and subjected to an additional two-hour vacuum
cycle, thereby optimizing resin penetration. Following this
sequence, the samples were diligently sealed to counteract
the rapid volatilization of styrene. Approximately seven days
subsequent to sealing, the samples were unsealed, allow-
ing for the gradual and natural volatilization of styrene over
time, ultimately leading to the desired hardening of the poly-
ester resin. This polymerization process culminated after an
average duration of approximately 75 days (Wei et al. 2019).

Upon the completion of the resin hardening phase, the
samples underwent meticulous cutting and polishing proce-
dures. Each individual sample was meticulously subjected
to two horizontal and two vertical cuts, which collectively
resulted in the exposure of four proximate surfaces, thus
providing an extensive range of viewing angles for subse-
quent imaging. Notably, the imaging process was executed
within an environment carefully configured as a controlled
dark room, a setting that was equipped with specialized UV
lamps. The strategic utilization of these lamps aimed to max-
imize the fluorescence emission of the dye embedded within
the pores, thereby significantly enhancing their visibility.
The images were captured using a digital camera boasting a
resolution of 12 MP and an aperture of {/1.8.

Following the successful acquisition of the color images,
the next crucial step entailed their systematic preprocessing
within the Image] software. This versatile software platform
facilitated an array of operations essential for effective anal-
ysis. Specifically, the color images were subject to grayscale
conversion, a step that transformed the images into a gray-
scale format, subsequently enhancing their suitability for
further analysis. To accentuate the visual distinction between
pores and solid regions, thresholding was systematically

@ Springer

applied to the grayscale images, resulting in their conver-
sion into binary images. This binary representation enabled
a sharp demarcation between pores, represented as white
pixels, and solid areas, depicted as black pixels.

The stacking of these binary images yielded an ensem-
ble of four 3D volumes for each individual sample. These
volumes served as the foundational data for the subsequent
analysis, providing a multi-dimensional perspective of the
spatial distribution of pores within the samples. The ensu-
ing analysis drew extensively from the specialized 2D and
3D plugins embedded within the Image] software. These
plugins facilitated the extraction of key parameters char-
acterizing the identified pores. This encompassed pivotal
parameters including the determination of 3D porosity, pore
sphericity, aspect ratio, and the orientation of pore objects.
The orientation was expressed through two angles: @, repre-
senting the angular deviation between the horizontal plane
and the long axis of the pore channel (ranging from 0° to
90°), and 0, representing the azimuthal orientation of the
long axis on the horizontal plane (ranging from 0° to 180°).
Furthermore, critical metrics such as pore space surface area
and sphericity were directly ascertained through the utiliza-
tion of Imagel. Integral to the analysis was the calculation of
porosity, which manifested as the fraction of image volume
characterized by pore space.

ML procedure
Exploring ML models

Acknowledging the potential of ML models to unveil com-
plex data patterns, these models were employed to unravel
intricate relationships within the acquired soil dataset. How-
ever, it was recognized that the effectiveness of these models
depended on the quality, quantity, and representativeness
of the training dataset. Table 3 provides a comprehensive
overview of the ML algorithms employed in this study for
the prediction of SWCC. Each algorithm is described along
with its key hyperparameters, strengths, and limitations.

Orange.3

Ahangar-Asr et al. (2012) emphasized that the simplicity
of a procedure and its capability to apply multiple models
simultaneously are key factors in determining the priority of
a method for estimating SWCC. In line with this, we utilized
Orange.3 software, which offers a user-friendly and efficient
ML process. This approach facilitated a rapid comparison
of diverse fitted models, encompassing Gradient Boosting,
Ada Boost, Decision Tree, Random Forest, Neural Network,
Support Vector Machine, k-Nearest Neighbors, and Linear
Regression. Furthermore, the Feature Importance widget
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was used to determine the relative importance of input fea-
tures in predicting SWCC with a minimal dataset.

Statistical analysis

The statistical analysis included the Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Relative Root
Mean Squared Error (RRMSE), the Pearson correlation
coefficient (R), Performance Index (P;, Jalal et al. 2021), and
the Willmott’s index of agreement (d1, Zhang et al. 2020;
Achieng 2019) collectively quantify the predictive perfor-
mance and reliability of the models. These metrics provide
a comprehensive view of how well the algorithms capture
the complex relationships inherent in SWCC data.

n 2
Zi=1(0i - ti) (1)

n

RMSE =

MAE = Zicifoi 4l )
n
n ¢t 2
RRMSE = é Zi=1(0—it‘) 3)
lo| n
R Z:’Zl (0, —0)(t; — 1) "
VL0 -0, (4~ 1)
RRMSE
Pi= 1+R ©)
Y|t —oil

Where o, and t; represent the i-th actual and predicted
output values, respectively. 0 and 7 denote the average values
of the actual and predicted output values, respectively. The
parameter n signifies the number of samples under consid-
eration, and it is worth noting that in our analysis, no param-
eters were excluded during the regression process.

Feature importance analysis

As suggested by Pham et al. (2023), the analysis of fea-
ture importance employed the Shapley additive explana-
tions (SHAP) technique, which allowed for a quantitative
assessment of the significance of the selected features. This
methodology revolves around the assessment of model vari-
ance using a variance-based measurement approach (Molnar
2020). Notably, the geotechnical field has widely adopted the

@ Springer

Shapley value approach (Wadoux and Molnar 2022; Cheng
et al. 2022) to unravel the intricacies of feature importance.
The Shapley value (¢) embodies the average marginal con-
tributions of features within various coalitions, as encapsu-
lated by the equation:

NECEINERS)
;= W(Val(s U {x}) —val(S)) @)
SCX{xj) '
> e -Ed @®)

Where S represents a subset of features, X={X1,X2,...
,Xp} designates the observed data point, X; denotes the value
of the feature under consideration, p signifies the total count
of features, val(S) reflects the model prediction marginalized
over the remaining input features, _?(X) stands for the model
prediction for the given X, and EX(_?) represents the antici-
pated model predictions for a given dataset. This compre-
hensive approach elucidates the intricate dynamics of feature
importance and model contributions. All computations and
feature importance analyses in this study were carried out
automatically using Orange.3 software.

Results and discussion
The properties of initial soil samples

Table 2 represented the routine properties parameters
obtained from the SWCCs of soil samples prior to any
treatment. The selection of these two samples was done
deliberately to ensure a wide range of variations in their
physical, chemical, and hydraulic properties, allowing for
a comprehensive evaluation. The loamy sand sample has a
high sand content of 82.6% with approximately 12% clay,
while the silty clay sample has a clay content exceeding 40%
and a lower sand content of around 10%. Both samples are
non-saline and slightly alkaline, but they differ significantly
in terms of organic carbon (OC) content (0.12% vs. 0.42%)
and cation exchange capacity (CEC) values (4.8 cmol™ kg™!
vs. 24.1 cmol™ kg™!). The matric suction at the inflection
point (h;) of the SWCC varies from 300 cm in the loamy
sand sample to 70 cm in the silty clay sample. The shape
factor (n) of the SWCC in Van Genuchten’s (1980) model
ranges from 2.07 in the loamy sand sample to 1.0 in the silty
clay sample. The bulk density of the studied samples did not
show significant differences. However, there were significant
differences in the alpha coefficient, which corresponds to the
inverse value of air entry into the soil (a, cm_l), as well as
in the saturation water content (9, g. g~ 1) and residual water
content (0, g.g7') between the two samples.
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Changes in properties of treated samples
and the results obtained from image analyses

Table 4 presents the changes in the physical and chemi-
cal properties of the treated samples after the incubation
period, compared to the blank samples. Additionally, Table 2
provides the results from image analyses of the soil pores
developed as a result of the treatments. The analysis of the
trends in Table 4 reveals noteworthy patterns in the impact
of treatments, treatment levels, and soil textures on various
soil properties. Generally, there’s a tendency for increas-
ing bulk density with higher treatment levels, particularly
prominent in “CaCO;” and “OM” treatments. “Cations”
treatments consistently lead to elevated CEC with increasing
levels, while “Removed Fe,0;” and “Removed OM” exhibit
reduced CEC after removal. “CaCO;” treatments show
increased electrical conductivity (EC) with higher levels,
and “OM” treatments correlate with higher organic carbon
(OC) content. Values of pH decreases with higher levels
in “Cations” treatments, and “Removed CaCO;” results in
decreased pH after removal. Porosity-related attributes are
influenced by treatments and levels, with “OM” treatments
consistently yielding higher porosity surface area and poros-
ity volume. Removal and degradation treatments lead to var-
ious property changes, such as decreased OC content, CEC,
and porosity-related attributes, highlighting the complexity
of soil responses to alterations. Overall, these trends provide
valuable insights into the intricate relationships between
treatments, soil properties, and textures.

Similar to Table 4 and Table 1, a dataset of individual
treatments was prepared, which was automatically divided
into model training and test datasets. This practice of prepar-
ing a unified database, as advocated by Wang et al. (2022)
and Zhang et al. (2020), is essential in ML procedures to
ensure consistency and facilitate the training, testing, evalu-
ation, and comparison of different models, thereby yielding
robust and reliable results. Then, the mentioned features
from Table 2 and Table 1 applied in eight algorithms to
predict the soil water content at different matric suction lev-
els. Soil matric suction is used as a predefined input fea-
ture, while the other features are applied separately in all
evaluating models. The most important features are deter-
mined based on their effects on the model output, as shown
in Fig. 1.

Impacts and relative importance of the input
parameters on the models

Researchers have utilized various soil properties, including
the percentages of clay, silt, and sand, as well as void ratio
and water content at saturation, along with soil matric suc-
tion related to gravimetric water content, for the estimation
of SWCC (Pham et al. 2023; Rastgou et al. 2020). Identifying

the most significant features in SWCC estimation can greatly
reduce time and energy consumption while increasing accu-
racy. As input features of models Fig. 1 (1.a to 1.h) illustrates
the effects of different input parameters on model outputs and
their relative importance in terms of the model's accuracies
(RMSE?s) in eight ML algorithms. Similar to studies conducted
in previous years (Pham et al. 2023; Gunarathna et al. 2019;
Nguyen et al. 2017), our observations indicate that within
these algorithms, matric suction emerged as the most pivotal
parameter in the GB (Fig. 1a), AB (Fig. 1b), RF (Fig. 1d),
and SVM (Fig. 1f) models. On the other hand, organic carbon
percentage, soil texture, porosity surface area, and electrical
conductivity emerged as the most significant parameters in the
DT (Fig. 1c), ANN (Fig. le), kNN (Fig. 1g), and LR (Fig. 1h)
models, respectively. Matric suction was identified as the most
important parameter among the first three influential param-
eters affecting the model outputs in all models, except for the
ANN model (Fig. 1e). Lower matric suction values resulted in
higher prediction accuracy in the models, while higher matric
suction values led to a decrease in accuracy. The results indi-
cated that, except for the ANN model, three to five of the input
characteristics were identified as the most influential param-
eters for prediction accuracy in different models.

Following matric suction, soil pore characteristics have
emerged as the subsequent significant parameters in facilitat-
ing accurate predictions, except in the context of the ANN
model. Pham et al. (2023) demonstrated that soil texture-
related properties hold significant importance following soil
matric suction. However, in our study, the prediction of SWCC
reveals the involvement of one or two pore characteristics.
Notably, attributes like structural flatness and porosity surface
area exhibit notably stronger influence compared to other pore
characteristics. Soil bulk density, as a other structural feature,
has garnered attention from various researchers in recent years
(Amanabadi et al. 2019; Gunarathna et al. 2019). However,
this soil physical property serves as an average indicator of
soil compaction and fails to provide insights into the detailed
attributes of porosity. Some studies have endeavored to indi-
rectly assess soil structure by incorporating soil moisture con-
tent across different matric suctions into their models (Senyu-
rek et al. 2020; Cai et al. 2019). In one of the rare instances
exploring soil porosity, Ahangar-Asr et al. (2012) integrated
soil void ratio as an input parameter within a model geared
towards SWCC and soil porosity characteristic prediction.
Nevertheless, their investigation did not specifically delve into
the impact of these properties on the outcomes of the model.

Comparison of the models’ predicted results
The output of the models when all parameters used

When comparing the SWCCs generated by the models using
all the studied parameters, it was found that the GB, AB,

@ Springer
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Table 4 (continued)

Compactness

)

Porosity

Pore sphe-

ricity (-)

elongation

)
3.2
3.8

Porosity
35

Structural
flatness (-)

Porosity Vol-

face area (cm?) ume (cm?®)

Porosity sur-

pH

EC (uS.cm™)  OC (%)

(cmol™.
kg™

Bulk Density CEC

(kg.m™%)

Level

Treatments

0.24
0.17

0.2

0.26
0.33

0.3

3019

9.2x1072

0.922

7.86
7.90

7.8

0.51
0.53
0.52
0.47
0.49
0.48
0.46

712
734
746
634
706
691
669

23.8

1370
1190
1160
1210
1210
1280
1550

1
2
3

Combined

2552

1.0x 10"

1.100
1.050
1.200
0.976
0.942

24.3

3118

1.0x 107"

254
2

0.11

0.22
0.24
0.27
0.31

7.73 1.5x107" 4512 5.7
7.84

7.93
7.72

32

Removed CaCo,

0.17
0.14
0.26

4311 4.2

1.0x 107"

21.7

Removed Fe, 05
Removed OM

5.0
2.7

6236

9.8x1072

239
2

3721

8.7x1072

0.903

34

Degraded Treatment

RF, and DT models produced the most accurate results with
lower RMSE (<0.028) and MAE (< 0.018), and higher d1
(>0.93) and R? (>0.968) in test dataset (TstD), as shown
in Table 5. This means that the mean difference between
the predicted and measured water contents was less than
0.02 g g~! for all matric suctions used to plot the SWCCs.
Achieng (2019) conducted research using ML techniques,
including ANN, DNN, and SVM models, to estimate SWCC.
In most cases of drying SWCC, the models achieved an
RMSE of less than 0.01, with R? and d1 values exceeding
0.99 and 0.94, respectively. The study demonstrated high
accuracy in the estimation of SWCC in the studied Loamy
Sand soil sample. Lamorski et al. (2017) employed various
SVM models trained with physical soil properties, includ-
ing SWCC drying branch, BD, Sand%, Silt%, clay%, OC,
and soil specific surface, as input variables. The resulting
models successfully estimated SWCC wetting branches
with an R? greater than 0.98 and an RMSE less than 0.02.
Srivastava et al. (2013) utilized the SVM algorithm, which
yielded an RMSE of 0.013 and an R? of 0.69. In contrast, the
performance of the random forest algorithm varied across
different studies. Long et al. (2019) and Im et al. (2016)
reported RMSE values greater than 0.04 m® m™, while Bai
et al. (2019) achieved accurate results with an RMSE less
than 0.02 m® m™3. However, in this study ANN, SVM, kNN,
and LR algorithms, showed a significant decrease in model
accuracy (as indicated by higher values of RMSE, MAE,
and lower values of d1 and R?) compared to the acceptable
limits of accuracy. Consequently, these models were unable
to generate SWCCs that met the required level of accuracy.
Similar to the findings of Hastie et al. (2009), which dem-
onstrated that regression-based methods may yield non-
accurate results in pedo-transfer function methods, the LR
algorithm in this study produced an R? of 0.66 and an RMSE
of 0.69 when applied in the ML method, categorizing it as
a non-accurate model. Nguyen et al. 2017 highlighted the
benefits of the KNN model, including its flexibility, simplic-
ity, accuracy in limited data availability conditions, and the
ability to incorporate new observations into training datasets
without the need to redevelop the PTF models. However,
Guevara and Vargas (2019) examined the performance of
the kNN algorithm for predicting soil moisture content based
on DEM data and found that the prediction RMSE exceeded
0.05 m> m™>. In another study, Liu et al. (2017) observed an
RMSE greater than 0.07 m®> m~ in the prediction of mois-
ture content using the kNN algorithm with inputs derived
from satellite-derived data.

Table 6 presents the Pearson correlation (r) between the
measured water content (Qyye,cureq) and the evaluating mod-
els, along with the identified important features. Previous
studies have reported correlation coefficients greater than
0.9 between estimated and measured SWCC or soil mois-
ture content using the random forest algorithm (Im et al.

@ Springer



3850

Earth Science Informatics (2023) 16:3839-3860

- Structural Flatness
BB oc

- BD

Silt percentage

EC

pH

Texture

Porosity surface area

Porosity Volume

0.02 0.04  0.06

Increase in RMSE

0.08

OC
| )
B Porosity surface area

b Clay percentage

Porosity Volume
Structural Flatness
Sand percentage
Porosity elongation

Porosity compactness

Matric suction M‘ LG L o A
oc

o
v
Feature Value 23

Structural Flatness ’ e g
Low
Silt percentage 4 }

Gradient
kG ¢ ’ Boosting
o it (a)
BD ..’. —

Texture "
Porosity Volume *
Porosity surface area +
0.1 0 0.1
Impact on Model Output
High
oc *— '* 3 F
=
Matric suction *—-* 13
£
Clay percentage + k]
Structural Flatness + Low
BD +“ L Tree

Porosity elongation —*
+

Porosity surface area +

(©)

Porosity Volume

Porosity compactness +

+

Sand percentage

0.1 02 03 04 0506 0708 09 1
Increase in RMSE

Sand percentage

Porosity surface area

0.1 0.2
Increase in RMSE

oC

FStructural Flatness
Silt percentage
Texture
Clay percentage
Sand percentage

EC

0.02  0.03 0.04
Increase in RMSE

0.01 0.05

-0.2

-0.1 0 0.1 0.2
Impact On Model Output
High

Texture -’ ‘ P .
pH @ o ’;
CEC 05l :
Porosity el " d: . Low
Sand percentage Neural

.-
Pore sphericity . c.‘“..
ocC “ (e)

Sand percentage

- i
g
e

-0.2 0 0.1 0.4

Silt percentage

Porosity surface area

0.4
Impact On Model Output

Matric suction ﬂ *" l;igh
Porosity surface area .M..- " - ,;
Porosity Volume ‘.”, > z
Clay percentage - Low
Structural Flatness KNN
Texture

oc (2

Silt percentage
Sand percentage

EC

o el e e e b e

-0.2
Impact on Model Output

-0.1 0.1 02

High
Matriesuction  Gfpammeenttp- | ¢
=
ocC ~
B B0 . 2 £
l Porosity surface area Silt percentage -‘ 2
t oc Texture -‘ Low
I Structural Flatness CEC " Ada Boost
I Silt percentage BD +. . (b)
] Porosity Volume pH -‘
' CEC Structural Flatness ’-
} pH Porosity Volume '-
| Texture Porosity surface area ’-
' 0.02 0.04 0.06 0.08 -0.2 -0.1 0 0.1 0.2
Increase in RMSE Impact on Model Output
_— High
Matricsuction (e & o= oo |
B oc oc t4 %
2
B Structural Flatness Structural Flatness 4 " £
B o Silt percentage " Low
' Porosity surface area Texture . ’ Random
Forest
| Ssilt percentage Sand percentage ” (d)
| Texture pH "
I Sand percentage EC ”
| pH Porosity surface area ' '
| EC BD .+.. :
0.02 0.04 0.06 0.08 <04 0 04
Increase in RMSE Impact On Model Output
High
Matricsuction  wm = o ) .
2
Porosity surface area z
(02 g :
- Porosity surface area BD *- - E
B Texture Structural Flatness & Low
Structural Flatnes: Porosity Volume
B Structur ness ” g
I Porosity Volume Texture “.
B oc Clay percentage * (f)
B CEC Silt percentage “
B Ec pH ¥
| CEC f-
0 0.01 0.02 -0.1 0 0.1
Increase in RMSE Impact On Model Output
. High
EC | | i
Matric suction ] * ';
1 -1
- Porosity elongation Porosity elongation * i
B s Pore sphericity m Low
B Porosity surface area BD ‘ ] Linear
Regression
l Pore sphericity Texture . (h)
I Porosity Volume Porosity surface area ' -
| Sand percentage Silt percentage *
} Sand percentage Sand percentage ”
[ Silt percentage Clay percentage P
0 001 002 003 004 005 02 0 o1

Increasein RMSE

Impact on Model Output

Fig. 1 Input parameters and their relative importance in accurate prediction of GB, AB, RF, SVM, DT, ANN, kNN, and LR models

2016; Bai et al. 2019; Long et al. 2019; Zappa et al. 2019).
However, it is important to note that the ability of the
same algorithm to estimate soil moisture content may vary

@ Springer

depending on the input features used in the modeling pro-
cedure. For example, the aforementioned studies utilized
different sets of input features, including satellite-derived
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Table 5 The statistics obtained for the models used to generate SWCC using all parameters

Model RMSE MAE dl R? RRMSE R P;
TrD/TstD" TrD TstD TrD TstD TtD  TstD TrD TstD TrD  Tstb TrD TstD TtD  TstD
Gradient Boosting  0.014  0.016 0.009 0.011 097 094 0994 0982 0.04 005 0997 0991 002 0.03
AB 0.019 0.020 0.012 0014 094 093 0981 0971 0.05 0.06 0.99 0985 0.03 0.03
Random Forest 0.023 0021 0014 0015 091 093 0982 0968 0.07 0.06 0991 0984 0.04 0.03
DT 0.019 0.028 0013 0018 097 093 0941 0944 005 0.08 097 0972 003 0.04
Neural Network 0.064 0.087 0055 0071 067 065 0434 0462 018 025 0.659 0.68 0.11 0.15
SVM 0.061 0.077 0.063 0070 061 058 0.659 0583 0.17 022 0812 0.764 0.09 0.12
kNN 0.071 0.085 0.066 0.071 067 062 0612 0490 0.2 024 0782 0.7 0.11 0.14
Linear Regression  0.066  0.069 0.053 0.059 0.74 0.69 0592 0.664 0.19 0.2 0769 0815 0.11 0.11

* TrD: Train and Test Dataset, respectively

Table 6 Pearson correlation (r) between model and used features with
measured water content

Parameters OMeasured
OGradient Boosting 0.991
0,5 0.985
ORandom Forest 0.984
O e 0.972
AL inear regression 0.817
Ogvm 0.802
ONeural Network 0.743
BN 0.710
Matric Suction —0.704
EC —-0.640
oC 0.640
CEC 0.640
pH —-0.640
Silt percentage 0.640
Sand percentage —0.640
Clay percentage 0.640
Structural Flatness —0.625
Pore Sphericity 0.558
Porosity Elongation 0.547
Porosity Volume 0.536
Bulk Density —0.469
Porosity Compactness 0.438
Porosity Surface Area 0.335

data, soil texture (Zappa et al. 2019), and leaf area index
(Im et al. 2016). These variations in input features can
result in different levels of correlation with the target
values. As illustrated in Fig. 1 and further supported by
Table 6, certain features exhibit a stronger correlation with
the measured soil moisture content. Notably, matric suc-
tion has shown a strong negative correlation with Oy.aqureds
indicating its influence on soil moisture dynamics.

The reduction in soil pore size distribution resulting from
increased soil compaction leads to elevated matric suction
across all soil texture classes (Fredlund and Rahardjo 1993).
Thus, soil bulk density and sand percentage exhibit a nega-
tive correlation with soil water content. Additionally, a
negative correlation was observed between water content
and structural flatness, indicating that increased soil pore
compaction leads to a decrease in water content at varying
matric suction levels. Notably, based on Pearson correlation
coefficients, structural flatness (r=—0.625) demonstrates a
more explicit effect on the decrease of soil water content
compared to soil bulk density (r=—0.469).

Just appling soil matric suction as model input feature

To assess the necessity of incorporating additional input fea-
tures for improving the model outputs, an evaluation con-
ducted using only the matric suction feature as the input.
While soil matric suction has a significant impact on model
learning and prediction accuracy, the results presented in
Table 7 demonstrate that models trained solely using mat-
ric suction and rel