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Abstract
This study explores soil water characteristic curve (SWCC) prediction through informatics and machine learning. Utilizing 
these techniques, SWCC prediction was significantly simplified, enabled by the Orange.3 data mining software's integra-
tion of diverse soil properties. This integration eliminated the need for extensive programming, establishing a link between 
scientific insights and engineering applications. Limitations emerged in models relying solely on matric suction for SWCC 
prediction, evident through a Mean Absolute Error exceeding 0.08 and an R-squared value below 40% in the test dataset. 
To enhance accuracy, a comprehensive approach encompassing various soil properties, such as bulk density, organic carbon 
content, and micro-porosity characteristics, was employed. The Gradient Boosting algorithm excelled, yielding near-perfect 
SWCC estimations with RMSE and Pi values of 0.016 and 0.03, respectively. Likewise, AB, Random Forest, and Tree models 
displayed highly accurate predictions with RMSE and Pi values below 0.03 and 0.04, respectively. However, Neural Network, 
SVM, kNN, and Linear Regression models showed no improvements, even with added soil properties. Feature importance 
analysis highlighted matric suction's critical role in select models and soil micro-porosity characteristics' contribution to 
lowering RMSE by up to 0.04. These findings are pivotal in understanding errors in SWCC prediction, especially in cases 
of matric suctions surpassing the SWCC inflection point, with these errors, though present, minimally impacting model 
efficacy due to diminishing variations at high matric suctions.

Keywords  Data mining · Machine Learning · Prediction Feature importance · Predictive models · Soil water characteristic 
curve

Introduction

By synergizing geospatial data, remote sensing techniques, 
and diverse Earth science datasets, informatics plays a 
pivotal role in fostering a holistic comprehension of natu-
ral systems and processes (Sermet and Demir 2019). In 
the realm of engineering applications, this encompass-
ing knowledge significantly enhances the precision of 
decision-making and predictive capabilities. For instance, 
within geotechnical engineering, Earth Science Informat-
ics facilitates the integration of soil behavior, geological 
insights, and hydrological information into prognostic 
models, thereby refining the design and evaluation of criti-
cal structures such as foundations, dams, and slopes (Pham 
et al. 2023). This interdisciplinary methodology not only 
optimizes engineering outcomes but also advances sustain-
able solutions by meticulously accounting for the intricate 
interplay between natural and constructed environments.
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The Soil Water Characteristic Curve (SWCC) offers valu-
able insights, both directly and indirectly, into the behavior 
of water within unsaturated soils (Zhai and Rahardjo 2012). 
The accurate determination of the SWCC for a given soil 
necessitates a combination of precise measurement tech-
niques and predictive methodologies. Nonetheless, the field, 
laboratory, and computer vision-based measurements of 
SWCC are resource-intensive, laborious, time-consuming, 
and occasionally unfeasible due to challenges concerning 
scaling, spatial variability, and site inaccessibility (Achieng 
2019). As a result, the utilization of modeling procedures 
has become a widely adopted approach for predicting SWCC 
(Dobarco et al. 2019).

The application of machine learning (ML) algorithms in 
soil moisture research has witnessed a substantial upsurge. 
These algorithms are favored for their non-parametric 
essence and adeptness in capturing intricate and non-linear 
associations (Padarian et al. 2019). ML techniques employed 
to estimate SWCC predominantly fall within the realm of 
supervised learning, which entails the provision of a labeled 
training dataset containing known output values. The model 
is then trained through algorithms applied to the input data-
set, enabling the prediction of the desired output. The train-
ing process continues until the model attains the intended 
accuracy on the training dataset. Supervised learning finds 
widespread application in tasks encompassing classification 
and regression (Rani et al. 2022).

In various studies, researchers have used different algo-
rithms to understand the complex relationship between soil 
properties and water content. These methods range from tra-
ditional models to advanced ones like artificial neural net-
works (ANN), support vector machines (SVM), random for-
ests (RF), and deep neural networks (DNN). Neural network 
models consist of input, hidden, and output layers, with the 
number of hidden layers determined by problem complexity. 
For general geotechnical engineering, it's often found that a 
single hidden layer suffices (Wang et al. 2022). Incorporat-
ing data preprocessing with Bayesian regularization neural 
networks, Pham et al. (2019) showcased the capability to 
enhance the precision of predicting SWCC and illustrated 
that three-hidden-layer BRNN-PTF showed a consider-
able outperformance to predict the soil water content. The 
effectiveness of these algorithms was assessed through met-
rics including the Root Mean Squared Error (RMSE) and 
R-squared (R2) values, thereby furnishing insights into the 
prognostic capacities of the models. A comprehensive syn-
thesis of these studies is presented in Table 1, outlining the 
spectrum of employed ML algorithms, their corresponding 
performance metrics, noteworthy observations, and the spe-
cific features assimilated within the models.

Several PTFs for predicting SWCC with acceptable 
accuracy were proposed by researchers (Pachepsky et al. 
2006; Leij et al. 2004; Børgesen et al. 2008). However, 

rare attention has been given to assessing the significance 
of the features encompassed within the provided dataset. 
While Pham et al. (2023) undertook the endeavor of deter-
mining the importance of database features to construct 
their ML-PTFs and assessed its effectiveness in SWCC 
estimation, they did not specifically focus on the role of 
soil porosity in water retention within soil (Tuller et al. 
2004).

The works by Fredlund and Rahardjo (1993) as well as 
Hopmans and Dane (1986) underscore the significance of 
matric suction in governing water dynamics and mechan-
ical responses within soils of varying compositions, 
encompassing sandy and silty soils. While the assertion by 
Achieng (2019) maintains that a deep learning approach 
enables the exclusive prediction of SWCC using soil mat-
ric suction as the sole input feature, other investigations 
posit that precise SWCC predictions frequently derive 
advantages from a broader spectrum of input parameters, 
obtained through laboratory analyses and image process-
ing methods. The incorporation of supplementary param-
eters like soil texture, porosity, particle size distribution, 
and mineral composition augments the predictive efficacy 
of ML models.

Nguyen et  al. (2014) and Vereecken et  al. (2010) 
reached the conclusion that incorporating soil structure 
information into Pedotransfer Functions (PTFs) holds the 
potential to enhance their performance. They further rec-
ommended in-depth exploration to determine the robust-
ness of these improvements across various data mining 
techniques and diverse categories of PTFs. Employing 
ImageJ's built-in capability for soil porosity analysis, 
Bakhshi et al. (2023) demonstrated that the water reten-
tion capacity and SWCC pattern are contingent on soil 
pore geometrics. This feature yields valuable output 
parameters, encompassing porosity surface area (Total 
Area of Porous Regions, cm2), volume (Total Number of 
Porous Voxels × Voxel Volume, cm3), elongation (Major 
Axis Length/Minor Axis Length, dimensionless), flatness 
(Average Length of Major Plane/Average Length of Minor 
Plane), sphericity (4π × area/perimeter2, dimensionless), 
and compactness (volume of the porous region/surface 
area of the porous region, dimensionless).

Building upon these findings, our study leveraged intri-
cate soil structural attributes derived from image analysis 
as inputs for the ML technique employed. To this end, in 
conjunction with other frequently employed algorithms, we 
assessed the application of gradient boosting (GB) and Ada 
Boost (AdaB) in estimating SWCC using ML within the 
Orange.3 data mining software. The predictive exercise was 
undertaken under two scenarios: 1) using matric suction as 
the sole predefined input, and 2) integrating an array of input 
parameters garnered from both laboratory measurements and 
image analysis techniques.
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Material and methods

Soil sampling, treatment preparation, 
and experimental setup

This study delved into the intricate effects of diverse treat-
ments on soil porosity and SWCC within soil samples 
obtained from distinct textural classes in Central Iran. The 
samples originated from Arenosols (coordinates 35° 54′ N 
and 50° 32′ E) and Vertisols (coordinates 36° 22′ N and 
49° 35′ E) and comprised loamy sand and silty clay soils.

Soil sampling and analysis

Topsoil samples (0–10 cm) were collected, dried, and 
sieved to achieve a particle size of 2 mm, ensuring 
uniformity in the analysis. Established methods were 
employed to evaluate pivotal soil properties, vital for pre-
dicting SWCC. These properties included soil organic car-
bon (SOC) (Walkley and Black 1934), serving as an indi-
cator of organic matter content; particle size distribution 
(PSD) (Gee and Or 2002), revealing soil texture composi-
tion; cation exchange capacity (CEC) (Rhoades 1983), a 
measure of ions retention capacity; electrical conductivity 
(EC) (Rhoades 1996), reflecting soil salinity; pH (Thomas 
1996), indicating soil acidity; and parameters character-
izing soil porosity (a, n, θs, and θr) (Dexter et al. 2008). 
To preserve sample integrity, bulk density was determined 
through the core method, utilizing Kopecky rings (5 cm 
in height and 5 cm in diameter) (Grossman and Reinsch 
2002).

Treatment preparation and experimental setup

The soil samples underwent a comprehensive range of 
treatments, each meticulously designed to investigate spe-
cific soil responses. This included the application of vari-
ous levels of CaCO3, ranging from 0 to 5%, to assess the 
influence of calcium carbonate on soil properties (Huang 
et al. 2016). Similarly, Fe2O3.7H2O, varying from 0 to 
2%, was introduced to explore the effects of iron oxide (Li 
et al. 2021). The incorporation of vermicompost, at vary-
ing levels (0% to 2%), allowed insights into how organic 
carbon and nutrient content impacted soil characteristics 
(Demir 2020). Furthermore, combined treatments involv-
ing CaCO3, Fe2O3.7H2O, and vermicompost in specific 
ratios (1.5%, 0.5%, and 1%, respectively), as well as higher 
levels, were investigated. Additionally, treatments were 
prepared based on Sarkar et al. (2014), where organic mat-
ter, iron oxide, and CaCO3 were removed at specific levels.
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Cation treatment and structural degradation

To comprehend the influence of cations on soil structure, 
solutions containing CaCl2 and NaCl at concentrations of 
0, 5, 10, and 20 meq L−1 (Mi et al. 2018) were employed 
for irrigation during the incubation period. This facilitated 
an examination of how varied cation levels affected soil 
behavior. The study also encompassed a comprehensive 
analysis of degraded treatments, achieved through a tai-
lored consolidation process designed to replicate condi-
tions resulting from natural degradation.

Incubation and testing

Following treatment application, the soil samples 
were placed in pots and incubated at room temperature 
(24 ~ 26 °C). To emulate real-world scenarios, the sam-
ples underwent numerous cycles of shrink-swell and wet-
ting–drying, a process repeated 20 times. Rigorous moni-
toring was conducted to capture any variations. Rewetting 
was done until moisture content equal to field capacity 
was achieved by carefully adding water to the sponge 
cover placed on top of the columns to avoid disturbing 
soil conditions.

Sample count and analysis

The study encompassed a total of 128 samples, involv-
ing diverse combinations of amendment treatments and 
degraded treatments. A subset of samples was selected for 
direct measurements of the SWCC, while others underwent 
preparation for subsequent image analysis through impreg-
nation with a mixture of polyester resin, catalyst, hardener, 
and fluorescent dye. For a comprehensive breakdown of spe-
cific treatments, consult Table 2.

Determination of the SWCC​

The SWCC was constructed by combining the results 
obtained for water content at both low matric suctions (0, 
10, 20, 40, and 70 cm) using a sandbox apparatus (Cresswell 
et al. 2008) and higher matric suctions (100, 300, 500, 1000, 
3000, 5000, 9000, and 15,000 cm) using pressure plate/pres-
sure membrane apparatus (Dane et al. 2002). Despite the 
acknowledged methodological limitations, this approach 
stands as the most prevalent technique for SWCC measure-
ment (Schindler et al. 2012). Undisturbed samples were used 
to determine the lower matric suctions ranging from 0 to 
1000 cm, while disturbed samples were utilized for matric 
suctions ranging from 3000 to 15,000 cm. Ta
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Sample preparation, imaging, and image 
preprocessing

A total of 128 soil samples, having undergone pre-treatment, 
were subjected to a methodical impregnation procedure 
involving a mixture of polyester resin and styrene in a 5:1 
ratio (Eben et al. 2020), accompanied by suitable amounts of 
hardener and catalyst. To enhance the visibility of soil pores 
during the forthcoming digital imaging phase, a brightener, 
2 g.L−1 of fluorescent dye, was deliberately introduced into 
the mixture (Ringrose-Voase 1996). This strategic inclusion 
served to augment the luminance of pores under UV illumi-
nation, facilitating their subsequent visual analysis.

The impregnation process unfolded within plastic con-
tainers that were housed in a meticulously regulated environ-
ment within a vacuum desiccator. The desiccator underwent 
an evacuation process set at 8 psi for a duration of 2 h. This 
step assumed paramount importance, ensuring comprehen-
sive resin infiltration throughout the samples and the effec-
tive displacement of air from the pores. Consequent to this 
evacuation, the samples were refilled with the impregnation 
mixture and subjected to an additional two-hour vacuum 
cycle, thereby optimizing resin penetration. Following this 
sequence, the samples were diligently sealed to counteract 
the rapid volatilization of styrene. Approximately seven days 
subsequent to sealing, the samples were unsealed, allow-
ing for the gradual and natural volatilization of styrene over 
time, ultimately leading to the desired hardening of the poly-
ester resin. This polymerization process culminated after an 
average duration of approximately 75 days (Wei et al. 2019).

Upon the completion of the resin hardening phase, the 
samples underwent meticulous cutting and polishing proce-
dures. Each individual sample was meticulously subjected 
to two horizontal and two vertical cuts, which collectively 
resulted in the exposure of four proximate surfaces, thus 
providing an extensive range of viewing angles for subse-
quent imaging. Notably, the imaging process was executed 
within an environment carefully configured as a controlled 
dark room, a setting that was equipped with specialized UV 
lamps. The strategic utilization of these lamps aimed to max-
imize the fluorescence emission of the dye embedded within 
the pores, thereby significantly enhancing their visibility. 
The images were captured using a digital camera boasting a 
resolution of 12 MP and an aperture of f/1.8.

Following the successful acquisition of the color images, 
the next crucial step entailed their systematic preprocessing 
within the ImageJ software. This versatile software platform 
facilitated an array of operations essential for effective anal-
ysis. Specifically, the color images were subject to grayscale 
conversion, a step that transformed the images into a gray-
scale format, subsequently enhancing their suitability for 
further analysis. To accentuate the visual distinction between 
pores and solid regions, thresholding was systematically 

applied to the grayscale images, resulting in their conver-
sion into binary images. This binary representation enabled 
a sharp demarcation between pores, represented as white 
pixels, and solid areas, depicted as black pixels.

The stacking of these binary images yielded an ensem-
ble of four 3D volumes for each individual sample. These 
volumes served as the foundational data for the subsequent 
analysis, providing a multi-dimensional perspective of the 
spatial distribution of pores within the samples. The ensu-
ing analysis drew extensively from the specialized 2D and 
3D plugins embedded within the ImageJ software. These 
plugins facilitated the extraction of key parameters char-
acterizing the identified pores. This encompassed pivotal 
parameters including the determination of 3D porosity, pore 
sphericity, aspect ratio, and the orientation of pore objects. 
The orientation was expressed through two angles: φ, repre-
senting the angular deviation between the horizontal plane 
and the long axis of the pore channel (ranging from 0° to 
90°), and θ, representing the azimuthal orientation of the 
long axis on the horizontal plane (ranging from 0° to 180°). 
Furthermore, critical metrics such as pore space surface area 
and sphericity were directly ascertained through the utiliza-
tion of ImageJ. Integral to the analysis was the calculation of 
porosity, which manifested as the fraction of image volume 
characterized by pore space.

ML procedure

Exploring ML models

Acknowledging the potential of ML models to unveil com-
plex data patterns, these models were employed to unravel 
intricate relationships within the acquired soil dataset. How-
ever, it was recognized that the effectiveness of these models 
depended on the quality, quantity, and representativeness 
of the training dataset. Table 3 provides a comprehensive 
overview of the ML algorithms employed in this study for 
the prediction of SWCC. Each algorithm is described along 
with its key hyperparameters, strengths, and limitations.

Orange.3

Ahangar-Asr et al. (2012) emphasized that the simplicity 
of a procedure and its capability to apply multiple models 
simultaneously are key factors in determining the priority of 
a method for estimating SWCC. In line with this, we utilized 
Orange.3 software, which offers a user-friendly and efficient 
ML process. This approach facilitated a rapid comparison 
of diverse fitted models, encompassing Gradient Boosting, 
Ada Boost, Decision Tree, Random Forest, Neural Network, 
Support Vector Machine, k-Nearest Neighbors, and Linear 
Regression. Furthermore, the Feature Importance widget 
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was used to determine the relative importance of input fea-
tures in predicting SWCC with a minimal dataset.

Statistical analysis

The statistical analysis included the Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), Relative Root 
Mean Squared Error (RRMSE), the Pearson correlation 
coefficient (R), Performance Index (Pi, Jalal et al. 2021), and 
the Willmott’s index of agreement (d1, Zhang et al. 2020; 
Achieng 2019) collectively quantify the predictive perfor-
mance and reliability of the models. These metrics provide 
a comprehensive view of how well the algorithms capture 
the complex relationships inherent in SWCC data.

Where oi and ti represent the i-th actual and predicted 
output values, respectively. o and t denote the average values 
of the actual and predicted output values, respectively. The 
parameter n signifies the number of samples under consid-
eration, and it is worth noting that in our analysis, no param-
eters were excluded during the regression process.

Feature importance analysis

As suggested by Pham et al. (2023), the analysis of fea-
ture importance employed the Shapley additive explana-
tions (SHAP) technique, which allowed for a quantitative 
assessment of the significance of the selected features. This 
methodology revolves around the assessment of model vari-
ance using a variance-based measurement approach (Molnar 
2020). Notably, the geotechnical field has widely adopted the 

(1)RMSE =

�∑n

i=1
(oi − ti)

2

n

(2)MAE =

∑n

i=1
��oi − ti

��
n

(3)RRMSE =
1

��o��

�∑n

i=1
(oi − ti)

2

n

(4)R =

∑n

i=1
(oi − o)(ti − t)

�∑n

i=1
(oi − o)

2∑n

i=1

�
ti − t

�2

(5)Pi =
RRMSE

1 + R

(6)d1 = 1 −

∑n

i=1
��ti − oi

��
��oi − o�� +

���ti − t
���

Shapley value approach (Wadoux and Molnar 2022; Cheng 
et al. 2022) to unravel the intricacies of feature importance. 
The Shapley value (φ) embodies the average marginal con-
tributions of features within various coalitions, as encapsu-
lated by the equation:

Where S represents a subset of features, X = {X1,X2,…
,Xp} designates the observed data point, xj​ denotes the value 
of the feature under consideration, p signifies the total count 
of features, val(S) reflects the model prediction marginalized 
over the remaining input features, f̂ (X) stands for the model 
prediction for the given X, and EX( f̂  ) represents the antici-
pated model predictions for a given dataset. This compre-
hensive approach elucidates the intricate dynamics of feature 
importance and model contributions. All computations and 
feature importance analyses in this study were carried out 
automatically using Orange.3 software.

Results and discussion

The properties of initial soil samples

Table  2 represented the routine properties parameters 
obtained from the SWCCs of soil samples prior to any 
treatment. The selection of these two samples was done 
deliberately to ensure a wide range of variations in their 
physical, chemical, and hydraulic properties, allowing for 
a comprehensive evaluation. The loamy sand sample has a 
high sand content of 82.6% with approximately 12% clay, 
while the silty clay sample has a clay content exceeding 40% 
and a lower sand content of around 10%. Both samples are 
non-saline and slightly alkaline, but they differ significantly 
in terms of organic carbon (OC) content (0.12% vs. 0.42%) 
and cation exchange capacity (CEC) values (4.8 cmol+ kg−1 
vs. 24.1 cmol+ kg−1). The matric suction at the inflection 
point (hi) of the SWCC varies from 300 cm in the loamy 
sand sample to 70 cm in the silty clay sample. The shape 
factor (n) of the SWCC in Van Genuchten’s (1980) model 
ranges from 2.07 in the loamy sand sample to 1.0 in the silty 
clay sample. The bulk density of the studied samples did not 
show significant differences. However, there were significant 
differences in the alpha coefficient, which corresponds to the 
inverse value of air entry into the soil (α, cm−1), as well as 
in the saturation water content (θs, g.g−1) and residual water 
content (θr, g.g−1) between the two samples.

(7)φj =
∑

S⊆X{xj}

|S|!(p − |S| − 1)!

p!
(val(S ∪ {xj}) − val(S))

(8)
∑p

i=1
φj f̂ (X) − Ex(f̂ )
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Changes in properties of treated samples 
and the results obtained from image analyses

Table 4 presents the changes in the physical and chemi-
cal properties of the treated samples after the incubation 
period, compared to the blank samples. Additionally, Table 2 
provides the results from image analyses of the soil pores 
developed as a result of the treatments. The analysis of the 
trends in Table 4 reveals noteworthy patterns in the impact 
of treatments, treatment levels, and soil textures on various 
soil properties. Generally, there’s a tendency for increas-
ing bulk density with higher treatment levels, particularly 
prominent in “CaCO3” and “OM” treatments. “Cations” 
treatments consistently lead to elevated CEC with increasing 
levels, while “Removed Fe2O3” and “Removed OM” exhibit 
reduced CEC after removal. “CaCO3” treatments show 
increased electrical conductivity (EC) with higher levels, 
and “OM” treatments correlate with higher organic carbon 
(OC) content. Values of pH decreases with higher levels 
in “Cations” treatments, and “Removed CaCO3” results in 
decreased pH after removal. Porosity-related attributes are 
influenced by treatments and levels, with “OM” treatments 
consistently yielding higher porosity surface area and poros-
ity volume. Removal and degradation treatments lead to var-
ious property changes, such as decreased OC content, CEC, 
and porosity-related attributes, highlighting the complexity 
of soil responses to alterations. Overall, these trends provide 
valuable insights into the intricate relationships between 
treatments, soil properties, and textures.

Similar to Table 4 and Table 1, a dataset of individual 
treatments was prepared, which was automatically divided 
into model training and test datasets. This practice of prepar-
ing a unified database, as advocated by Wang et al. (2022) 
and Zhang et al. (2020), is essential in ML procedures to 
ensure consistency and facilitate the training, testing, evalu-
ation, and comparison of different models, thereby yielding 
robust and reliable results. Then, the mentioned features 
from Table 2 and Table 1 applied in eight algorithms to 
predict the soil water content at different matric suction lev-
els. Soil matric suction is used as a predefined input fea-
ture, while the other features are applied separately in all 
evaluating models. The most important features are deter-
mined based on their effects on the model output, as shown 
in Fig. 1.

Impacts and relative importance of the input 
parameters on the models

Researchers have utilized various soil properties, including 
the percentages of clay, silt, and sand, as well as void ratio 
and water content at saturation, along with soil matric suc-
tion related to gravimetric water content, for the estimation 
of SWCC (Pham et al. 2023; Rastgou et al. 2020). Identifying 

the most significant features in SWCC estimation can greatly 
reduce time and energy consumption while increasing accu-
racy. As input features of models Fig. 1 (1.a to 1.h) illustrates 
the effects of different input parameters on model outputs and 
their relative importance in terms of the model's accuracies 
(RMSEs) in eight ML algorithms. Similar to studies conducted 
in previous years (Pham et al. 2023; Gunarathna et al. 2019; 
Nguyen et al. 2017), our observations indicate that within 
these algorithms, matric suction emerged as the most pivotal 
parameter in the GB (Fig. 1a), AB (Fig. 1b), RF (Fig. 1d), 
and SVM (Fig. 1f) models. On the other hand, organic carbon 
percentage, soil texture, porosity surface area, and electrical 
conductivity emerged as the most significant parameters in the 
DT (Fig. 1c), ANN (Fig. 1e), kNN (Fig. 1g), and LR (Fig. 1h) 
models, respectively. Matric suction was identified as the most 
important parameter among the first three influential param-
eters affecting the model outputs in all models, except for the 
ANN model (Fig. 1e). Lower matric suction values resulted in 
higher prediction accuracy in the models, while higher matric 
suction values led to a decrease in accuracy. The results indi-
cated that, except for the ANN model, three to five of the input 
characteristics were identified as the most influential param-
eters for prediction accuracy in different models.

Following matric suction, soil pore characteristics have 
emerged as the subsequent significant parameters in facilitat-
ing accurate predictions, except in the context of the ANN 
model. Pham et al. (2023) demonstrated that soil texture-
related properties hold significant importance following soil 
matric suction. However, in our study, the prediction of SWCC 
reveals the involvement of one or two pore characteristics. 
Notably, attributes like structural flatness and porosity surface 
area exhibit notably stronger influence compared to other pore 
characteristics. Soil bulk density, as a other structural feature, 
has garnered attention from various researchers in recent years 
(Amanabadi et al. 2019; Gunarathna et al. 2019). However, 
this soil physical property serves as an average indicator of 
soil compaction and fails to provide insights into the detailed 
attributes of porosity. Some studies have endeavored to indi-
rectly assess soil structure by incorporating soil moisture con-
tent across different matric suctions into their models (Senyu-
rek et al. 2020; Cai et al. 2019). In one of the rare instances 
exploring soil porosity, Ahangar-Asr et al. (2012) integrated 
soil void ratio as an input parameter within a model geared 
towards SWCC and soil porosity characteristic prediction. 
Nevertheless, their investigation did not specifically delve into 
the impact of these properties on the outcomes of the model.

Comparison of the models’ predicted results

The output of the models when all parameters used

When comparing the SWCCs generated by the models using 
all the studied parameters, it was found that the GB, AB, 
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RF, and DT models produced the most accurate results with 
lower RMSE (< 0.028) and MAE (< 0.018), and higher d1 
(> 0.93) and R2 (> 0.968) in test dataset (TstD), as shown 
in Table 5. This means that the mean difference between 
the predicted and measured water contents was less than 
0.02 g g−1 for all matric suctions used to plot the SWCCs. 
Achieng (2019) conducted research using ML techniques, 
including ANN, DNN, and SVM models, to estimate SWCC. 
In most cases of drying SWCC, the models achieved an 
RMSE of less than 0.01, with R2 and d1 values exceeding 
0.99 and 0.94, respectively. The study demonstrated high 
accuracy in the estimation of SWCC in the studied Loamy 
Sand soil sample. Lamorski et al. (2017) employed various 
SVM models trained with physical soil properties, includ-
ing SWCC drying branch, BD, Sand%, Silt%, clay%, OC, 
and soil specific surface, as input variables. The resulting 
models successfully estimated SWCC wetting branches 
with an R2 greater than 0.98 and an RMSE less than 0.02. 
Srivastava et al. (2013) utilized the SVM algorithm, which 
yielded an RMSE of 0.013 and an R2 of 0.69. In contrast, the 
performance of the random forest algorithm varied across 
different studies. Long et al. (2019) and lm et al. (2016) 
reported RMSE values greater than 0.04 m3 m−3, while Bai 
et al. (2019) achieved accurate results with an RMSE less 
than 0.02 m3 m−3. However, in this study ANN, SVM, kNN, 
and LR algorithms, showed a significant decrease in model 
accuracy (as indicated by higher values of RMSE, MAE, 
and lower values of d1 and R2) compared to the acceptable 
limits of accuracy. Consequently, these models were unable 
to generate SWCCs that met the required level of accuracy. 
Similar to the findings of Hastie et al. (2009), which dem-
onstrated that regression-based methods may yield non-
accurate results in pedo-transfer function methods, the LR 
algorithm in this study produced an R2 of 0.66 and an RMSE 
of 0.69 when applied in the ML method, categorizing it as 
a non-accurate model. Nguyen et al. 2017 highlighted the 
benefits of the kNN model, including its flexibility, simplic-
ity, accuracy in limited data availability conditions, and the 
ability to incorporate new observations into training datasets 
without the need to redevelop the PTF models. However, 
Guevara and Vargas (2019) examined the performance of 
the kNN algorithm for predicting soil moisture content based 
on DEM data and found that the prediction RMSE exceeded 
0.05 m3 m−3. In another study, Liu et al. (2017) observed an 
RMSE greater than 0.07 m3 m−3 in the prediction of mois-
ture content using the kNN algorithm with inputs derived 
from satellite-derived data.

Table 6 presents the Pearson correlation (r) between the 
measured water content (θMeasured) and the evaluating mod-
els, along with the identified important features. Previous 
studies have reported correlation coefficients greater than 
0.9 between estimated and measured SWCC or soil mois-
ture content using the random forest algorithm (Im et al. Ta
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2016; Bai et al. 2019; Long et al. 2019; Zappa et al. 2019). 
However, it is important to note that the ability of the 
same algorithm to estimate soil moisture content may vary 

depending on the input features used in the modeling pro-
cedure. For example, the aforementioned studies utilized 
different sets of input features, including satellite-derived 

Fig. 1   Input parameters and their relative importance in accurate prediction of GB, AB, RF, SVM, DT, ANN, kNN, and LR models
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data, soil texture (Zappa et al. 2019), and leaf area index 
(Im et al. 2016). These variations in input features can 
result in different levels of correlation with the target 
values. As illustrated in Fig. 1 and further supported by 
Table 6, certain features exhibit a stronger correlation with 
the measured soil moisture content. Notably, matric suc-
tion has shown a strong negative correlation with θMeasured, 
indicating its influence on soil moisture dynamics.

The reduction in soil pore size distribution resulting from 
increased soil compaction leads to elevated matric suction 
across all soil texture classes (Fredlund and Rahardjo 1993). 
Thus, soil bulk density and sand percentage exhibit a nega-
tive correlation with soil water content. Additionally, a 
negative correlation was observed between water content 
and structural flatness, indicating that increased soil pore 
compaction leads to a decrease in water content at varying 
matric suction levels. Notably, based on Pearson correlation 
coefficients, structural flatness (r = −0.625) demonstrates a 
more explicit effect on the decrease of soil water content 
compared to soil bulk density (r = −0.469).

Just appling soil matric suction as model input feature

To assess the necessity of incorporating additional input fea-
tures for improving the model outputs, an evaluation con-
ducted using only the matric suction feature as the input. 
While soil matric suction has a significant impact on model 
learning and prediction accuracy, the results presented in 
Table 7 demonstrate that models trained solely using mat-
ric suction and related water content data did not achieve 
acceptable precision. The models exhibited high error rates 
and low R2 values when tested on the dataset. These findings 
indicate the need for additional input features to improve the 
accuracy and reliability of the models.

Despite the negative correlation observed between soil 
water content and matric suction in the evaluating models 
(Table 8), the calculated RMSE values revealed relatively 
high errors in the model outputs. The mean absolute errors 
further indicated significant inaccuracies in the prediction 
of soil water contents at different matric suction levels, with 
values ranging from 0.08 to 0.09. Such errors are far from 
acceptable in this context. Moreover, the considerably low 
values of R2 highlight the inconsistency between the pre-
dicted SWCC patterns and the observed data.

The use of soil matric suction as the sole input feature 
in the eight evaluating models significantly reduces the 

Table 5   The statistics obtained for the models used to generate SWCC using all parameters

* TrD: Train and Test Dataset, respectively

Model RMSE MAE d1 R2 RRMSE R Pi

TrD/TstD* TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD

Gradient Boosting 0.014 0.016 0.009 0.011 0.97 0.94 0.994 0.982 0.04 0.05 0.997 0.991 0.02 0.03
AB 0.019 0.020 0.012 0.014 0.94 0.93 0.981 0.971 0.05 0.06 0.99 0.985 0.03 0.03
Random Forest 0.023 0.021 0.014 0.015 0.91 0.93 0.982 0.968 0.07 0.06 0.991 0.984 0.04 0.03
DT 0.019 0.028 0.013 0.018 0.97 0.93 0.941 0.944 0.05 0.08 0.97 0.972 0.03 0.04
Neural Network 0.064 0.087 0.055 0.071 0.67 0.65 0.434 0.462 0.18 0.25 0.659 0.68 0.11 0.15
SVM 0.061 0.077 0.063 0.070 0.61 0.58 0.659 0.583 0.17 0.22 0.812 0.764 0.09 0.12
kNN 0.071 0.085 0.066 0.071 0.67 0.62 0.612 0.490 0.2 0.24 0.782 0.7 0.11 0.14
Linear Regression 0.066 0.069 0.053 0.059 0.74 0.69 0.592 0.664 0.19 0.2 0.769 0.815 0.11 0.11

Table 6   Pearson correlation (r) between model and used features with 
measured water content

Parameters θMeasured

θGradient Boosting 0.991
θAB 0.985
θRandom Forest 0.984
θTree 0.972
θLinear regression 0.817
θSVM 0.802
θNeural Network 0.743
θkNN 0.710
Matric Suction −0.704
EC −0.640
OC 0.640
CEC 0.640
pH −0.640
Silt percentage 0.640
Sand percentage −0.640
Clay percentage 0.640
Structural Flatness −0.625
Pore Sphericity 0.558
Porosity Elongation 0.547
Porosity Volume 0.536
Bulk Density −0.469
Porosity Compactness 0.438
Porosity Surface Area 0.335

3851Earth Science Informatics (2023) 16:3839–3860



1 3

correlation between the models and the measured water con-
tent (θMeasured). This, in turn, causes the correlation of the 
linear regression model with θMeasured to be lower than the 
correlations between matric suction and θMeasured (as shown 
in Table 8). Based on these findings, it can be concluded 
that utilizing matric suction values alone in the prediction 
of the SWCC yields better results compared to using the 
Linear regression model with only matric suction values. 
This observation suggests that in this case the modeling pro-
cess was not effective and did not produce useful outcomes. 
It's worth noting that Zhang et al. (2020) also observed dif-
ferences in ML procedure capacity based on the number 
of utilized parameters, reinforcing the importance of con-
sidering parameter selection in prediction of soil thermal 
conductivity.

Predicted SWCCs with evaluating models based 
on the ML procedure

The assessment of predictive accuracy for eight ML algo-
rithms, was undertaken by comparing their estimated results 
to the actual measurements. This evaluation is visualized 
in Fig. 2, where eight individual curves (labeled from “a” 
to “h”) depict the performance of each algorithm. These 
curves provide a comprehensive representation of how well 

the algorithms align with the actual measurements. Notably, 
the 1:1 line in each segment serves as a reference for perfect 
agreement between predictions and measurements. Among 
these algorithms, Gradient Boosting (GB) showcases its 
remarkable predictive capabilities, reflecting its potential to 
closely replicate the actual SWCC.

Figures 3 and 4 illustrate the SWCC for Loamy Sand and 
Silty clay soil samples, respectively. As mentioned earlier, 
the evaluating models can be categorized into two classes 
based on their prediction accuracy: high and low. In Figs. 3 
and 4, these differences explicitly demonstrated. Specifi-
cally, for the Loamy Sand soil sample, Gradient Boosting, 
Ada Boost, Tree, and Random forest models (Fig. 3a–d) 
exhibited almost perfect predictions of SWCC. While the 
high accuracy prediction of the SWCC is consistent in Silty 
Clay soil samples, it is worth noting that for soil matric 
suctions higher than 1000 cm, the error of the mentioned 
models shows a relatively decreased trend. Previous studies 
have highlighted the flexibility and reliability of ML algo-
rithms such as ANN, kNN, and SVM in providing accurate 
estimations, as they do not rely on stringent assumptions 
about the underlying data and can adapt to various situa-
tions (Nguyen et al. 2017; Hastie et al. 2009). However, in 
the present study, the performance of the Neural Network, 
SVM, kNN, and Linear Regression models in predicting 
SWCC for both Sandy Loam and Silty Clay soil samples 
yielded errors that were deemed non-acceptable. Specific 
details regarding the nature and magnitude of these errors 
would provide further insights into the limitations of these 
models in the context of the study. These errors resulted in 
deviations between the predicted SWCC patterns and the 
measured SWCC pattern across the entire range of matric 
suctions (Figs. 3 and 4e ~ h). Specifically, the models showed 
underestimation at low matric suction and overestimation at 
high matric suction for all studied soil samples. The SVM 
and kNN models fail to exhibit the expected decreasing trend 
with respect to matric suction in the Loamy Sand sample, 
rendering them unable to adequately explain the SWCC. 

Table 7   Statistics of models in the case where matric suction was used as the only input parameter

* TrD: Train and Test Dataset, respectively

Model RMSE MAE d1 R2 RRMSE R Pi

TrD/TstD* TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD TrD TstD

Gradient Boosting 0.096 0.093 0.091 0.083 0.61 0.52 0.523 0.391 0.27 0.27 0.723 0.625 0.16 0.17
AB 0.084 0.093 0.088 0.083 0.59 0.50 0.465 0.386 0.24 0.27 0.682 0.621 0.14 0.17
Random Forest 0.071 0.093 0.096 0.082 0.60 0.51 0.471 0.389 0.2 0.27 0.686 0.624 0.12 0.17
Tree 0.084 0.093 0.092 0.083 0.65 0.52 0.504 0.391 0.24 0.27 0.71 0.625 0.14 0.17
Neural Network 0.096 0.104 0.088 0.083 0.58 0.46 0.416 0.229 0.27 0.3 0.645 0.479 0.16 0.2
SVM 0.093 0.095 0.091 0.083 0.56 0.46 0.432 0.356 0.27 0.27 0.657 0.597 0.16 0.17
kNN 0.101 0.097 0.102 0.087 0.54 0.53 0.380 0.332 0.29 0.28 0.616 0.576 0.18 0.18
Linear Regression 0.124 0.109 0.101 0.091 0.39 0.33 0.294 0.154 0.35 0.31 0.542 0.392 0.23 0.22

Table 8   Pearson correlation 
(r) when the matric suction is 
included as the only modeling 
parameter

Parameters θMeasured

θGradient Boosting 0.627
θTree 0.627
θRandom Forest 0.624
θAB 0.623
θSVM 0.608
θkNN 0.588
θNeural Network 0.493
Matric Suction -0.404
θLinear regression 0.392
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Similarly, the kNN model yields inaccurate outputs for the 
Silty Clay soil sample.

Evaluating models uncertainty

Table 9 presents the error percentages to quantify the mean 
differences between the observed and predicted SWCCs in 
both the Loamy Sand and Silty Clay soil samples. These 
error percentages provide insights into the uncertainty asso-
ciated with each evaluating model. Although Wang et al. 
(2021) demonstrated high accuracy in determining SWCC 
for soils with a high clay fraction, this study found that the 
average error of the eight models used for Loamy Sand 
soil samples was considerably higher at 35% compared to 
Silty Clay Soil samples. However, the four well-predicted 
models, namely Gradient Boosting, AB, Tree, and Random 
Forest models, exhibited an equal average error percentage 
of approximately 5% in both Loamy Sand and Silty Clay 
soil samples, and no significant difference in the estima-
tion of SWCC was observed between the two studied soil 
textures. The Gradient Boosting model demonstrated supe-
rior prediction capability in both studied soil textures, and 
it exhibited the lowest error percentage in Loamy sand soil 
samples, with an average uncertainty of 2.7%. The other 
evaluating models, such as Neural Network, SVM, kNN, 
and Linear regression, exhibited unreliable outputs with 

error percentages exceeding 20%. In particular, the SVM 
model performed poorly in Loamy Sand soil samples, reach-
ing approximately 90% errors. Interestingly, these models 
showed comparatively better prediction performance in Silty 
Clay soil samples compared to Loamy Sand soil.

Prediction errors at two sides of the inflection point 
(hi)

Some researchers have observed that their models under-
estimated the water content of the SWCC at relatively 
high suction heads (Nguyen et al. 2017; Hwang and Pow-
ers 2003; Meskini-Vishkaee et al. 2014; Mohammadi and 
Meskini-Vishkaee 2012; Tuller and Or 2001; Tuller et al. 
1999). Nguyen et al. (2017) attributed the underestimation 
of SWCC to the lack of measurement of input features at 
high matric suction situations. Other studies have shown the 
existence of corner water, lens water, and film water in soils, 
which may be one of the main causes of the underestimation 
phenomenon (Mohammadi and Meskini-Vishkaee 2012; Or 
and Tuller 1999; Shahraeeni and Or 2010; Tuller and Or 
2005; Tuller et al. 1999). However, Wang et al. (2021) claim 
that their improved prediction model can effectively predict 
soil–water characteristic curves, especially for soils at high 
matric suctions, in contrast, in this study, we observed visual 
evidence of increasing model errors with higher soil matric 

Fig. 2   Comparison of predicted and observed SWCC around the 1:1 line
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suction in Figs. 3 and 4, as well as in Table 9. To further 
support this observation, the error percentages of the evalu-
ating models compared at matric suction values below and 
above a matric suction related to hi. For the Loamy Sand 
soil samples, hi equal to to 70 cm was calculate, while for 
the Silty Clay soil samples, hi was calculated equal to to 300 
cm. Figure 5 presents the results of this comparison. In both 
studied soil textures, the error percentages of all evaluating 
models are considerably higher at matric suctions greater 
than hi compared to matric suctions less than hi. Among 
the models, the DT model exhibited the maximum differ-
ence between the measured and predicted SWCCs at the two 
sides of the inflection point. Moreover, the prediction error 
percentages at matric suctions greater than hi were found to 
be ten times higher than those at matric suctions less than 
hi. Also, Bakhshi et al. (2023), employing an image analysis 
approach and substantiating their findings with the Laplace 
equation (Tuller et al. 2004) for elliptical pores, reported 
an overestimation of moisture contents at matric suctions 
exceeding hi. Additionally, the SVM and kNN models 
exhibit minimal changes in prediction errors with respect to 
matric suction. Consequently, there is a minimum difference 
between the prediction errors of SWCC at the two sides of 
the inflection point for these models. Based on this concept, 

the best performance models are identified as those with 
lower error percentages and a minimal difference in predic-
tion errors at the two sides of the inflection point. Models 
such as Gradient Boosting, AB, and Random forest exhibit 
these characteristics.

Residual contents of predicted SWCCs

To quantify the absolute differences between predicted and 
measured SWCCs, the difference curves for both Loamy 
Sand and Silty Clay soil samples were presented. Figure 6 
depicts the difference curves for Loamy Sand samples, while 
Fig. 7 displays the difference curves for Silty Clay samples. 
Each figure includes multiple subfigures (a ~ h) representing 
different scenarios or conditions within each soil sample. 
Building upon the previous discussions regarding the high 
capability of the Gradient Boosting, AB, Tree, and Random 
forest models, it is evident from Figs. 6 and 7 (subfigures 
a-d) that these models exhibit minimal fluctuation relative 
to zero. Furthermore, the other studied models, including 
Neural Network, SVM, kNN, and Linear regression, dem-
onstrate significant underestimation at low matric suction 
and overestimation at higher matric suctions, as depicted in 
Figs. 6 and 7 (subfigures e–h). Similar to the results of this 

Fig. 3   Comparison of the predicted and measured SWCCs by different models in Loamy Sand soil sample
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study, Achieng (2019) observed residual SWCC values of 
about -0.1 to 0.1 g.g-1, but did not find a specific pattern for 
changes in errors with increasing matric suction. However, 
as illustrated in Figs. 6f and 7f for both the studied Loamy 
Sand and Silty Clay soil textures, the highest estimation 
errors are observed at the two ends of the SWCC. In other 
words, the SVM model shows the highest error in the esti-
mation of the structural-based and textural-based sections of 
the SWCC, and around the inflection point, the estimation 
error of the SVM model diminishes to about zero.

Conclusion

•	 Role of informatics in precise estimation of SWCC: 
The application of ML techniques has led to the simplifi-
cation of the intricate process of predicting the SWCC in 
this study. Additionally, the utilization of Orange.3 data 
mining software has enabled the incorporation of a wide 
range of measured physical soil properties into the pre-
dictive model, eliminating the requirement for extensive 
programming knowledge. Thus, through the utilization of 
informatics principles, we establish a connection between 
scientific insights and practical engineering applications, 

thereby facilitating a smoother transition of predictive 
models into real-world soil-based scenarios.

•	 Shortcomings of Solely Matric Suction-based Mod-
els: Our investigation into SWCC prediction revealed a 
noteworthy limitation. Models constructed solely on the 
basis of soil matric suction, while seemingly intuitive, 
exhibited inadequacy in accurately predicting SWCC 
behavior. This deficiency was evident in the Mean Abso-
lute Error (MAE) exceeding 0.08 and an R-squared (R2) 
value below 40% in test dataset.

•	 Enhancing Accuracy through Multivariate Approach: 
The quest for enhanced prediction accuracy led us to 
explore a more holistic approach. We embarked on a 
journey to comprehend the influence of various soil prop-
erties on SWCC behavior. Interestingly, our endeavors 
unveiled the pivotal significance of incorporating soil 
properties such as bulk density, organic carbon content, 
and micro-porosity characteristics like flatness or poros-
ity surface area. Integrating these properties as measured 
features within the model yielded substantial improve-
ments in the precision of SWCC estimation. Statisti-
cal analysis revealed that in this scenario, the Gradient 
Boosting algorithm led to an almost perfect estimation 
of SWCC, yielding RMSE and Pi values of 0.016 and 

Fig. 4   Comparison of the predicted and measured SWCCs by different models in Silty Clay soil samples
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Table 9   Uncertainties of 
evaluating models (error 
percentage between observed 
and predicted results) in 
prediction of soil moisture 
content at different soil matric 
suction of Loamy Sand and 
Silty Clay soil samples

Matric suction Gradient 
boosting

AB Tree Random forest Neural network SVM kNN Linear regression

Loamy sand
  0.01 0.0 0.2 1.6 0.4 36.6 34.0 51.9 41.9
  10 1.2 0.8 1.9 3.8 35.6 30.5 36.3 37.8
  20 1.3 3.8 0.1 1 37.2 29.6 47.2 33.1
  40 1.6 4.9 1.5 1.1 24.3 22.7 26.5 21.1
  70 3.5 2.1 1.5 1.8 1.1 3.1 26.7 17.3
  100 3.1 0.5 16.5 8.6 36.1 35.5 30.4 18.2
  300 1.5 3.5 11.1 9.6 71.8 76.2 42.4 51.0
  500 2.4 2.2 9.2 3.2 67.3 113.7 61.4 81.0
  1000 3.0 0.7 3.6 0.4 133.9 142.1 108.5 128.1
  3000 0.4 2.3 5.2 2.4 36.9 153.0 102.6 89.6
  5000 8.3 5.6 1.9 10.4 37.2 167.7 121.3 57.3
  9000 4.3 11.9 8.9 8 40.5 162.4 96.9 43.4
  15,000 4.6 12.2 50.0 11.1 92.5 174.0 113.3 143.2

Silty clay
  0.01 0.5 0.9 3.5 0.1 9.2 23.6 22.9 17.3
  10 0.0 2.3 2.5 0.4 13.0 19.4 25.1 16.8
  20 1.6 1.7 3.0 0.8 13.2 20.1 20.6 16.2
  40 2.0 0.9 3.2 1.9 18.6 18.3 17.4 14.7
  70 2.6 1.9 1.8 4.8 3.5 11.1 11.4 6.7
  100 0.5 2.8 4.7 0.5 7.3 2.8 3.1 0.8
  300 1.2 2.2 0.5 0.5 13.5 10.8 9.0 16.1
  500 0.8 1.9 3.6 2.8 30.5 18.0 22.7 21.3
  1000 1.0 0.1 0.0 0.8 31.0 27.6 27.0 31.7
  3000 15.1 13.7 16.8 7.9 39.4 36.3 43.4 38.3
  5000 18.9 22.7 21.2 16 23.8 53.8 55.3 38.8
  9000 1.3 4.1 0.9 0.5 28.4 40.6 59.0 24.8
  15,000 8.1 6.4 10.0 5.5 39.6 28.4 57.0 19.3

Fig. 5   Comparisons evaluating 
models error percentages at two 
side of SWCC inflection point 
in a) Loamy Sand and b) Silty 
Clay soil samples
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0.03, respectively. Furthermore, the AB, Random For-
est, and Tree models resulted in highly accurate estima-
tions with RMSE and Pi values lower than 0.03 and 0.04, 

respectively. However, other evaluated models, including 
Neural Network, SVM, kNN, and Linear Regression, did 
not exhibit improvement during the training phase, even 

Fig. 6   Absolute difference of prediction and measured SWCC at evaluating models in Loamy Sand soil samples

Fig. 7   Absolute difference of prediction and measured SWCC at evaluating models in Silty Clay soil samples
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with the inclusion of additional properties of the studied 
soils.

•	 Feature importance analysis: Among the evaluated 
models, matric suction stood out as the most critical 
parameter in the GB, AB, and RF models. Its exclu-
sion from these models resulted in a notable increase 
in RMSE, reaching up to 0.08. Lower matric suction 
values correlated with higher accuracy, while higher 
values reduced accuracy. Following matric suction, soil 
micro-porosity characteristics gained importance, lower-
ing model RMSE by up to 0.04 in highly accurate mod-
els. Notably, structural flatness and porosity surface area 
played a significant role compared to other pore charac-
teristics in predicting SWCC accurately.

•	 Navigating Errors and Achieving Realistic Predic-
tion: Acknowledging the existence of errors in the esti-
mated SWCC within this study is crucial, especially 
concerning matric suctions surpassing the SWCC 
inflection point. These errors were observed in profi-
ciently recognized models, amounting to up to 8 per-
cent in silty clay soils. However, upon analysis, these 
errors are relatively minor and do not substantially 
compromise the models’ effectiveness in predicting 
SWCC behavior. This is attributed to the decreasing 
trend of variations in water content at high matric suc-
tions.
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