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Abstract
In recent years, environmental issues such as global warming and climate change have led to an increased focus on find-
ing solutions to reduce its impacts, especially in urban areas. Remote sensing data have become an increasingly popular 
tool for conducting environmental assessment studies. The objective of this study was to assess and analyze the ecological 
environmental quality of Karaj County using Landsat satellite imagery of 2010 and 2020. In addition, the spatial pattern of 
landscape metrics has been quantified to assess the spatial pattern of green spaces. The greenness, moisture, dryness, and 
heat indicators were combined into a comprehensive RSEI index. The importance of the sub-indicators was determined 
using principal component analysis and weighted to obtain the RSEI index, which consists of the components LST, NDVI, 
NDBI, and wetness. The results indicate that the overall quality of the ecological environment in Karaj district has decreased, 
with the mean RSEI decreasing from 0.59 to 0.25. Landscape characteristics of the ecological environment have changed to 
a more separated, incoherent, and irregular pattern. Specifically, RSEI values had a significant correlation with landscape 
pattern change. The value of the COHESION metric has decreased and the value of the Edge Density has increased, which 
indicates the separation of the green space in the study area. These results could be valuable information for decision makers 
in managing or achieving an optimal eco-environment landscape pattern in urbanized areas.

Keywords  Karaj County · Contagion Index · Remote Sensing Ecological Index (RSEI) · Landscape metrics · Spatial 
patterns · Land surface temperature

Introduction

Urban ecology science plays a crucial role in advancing sus-
tainable development by enhancing the environmental health 
and livability of urban residents. However, current approaches 
to quantitatively analyze urban areas using data collection and 
analysis technologies are insufficient and lack systematicity 
compared to the relatively mature urban ecology theory (Tan 
et al. 2022). The ecological impact of urban development has 
gained increasing importance due to ongoing human-induced 

landscape modifications, resulting in changes in land use, 
intensified development, and degradation of natural land-
scapes (Williams et al. 2009; Mostafazadeh and Talebi Khiavi 
2022). According to Ellis et al. (2006), the degradation of the 
environment caused by urban landscapes poses a significant 
threat globally, contributing to a substantial portion of envi-
ronmental changes. Urbanization has given rise to various 
issues such as congestion, air pollution, waterlogging, and 
the urban heat island effect. Recent advancements in satellite-
based Earth observation systems have the potential to serve as 
powerful tools for ecosystem management, providing robust 
insights into ecosystem status at local and global scales (Ellis 
et al. 2006; Willis 2015; Wang and Xu 2018).

Remote sensing techniques serve as effective tools for 
measuring ecosystem components, identifying ecological 
attributes across different spatial scales, and estimating 
Earth’s surface processes, including land use/land cover 
(LULC) type, leaf area index (LAI), and biomass (Abdullah 
et al., 2011; Amorim et al., 2022). Kennedy et al. (2014) 
highlight the extensive use of remote sensing methods in 
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ecological and environmental assessment and monitoring 
(Ouyang et al. 2014; Willis 2015; Xu et al. 2018; Hu and Xu 
2018). Tang et al. (2015) emphasize that analyzing ecosys-
tem changes using composite indicators leads to improved 
results. Various ecological indicators have been developed 
to determine and quantify ecosystems. For example, the 
Normalized Difference Vegetation Index (NDVI) and Leaf 
Area Index are suitable examples for monitoring changes 
in vegetation cover type and percentage (Tang et al. 2015; 
Brehaut and Danby 2018). Land surface temperature (LST) 
has been employed in several studies to evaluate the urban 
heat island effect (Weng 2009; Zhou et al. 2014; Meng 
et al. 2018; Chakraborty and Lee 2019). Additionally, the 
normalized difference built-up index (NDBI), index-based 
built-up index (IBI), and normalized difference impervious 
surface index (NDISI) have been utilized to delineate built-
up and impervious surface areas (Xu 2008; Sekertekin et al. 
2018). The normalized difference water index (NDWI) and 
modified NDWI (MNDWI) have been used to extract water 
bodies (Sandholt et al. 2002; Meng et al. 2018). Moreover, 
NDVI and LST have been applied to monitor drought or soil 
moisture (Sandholt et al. 2002; Marzban et al. 2018). Coutts 
et al. (2016) employed the bare soil index (BI) (Rikimaru 
et al. 2002) and dry bare-soil index (DBSI) to map bare 
soil regions. Given the complexity and diversity of factors 
contributing to the state of an ecosystem, using multiple 
indicators to assess its condition yields more reliable results. 
Various ecological indicators based on remote sensing play 
a crucial role in determining the characteristics and func-
tional components of ecosystems. Among these indicators, 
the Normalized Difference Vegetation Index (NDVI) is the 
most commonly used index to describe spatial and temporal 
changes in vegetation cover (Tilt et al. 2007; Ochoa-Gaona 
et al. 2010; White et al. 2016). Other notable ecological indi-
ces include the permanent vegetation fraction (PVF) index 
and the hyperspectral flower index (HFI), which have shown 
promising results in assessing ecological conditions.

Ivits et al. (2009) utilized the permanent vegetation frac-
tion index to assess the favorable and unfavorable ecologi-
cal conditions in the coastal areas of Andalusia. Chen et al. 
(2009) employed the hyperspectral flower index (HFI) to 
monitor plant flowering status and phenology periods on 
the Tibetan Plateau. In urban areas, the land surface tem-
perature index (LST) based on remote sensing is commonly 
used to identify the characteristics and spatial distribution 
of the urban heat island (UHI). Nichol (2009), Coutts et al. 
(2016), and Xu et al. (2017) have all utilized LST as an index 
for this purpose. Additionally, integrated remote sensing-
based ecological indicators have been employed to evaluate 
complex ecological conditions in a spatially explicit man-
ner. For instance, the Remote Sensing Ecological Index 
(RSEI) incorporates four components related to climate 
and land surface biophysical variables, along with various 

metrics such as the Normalized Difference Vegetation Index 
(NDVI), humidity (WET), and LST (Xu et al. 2017). The 
NDVI component indicates the greenness of a specific area, 
WET reflects soil moisture characteristics, and LST repre-
sents the thermal characteristics of the studied environment. 
Spatial principal component analysis (SPCA) allows for 
weighing and determining the information value of different 
layers (Kang et al. 2018). Apart from indicators related to 
environmental quality assessment, landscape-related criteria 
are utilized to evaluate the geometric characteristics and spa-
tial patterns of green space. Meng et al. (2016) emphasize 
that the primary goal of landscape ecology is to investigate 
and enhance the connections between ecosystem compo-
nents, the environment, and ecological processes. Pattern 
recognition and analysis are critical research areas in land-
scape ecology, focusing on understanding the environmental 
changes in the composition and arrangement of landscape 
elements. Wu (2006) highlights pattern analysis as an impor-
tant topic, and Fan and Myint (2014) as well as Wang et al. 
(2020) have conducted research in this field. Furthermore, 
land surface characteristics are important indicators that 
influence various ecological processes (Hao et al. 2017). 
Monitoring land use/cover changes and analyzing landscape 
patterns have been the focal points of numerous researchers 
(Gillanders et al. 2008). Changes in land use/cover and land-
scape patterns can result in diverse ecological, hydrological, 
and geomorphological effects, as suggested by Boongaling 
et al. (2018). Many studies have examined the impact of 
landscape pattern changes on ecological processes and the 
correlation between these changes and their effects. Exam-
ples of such research include Echeverría et al. (2012) and 
Lausch et al. (2015). Talebi Khiavi and Mostafazadeh (2021) 
conducted a comprehensive assessment of land use change 
in a mountainous area using satellite imagery and the degree 
of single and integrated land use change dynamic. The study 
revealed a significant decrease in the area of natural lands 
within the study area. Chen et al. (2014) and Meng et al. 
(2016) investigated the spatial configuration of the urban 
thermal environment and its correlation with landscape pat-
tern metrics. Yu et al. (2022) developed a remote sensing 
index (ELI) to assess urban ecological viability in Wuhan. 
They used Landsat and MODIS data to evaluate Ecologi-
cal Livability Quality (ELQ) from 2002 to 2017. The study 
found a moderate ELQ (ELI = 0.6) with initial deteriora-
tion but recent improvement. Ecological viability was better 
near rivers and lakes, as well as during spring and autumn. 
Urban forestry mitigated external ecological degradation due 
to urban expansion. This research highlights the value of 
remote sensing for managing urban ecosystems and promot-
ing sustainable development. Hao et al. (2022) used RSEI 
from Landsat-8 data to evaluate ecological restoration in an 
abandoned mine for sustainable regional development. RSEI 
effectively assessed management in mining areas with bare 
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soil. Dispersion management increased regional RSEI by 
0.029 initially and 0.051 later, showing the positive impact 
of comprehensive management. This research underscores 
remote sensing’s potential for informing sustainable regional 
development through effective ecological management. 
Kurda (2022) created an urban ecosystem service index for 
sustainable city planning and well-being. Studying Siljan 
metropolis affected by mining, the research highlighted the 
importance of natural ecosystems and green spaces in pro-
viding essential services and improving quality of life. Inte-
grating green infrastructure into urban planning was empha-
sized for sustainable development and enhanced well-being. 
Li et al. (2023) examined land use and landscape pattern 
effects on vegetation diversity along urban river corridors. 
They analyzed various areas and found distinct responses 
from different plant life forms. Industrial areas influenced 
vegetation clustering, while native plant habitats correlated 
with surrounding land use and landscape pattern, which sup-
ports incorporating nature-based solutions in urban river 
planning to protect natural habitats.

As a relevant research studies on the landscape ecologi-
cal functioning in the the study area, Taleshi and Ghobadi 
(2012) underscore the importance of assessing land use 
compatibility in Karaj, specifically in district 4. They advo-
cate for the relocation of incompatible land uses, the provi-
sion of adequate urban facilities, and the preservation of 
green spaces as integral components of sustainable planning. 
Heydarzadeh and Danehkar (2016) focus on identifying 
environmental factors and strategies that prioritize the devel-
opment of urban green spaces in Karaj city, specifically in 
district 2. Their recommendations include the establishment 
of parks and the implementation of new green space plans, 
improvements in water networks, and the empowerment 
of local communities in the development and maintenance 
of green spaces. Utilizing GIS software, Abdi et al. (2018) 
conduct an analysis of maps and data to identify influential 
characteristics and propose a comprehensive plan for a well-
coordinated network of green spaces in Karaj city. Their 
objective is to achieve ecological balance and enhance the 
quality of urban green spaces. The literature review under-
scores the potential of remote sensing techniques in evalu-
ating urban ecological conditions and providing valuable 
insights for sustainable urban development decision-making. 
Researchers have employed various remote sensing-based 
indices to assess ecological viability, and landscape pattern 
analysis has emerged as a critical research area, emphasizing 
the influence of landscape patterns on ecological processes. 
However, an important research gap exists in understand-
ing the relationship between different eco-environment 
grades and landscape metrics, impeding a comprehensive 
understanding of how landscape patterns impact ecologi-
cal processes. Bridging this gap is crucial for enhancing 
environmental health and suitability, as well as guiding 

decision-making in sustainable urban planning and devel-
opment. Although some studies have explored the effects of 
landscape pattern changes on ecological processes, further 
research is needed to investigate the correlation between 
landscape pattern metrics and specific ecological effects. 
Addressing this knowledge gap would contribute to a more 
holistic comprehension of the interaction between landscape 
patterns and ecosystem dynamics. Consequently, conduct-
ing further research in these areas is essential for evidence-
based decision-making in sustainable ecosystem manage-
ment and development. However, remote sensing indicators 
are limited in predicting the impact of population growth on 
ecological quality because vital indicators like population 
dynamics are challenging to assess through remote sens-
ing-based approaches. Hence, there is a need for additional 
research to explore predicting future ecological changes in 
urbanized areas. 

The city of Karaj, situated adjacent to Tehran, was chosen 
as the focal point for this research due to its unique charac-
teristics. These include its diverse ethnic and cultural com-
position, significant capabilities in transportation, agricul-
ture, tourism, natural resources, human capital, and potential 
environmental threats. Karaj serves as a crucial residential 
hub, located approximately 48 km away from Iran’s political 
and economic center, Tehran. Its accessibility is facilitated 
by an extensive network of highways, main roads, a dedi-
cated route, and the Tehran-Karaj subway system, thereby 
enhancing its prominence. The favorable climatic and topo-
graphic conditions of the area have further contributed to its 
appeal, resulting in population growth and industrial devel-
opment, particularly along the main Tehran-Karaj-Qazvin 
Road. Considering these factors, the study area was selected 
for comprehensive analysis. The research aims to achieve 
the following objectives: (1) Analyzing spatial-temporal 
changes in the Risk-Screening Environmental Indicators 
(RSEI). (2) Evaluating the spatial characteristics of green 
space distribution patterns based on landscape metrics and 
RSEI values at both the class and landscape levels. (3) Iden-
tifying the relationship between RSEI values and the spatial 
pattern of landscape metrics.

Study area and methodology

Study area

Karaj County, situated in the Alborz province of Iran, 
serves as a prominent metropolis within the country. With 
a population of 2,413,041 individuals, it stands as one 
of Iran’s largest cities in terms of immigrant population. 
Karaj boasts a considerable number of production and 
industrial units, which are concentrated in various parts of 
the city, including designated industrial zones. Notably, 
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significant industrial development has taken place along 
the main Tehran-Karaj-Qazvin Road. This road serves 
as a hub for numerous production and industrial facili-
ties spread across different areas of the city, as well as 
within industrial towns. Karaj offers a range of tourist 
attractions, such as the renowned Karaj-Chalous Road, 
the picturesque Mehrshahr apple orchard, the esteemed 
Pearl Palace, and the historically significant village of 
Atashgah. The city’s accessibility is enhanced by a well-
developed network of highways, main roads, a dedicated 
route, and the Tehran-Karaj subway system, all of which 
contribute to its overall significance.

Data preparation and RSEI calculation

For this research, satellite imagery was utilized to conduct 
the analysis. Landsat 5 TM images captured on July 29, 
2010, and Landsat 8 OLI and TIRS images from Septem-
ber 2020 were acquired from the US Geological Survey 
(USGS) website. It was ensured that the images obtained 
from different time periods were consistent, thus ensur-
ing the comparability of the results. To prepare the satel-
lite imagery for analysis, radiometric correction was per-
formed using ENVI 5 software (Abdullah et al., 2011). 
This involved converting the digital number values of 
the satellite images into sensor reflectivity. Additionally, 
atmospheric correction was conducted for the visible and 
near-infrared bands of each phase using the FLAASH 
atmospheric correction tool (Amorim et al., 2022). To 
calculate the Risk-Screening Environmental Indicators 
(RSEI), several indicators were computed as raster lay-
ers. These indicators included the Normalized Difference 
Vegetation Index (NDVI) to represent greenness, Wetness 
(Wet) to reflect environmental dryness, Land Surface Tem-
perature (LST) as a local temperature change indicator, and 
Normalized Difference Built-Up Index (NDBI) to highlight 
human-induced environmental pressures (Amorim et al., 
2022; Meng et al. 2016; Xu et al. 2018).

Vegetation mapping and assessment

NDVI is widely employed to indicate vegetation growth and 
coverage status (Pettorelli et al. 2005), which can be expressed 
as follows (Eq. 1).

 Where, ρnir and ρred represent the reflectance of the near-
infrared and red bands, respectively.

(1)NDVI =
�nir − �red

�nir + �red

Retrieval of wetness

Kauth-Thomas transformation can produce three compo-
nents of humidity, greenness, and brightness, which are 
commonly used in environmental evaluations. The mois-
ture component can estimate the water content of soil and 
vegetation. The wetness component of TM and OLI has 
been obtained using specific formulas (Crist 1985; Baig 
et al. 2014).

In the formula, ρbule, ρgreen, ρswir1, and ρSwir2 rep-
resent the reflectance of the blue band, green band, short-
wave infrared band1, and band 2, respectively.

Retrieval of land surface temperature

Land surface temperature (LST) was evaluated as follows 
(Bertolo et al. 2012; Dadashpoor et al. 2019), (Eq. 4):

 Where, λ is the wavelength of the emitted radiance 
(11.435 μm for Landsat 5/7 and 10.9 μm for band 10 of 
Landsat 8); ρ is a constant (1.438 × 10 − 2 m K); ε is the 
land surface emissivity, which can be expressed as (Marzban 
et al. 2018; Asadi et al. 2019):

Also, Tsensor is the at-satellite brightness temperature in 
Kelvin and can be computed through Eq. (6).

Lλ is the at-sensor spectral radiance, while Gain and 
Bias are the band-specific multiplicative rescaling factor 
and the band-specific additive rescaling factor available in 
the head file of the used image. DN represents the digital 
number of a given pixel, and K1 and K2 are calibration 
coefficients for TM/ETM+/OLI sensor thermal band (Crist 
1985; Baig et al. 2014).

(2)
WetTM = 0.0315

�blue + 0.2021
�green + 0.3102

�red

+ 0.1594
�nir − 0.6806

�swir1 − 0.6109
�swir2

(3)
WetOLI = 0.1511

�blue + 0.1973
�green + 0.3283

�red

+ 0.3407
�nir − 0.7117

�swir1 − 0.4559
�swir2

(4)LST =

Tsensor[
1 +

(
� × Tsensor∕�

)
ln�

]

(5)

𝜖 =

⎧⎪⎨⎪⎩

0.995 NDVI ≤ 0

0.970 0 < NDVI ≤ 0.157

1.0094 + 0.047 ln NDVI 0.157 < NDVI ≤ 0.727

0.986 NDVI > 0.727

(6)Tsensor =
K2

ln(K1∕L�+1)
L
�
= Gain × DN × Bias
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Retrieval of normalized difference build up

NDBI in next equation is a normalized difference built-up 
index which is used to extract built-up area, first it was 
used for TM data by (Zha et al. 2003).

RSEI calculation and classification

In the next step, the remote sensing ecological index 
(RSEI) was calculated based on integrating the NDVI, 
Wet, LST, and NDBI, which expressed in Eq. (8).

The RSEI is a function of four indices (greenness, 
wetness, dryness, and heat) that has been extracted from 
remote sensing data (Guo et al. 2017). NDVI stands for 
greenness index and is used to determine the environ-
mental condition. The humidity component indicates the 
severity of the dryness of the environment and the LST 

(7)NDBI =
SWIR1 − NIR

SWIR1 + NIR

(8)RSEI = 1 − PCI
[
f (NDVI,Wet, LST ,NDBSI)

]

indicates the indicators related to the thermal condition 
of the environment, which is used as an index of local 
temperature changes. NDBI is an indicator that is used 
to show the pressures caused by human activities on the 
environment. The PCA technique is used to determine 
the weight of each factor based on the assignment of the 
load of each factor to the main components. In the pre-
sent research, regarding the four indices used, i.e., NDVI, 
NDBI, Wet, LST, the first component, (PC1), has justified 
more than 80% of the characteristics of the data set. Since 
the units and range of data used in calculating the RSEI 
index are different, before performing PCA, the values 
of the four indicators used were normalized between 0 
and 1. Following the acquisition of the four index con-
stituents, the RSEI index is derived through principal 
component transformation. The weight assigned to each 
indicator is objectively established according to their 
respective contributions to the initial principal compo-
nent (PCI). The computation of the principal component 
is conducted using PCA analysis within ArcGIS spatial 
analyst tools. In order to facilitate index measurement and 
comparison, the RSEIpci also needs to be normalized. 
Elevated RSEI values signify greater ecological resil-
ience; specifically, proximity to unity indicates superior 

Table 1   The characteristics of selected landscape metrics in the analysis of the spatial pattern of green spaces in the study area 

Variable Unit Range level Description Formulas

Contagion Index None 0 < COHE-
SION < 100

Class Patch cohesion index measures the 
physical connectedness of the 
corresponding patch type

�
1 −

∑n

i=0
pij∑n

i=0
pij
√
aij

�
×

�
1 −

1√
z

�−1
× 100

Percentage of 
Landscape area 
(PLAND)

% 0 < PLAND < 100 Class Percentage of the area of a particu-
lar patch type of total landscape 
area

100

A
×

n∑
i=0

�
ai
�

Edge density (ED) m/ha ED > 0 Class Amount of edge relative to the 
landscape area

∑n

i=0
e2
ik

A
10000

Largest patch 
index (LPI)

% 0 < LPI < 100 Class Percent of the total landscape that 
is made up by the largest patch

max aij
n
j=1

A
× 100

patch area (MN) Km2 MPS > 0 Land-
scape

Average patch size ∑n

i=0 (aij)

ni
×

�
1

10000

�

Shannon’s Diver-
sity Index

None SHDI ≥ 0 Land-
scape

Shannon’s diversity index is a 
popular measure of diversity in 
community ecology

−

n∑
i=0

�
Pi × lnPi

�

Aggregation Index % 0 ≦ AI ≦ 100 Land-
scape

Aggregation index is calculated 
from an adjacency matrix, which 
shows the frequency with which 
different pairs of patch types 
(including like adjacencies 
between the same patch type) 
appear side-by-side on the map

[
gij

max gij

]
× 100

Contagion Index % 0 < CON-
TAG ≦ 100

Land-
scape

Contagion is inversely related to 
edge density. When edge density 
is very low, for example, when a 
single class occupies a very large 
percentage of the landscape, 
contagion is high, and vice versa

1 +

∑m

i=1

∑m

k=1

�
Pi×

gik∑m
k=1

(gik)

�
×

�
ln

�
Pi×

gik∑m
k=1

(gik)

��

2ln(m)
× 100
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ecological environment quality. Subsequently, RSEI val-
ues were categorized into three equal domains within the 
range of zero to one (poor = 0-0.33, good = 0.33–0.66, 
excellent = > 0.66).

Calculation of landscape metrics to determine 
the composition and configuration of the green 
spaces

The Fragstats software, known for its user-friendly interface, 
can be employed to calculate landscape metrics (McGarigal 
et al. 2012). The latest updated version of this software offers 
enhanced capabilities, including the support and inclusion 
of criteria at the cellular scale and surface pattern criteria. 
Moreover, it provides the flexibility to utilize various sam-
pling methods for subsequent analyses. Given the emphasis 
of landscape ecology on the interconnectedness of spatial 
patterns and ecological processes, it becomes crucial to 
establish techniques for defining and measuring these spatial 
patterns, as highlighted by Jabbarian Amiri and Dezhkam 
(2020) and Esfandiyari Darabad et al. (2021). A quantitative 
assessment of the composition and spatial distribution of 
landscape elements can be achieved by calculating landscape 

metrics. These metrics serve as indices for quantifying spe-
cific spatial characteristics of patches, classes, or the overall 
landscape (McGarigal et al. 2012; Alaei et al. 2022). Select-
ing the proper metrics is highly depend on the objective of 
the study, landscape properties and ecological characteristics 
of an area. Landscape spatial pattern, cover type composi-
tion, degree of fragmentation, composition, diversity, and 
connectivity habitat quality are essential considerations in 
the selection of appropriate landscape metrics. Therefore, 
choosing the appropriate criteria from among the many cal-
culation criteria is one of the basic factors in the analysis 
of the landscape pattern (Gillanders et al. 2008; Chen et al. 
2014; Wang et al. 2020). In this research, first, all land-
scape metrics were calculated, and then those that showed 
no changes in the two study periods were set aside. Subse-
quently, based on the research objective, the significance and 
frequency of use in studies related to environmental quality, 
relevant landscape metrics related to pattern changes, con-
nectivity, and fragmentation were selected through literature 
review (Nazarneghad et al. 2020). It should be noted that 
correlation analysis and principal component analysis were 
utilized for the selection of landscape metrics. The summary 
of the selected landscape metrics has been shown in Table 1.

a) 

 

b) 

Fig. 1   The map of indices used in the calculation of RSEI in the year 2010, a NDVI, and b Wet

3802 Earth Science Informatics (2023) 16:3797–3810



1 3

Results

Analysis of spatio‑temporal RSEI changes

The Remote Sensing Ecological Index (RSEI) as a measure 
of ecological quality, derived by scoring the PC1 of four 
indices based on their attributes. The results of the calcu-
lated indicators used in the calculation of RSEI in 2010 year 
are presented in Figs. 1 and 2.

Figures 3 and 4 display the outcomes of the computed 
indicators utilized in the calculation of the RSEI for the year 
2020.

Table 2 presents the PCA data for the RSEI of the 2010 
Landsat 5 image and the 2020 Landsat 8 image. Notably, 
PC1 exhibits the highest eigenvalue among the four prin-
cipal components, accounting for over 70% of the infor-
mation in both images. This indicates that PC1 effectively 
represents the four indicators, capturing the majority of 
their information compared to the other three components. 
In the PC1 analysis of the 2010 image, Wetness and NDVI 
demonstrate positive values, indicating a positive contri-
bution to the ecological environment. Conversely, LST 
and NDBI exhibit negative values, suggesting a nega-
tive impact on the ecological quality of the environment. 

These findings align with ground observations. Wetness 
and NDVI exhibit similar behavior, while NDBI and LST 
share similar characteristics in terms of environmental 
quality assessment. These two groups display opposite 
signs, reflecting their contrasting contributions to the eco-
logical quality of the environment, thereby adhering to 
natural ecological principles. Conversely, the signs of the 
four criteria in the second to fourth components are not 
logically categorized like the first component. In the PC1 
analysis corresponding to the 2020 image, LST, NDVI, 
and Wetness values are negative, while NDVI remains 
positive. However, LST and NDBI consistently belong to 
the same group for both years, allowing for analysis based 
on the ecological quality of the study area. The signs of 
the four indicators in PC2, PC3, and PC4 for both the 2010 
and 2020 images do not align.

Figure 5 illustrates the spatial distribution of the RSEI 
over a 10-years period. The average RSEI value for 2010 
was 0.59, whereas it decreased to 0.25 in 2020. This signi-
fies a significant decline in environmental conditions in 
Karaj during this timeframe. The research findings indicate 
that the northern region of Karaj exhibited a more favora-
ble eco-environment in 2010 compared to the northwest-
ern, central, and southeastern regions, which experienced 

a) b)

Fig. 2   The map of indices used in the calculation of RSEI in the year 2010, a LST, and b NDBI
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degradation by 2020. The primary factor contributing to 
this degradation is the expansion of human settlements and 
an influx of individuals from other cities seeking employ-
ment opportunities in Karaj. Analysis of satellite images 
and data from the Statistics Center of Iran for both years 
reveals an increase in population density and heightened 
human activity, resulting in changes in land use and exten-
sive soil exposure. Consequently, there has been a consid-
erable reduction in the contributions of NDVI and Wetness 
to the RSEI, whereas the contribution of NDSI has sig-
nificantly increased when compared to the corresponding 
data from 2010.

Table 3 shows the statistical results of the three RSEI 
classes (0 to 0.33, 0.33 to 0.66, and greater than 0.66, which 
represents poor, good and excellent conditions). The analysis 
reveals an increase in areas with poor and good environmen-
tal quality from 2010 to 2020, indicating a decline in the 
natural environment quality over this period. The ecologi-
cal environment in Karaj has undergone significant changes 
overall. Particularly noteworthy is the substantial reduction 
in natural quality, which decreased from 55.63% to 2010 to 
7.21% in 2020. In light of these findings, it is recommended 
to incorporate additional indicators to achieve a harmoni-
ous development between human activities and the natural 
environment.

Spatial pattern of landscape change 
at the class‑level metrics in different RSEI conditions

We selected landscape metrics to capture the changes and 
evolution of the green space landscape metrics and RSEI. 
Table 4 presents the values of four class-level metrics 
(PLAND, LPI, AREA_MN, and COHESION), which 
offer supplementary insights into the class-level charac-
teristics arising from distinct patch arrangements within 
the landscape, as indicated by the literature. COHESION 
measures the physical connectivity of the corresponding 
land type. In both 2010 and 2020, the values of COHE-
SION increase across all three degrees of RSEI. However, 
this increase in the poor degree suggests landscape frag-
mentation. Furthermore, the COHESION metric exhibits 
lower values in the excellent condition compared to the 
good and poor levels of RSEI, indicating a reduction in 
the area of excellent-grade land and an increase in the 
areas classified as poor and good. PLAND examined the 
percentage of natural green areas within the landscape 
of the study area. The value of this metric has decreased 
over the study period, indicating a decline in the NDVI 
index and a significant deterioration in environmental 
quality in 2020. Throughout the study period, the index 
exhibited an increase in the poor class while showing a 

a) b)

Fig. 3   The map of indices used in the calculation of RSEI in the year 2010, a NDVI, and b Wet
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decrease in the good and excellent classes, indicating that 
patches became more scattered in both RSEI classes. The 
edge density (ED), which represents the proportion of 
edge length relative to the landscape area, did not undergo 
significant changes over the period. However, in both 
2010 and 2020, the poor class exhibited higher values 
compared to the good and excellent classes, suggesting 
that the area covered by the poor class is larger than that 
of the other classes. Regarding the landscape metric LPI 
value, it can be said that in the studied period, the size 
of LPI has decreased, while in the good and excellent 
classes, a slight increase in the mentioned metric has been 
observed.

Spatial pattern of landscape change 
at the landscape‑level metrics in different RSEI 
conditions

In this research, four landscape-level metrics were selected 
and presented in Table 5 to characterize the landscape. These 
metrics offer a holistic assessment of the overall structure, 
function, and changes across the entire area by integrating 
the characteristics of all patches. Furthermore, they pro-
vide insights into fragmentation, connectivity, diversity, 
and other relevant landscape features. Shannon’s Diver-
sity Index (SHDI) was utilized to measure the diversity of 
Remote Sensing Ecological Index (RSEI) classes. The SHDI 

a) b)

Fig. 4   The map of indices used in the calculation of RSEI in the year 2010, a LST, and b NDBI

Table 2   Principal components 
of the four factors used in RSEI 
calculation

2010 2020

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

LST -0.2899 0.6710 0.6769 0.0860 -0.2632 -0.5019 -0.8229 0.0389
NDBI -0.4256 -0.6257 0.3694 0.5392 -0.6712 -0.2155 -0.3747 0.6021
WET 0.6599 0.1836 0.0079 0.7284 0.08427 0.7793 0.4269 0.4508
NDVI 0.5470 0.3527 0.6365 0.4136 0.6877 0.3070 0.0076 0.6577
Eigenvalue 1.5347 1.1732 0.7398 0.5505 1.5683 1.2675 0.8436 0.3201
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increased to 0.34 in 2015 compared to 2010, indicating that 
patches became more complex and diverse over time. The 
contagion index (CONTAG) is inversely correlated with 
the edge density (ED). A high CONTAG value suggests a 
dominant single class in the landscape, while a low value 
indicates greater heterogeneity. From 2010 to 2020, the 
CONTAG value decreased, implying a reduction in edge 
density at the class level and an increase in aggregation. 
The aggregation index quantifies the level of spatial pat-
tern aggregation. Although its value remained consistently 
high throughout the study period, there were no significant 
changes observed. The mean patch size (MPS) exhibited 

a) b)

Fig. 5   Spatial distribution of RSEI in the study area, a 2010, b 2020

Table 3   The difference in total area value of RSEI classes in studied 
years

2010 2020

Area (km2) (%) Area (km2) (%)

Poor 791.73 35.17 870.70 38.61
Good 208.82 9.20 1221.92 54.18
Excellent 1254.70 55.63 162.59 7.21

Table 4   Average class-level landscape metrics of the green spaces in 
each RSEI grade in Karaj from 2010 to 2020

Year Class level Landscape metrics

COHESION PLAND ED LPI

2010 Poor 99.94 96.98 0.091 96.87
Good 97.04 2.74 0.119 2.74
Excellent 14.68 0.14 0.032 0.01

2020 Poor 99.96 90.33 0.17 90.31
Good 98.33 8.84 0.32 8.9
Excellent 68.76 0.81 0.15 0.20

Table 5   Average landscape level metrics of the green spaces in each 
RSEI grade 2010 and 2020 in study area

Landscape 
metric

MPS SHDI AI CONTAG​

Year

2010 1045.214 0.14 98.86 93.96
2020 619.675 0.34 98.30 80.97
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a significant decrease from 2010 to 2020, declining from 
1045.2 km2 to 619.6 km2. This indicates a substantial reduc-
tion in the average size of patches. Overall, the analysis 
of landscape metrics demonstrates that the landscape has 
experienced fragmentation, resulting in a loss of ecologi-
cal quality over the study period. The changes in the value 
of AI landscape metric were a slight decreasing during the 
study period.

The relationship of landscape patterns and RSEI

The analysis in this study focused on examining the rela-
tionship between changes in landscape pattern and the cor-
responding RSEI grade. This investigation was conducted 
at both the class and landscape levels to gain insights into 
the correlation between Remote Sensing Ecological Index 
(RSEI) scores and landscape characteristics. To explore the 
association between perspective and RSEI, a correlation 
analysis approach, as described in the cited references, was 
employed. This approach allowed for a systematic examina-
tion of the relationship between different perspectives and 
the corresponding RSEI values.

Figure 6 presents the correlation between the selected 
landscape metrics and the average coefficient of determina-
tion. The correlation between RSEI and landscape metrics 
was found to be strongly positive or negative, as supported 
by the cited sources. The CONTAG metric exhibited a 
highly robust correlation with RSEI grades. Both CONTAG 
and AI metrics displayed a strong and positive relationship 
with the RSEI excellent grade, while demonstrating a strong 
and negative relationship with the poor and good grades. 
Conversely, the SHDI and MPS metrics showed a strong 
and negative relationship with the RSEI excellent grade, but 
a positive and strong relationship with the poor and RSEI 
good grades. However, the effects varied. Undoubtedly, a 
higher diversity in the natural cover of the landscape and 
larger average size of green space patches would positively 
influence the environmental quality. The analysis investi-
gating the relationship between landscape-level metrics and 
RSEI grades revealed predominantly positive or negative 
correlations between the two.

Conclusions

The current study utilized an approach to directly character-
ize the regional ecological condition by employing the eco-
logical indicator, RSEI. Subsequently, the research analyzed 
the spatio-temporal modifications of the Remote Sensing 
Ecological Index (RSEI) and the diversity in landscape pat-
terns at both the class and landscape levels. The calculation 
and spatial changes of RSEI in Karaj city demonstrated the 
possibility of evaluating the ecological quality of the urban 

area based on environmental conditions. This quantitative 
approach enables the classification of ecological conditions, 
and its spatial mapping facilitates the analysis of factors influ-
encing changes in different regions. Moreover, RSEI can be 
utilized to predict regional ecological changes in various 
geographical areas. As an innovation, this study quantified 
the spatial pattern of green spaces using landscape metrics, 
allowing for a detailed assessment of the changes in the land-
scape characteristics over the studied period. The assessment 
of the correlation between landscape metrics and RSEI val-
ues provide additional information in the present study. In 
this study, the relationship between land metrics and RSEI 
was investigated using correlation analysis. According to 
Fig. 6, it is evident that the condition in 2010 was superior to 
that in 2020. In 2010, the excellent grade was assigned to the 
northern and eastern parts of Karaj city. This allocation was 
because Karaj city had recently been separated from Tehran 
province and had become an independent city, with limited 
growth in the built-up area at that time. However, as the city 
gradually developed and the population density increased, the 
natural area decreased. Poorly planned expansion led to nega-
tive changes in the area, ultimately resulting in a decline in 
environmental quality. The analysis of landscape metrics also 
revealed that RSEI indicators are influenced by these met-
rics, exhibiting a linear relationship between them. Increased 
fragmentation and decreased cohesion in the landscape had a 
detrimental effect on wet and NDVI indexes. The study found 
that the quality of Karaj’s eco-environment had declined over 
the course of ten years, as indicated by a decrease in the 
Remote Sensing Ecological Index (RSEI) value from 0.59 
to 0.25. Additionally, the research identified a progressive 
increase in fragmentation, isolation, and irregularity in the 
landscape characteristics of the Karaj region. Furthermore, 
it was found that human activities have an escalating impact 
on regional environmental changes, and varying degrees of 
RSEI show positive or negative correlations with landscape 
pattern diversity, providing valuable insights for managing 
and achieving optimal environmental landscape patterns, as 
cited. According to the results, improved spatial arrangement 
can be achieved through the implementation of green-based 
management strategies. In other words, the development 
of existing green spaces and the construction of new green 
spaces should focus on enhancing connectivity and increas-
ing the size of green patches. Regional ecological landscape 
managers should consider the landscape pattern of the entire 
region in their management plans. Additionally, the develop-
ment of urban plans on a regional scale should be aligned 
with efforts to improve environmental quality and elevate the 
poor levels of the RSEI index towards the good and excellent 
classes. The study has limitations in terms of its time frame, 
which may not capture long-term ecological changes in the 
region. Although valuable in assessing the spatial pattern 
of green spaces, the study does not explore the underlying 

3807Earth Science Informatics (2023) 16:3797–3810



1 3

Fig. 6   Relationships between four landscape-level metrics and the area percentage of RSEI grades
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causes of these changes, such as urbanization and land-use 
changes. Additionally, important aspects like biodiversity and 
specific habitat types are not considered in the assessment 
of ecological conditions. Future research should conduct a 
more comprehensive analysis, incorporating a broader tem-
poral scale and multidimensional factors, to gain a deeper 
understanding of the ecological condition in the study area.
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