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Abstract
Hyperspectral imaging is a prominent land use land cover (LULC)classification technology. However, due to fewer training 
samples, LULC classification using hyperspectral images remains complicated and labour-intensive. We have presented a 
Deep Kernel Attention Transformer (DKAT) to overcome these issues in classifying Land Use Land Cover classes. Before 
classifying the land cover, t-Distributed Stochastic Neighbouring Embedding (t-SNE) is exploited to extract the features 
from the LULC by applying the probability distribution function. To quantify the resemblance among the two points Kull 
Burk-Divergence (KL) is employed. Then, a searching-based band selection method is used to select the bands. The grey 
wolf optimization (GWO) technique is used in the searching-based band selection method to determine the informative 
bands. After choosing the informative bands from the hyperspectral data cube, we must classify the land cover. Experimental 
results are conducted by using five publicly available benchmark datasets. They are Indian Pines, Salinas, Pavia University, 
Botswana, and Kennedy Space Center. The classification accuracy is calculated using the overall accuracy, average accuracy, 
and kappa coefficient; we have achieved 99.19% overall accuracy, 99.32% average accuracy, and 99.14% kappa coefficient.

Keywords  Hyperspectral images · Land use/land cover · Deep kernel attention transformer · t-distributed stochastic 
neighboring embedding · Grey wolf optimization

Introduction

As long as the significance of anthropogenic activities, vari-
ations in LULC are inconsistent. The abovementioned varia-
tions are like financial objectives, such as wood exploration, 
agriculture, and cattle ranching (Christovam et al. 2019). In 
particular, transformations in LULC will happen because of 
deforestation. Furthermore, certain expectations concern-
ing deterioration as well as submergence circumstances will 
increase the LULC changes, and these problems raise an 
increase in greenhouse gas secretion and loss of biodiversity 
(Mas 1999; Mangan et al. 2022). Therefore, the data that the 
LULC has plays a vital role in climate and environmental 
change studies. Thus, the universal concern is to use all the 
requirements to get superior LULC maps. These maps will 

provide data for arranging and assessing natural resource 
management, developing sustainable practices, and model-
ling environmental variables (Adam et al. 2014). The images 
that are most prevalently used for LULC change classification 
and detection are Multispectral (MohanRajan and Loganathan 
2021; 2022; 2023; MohanRajan et al. 2020), and Hyperspectral 
images (Navin and Agilandeeswari 2020a, b; Agilandeeswari 
et al. 2022). The main issues in the HSI over the past ten years 
have been spectral dimensionality and the requirement for par-
ticular spectral-spatial classifiers (Yadav et al. 2022).

Rapid, extensive changes in land cover are currently occurring 
in several areas of the world. Several of these nations, including 
Brazil, Columbia, Indonesia, Mexico, the Ivory Coast, Venezuela, 
and Zaire, are the focal points of most of this activity (Mas 1999). 
Due to the possible consequences of erosion, increased run-off 
and flooding, rising CO2 concentration, climatological shifts, 
and biodiversity loss, these changes in land cover, especially the 
destruction of tropical forests, have drawn attention (Fontan 1994). 
To map large areas and get multitemporal information from the 
large covered areas is a time-consuming and expensive task (Kav-
zoglu and Colkesen 2009). To overcome these issues, the satellite 
imagery technique is the most useful (Lv and Wang 2020). Since 

 *	 Agilandeeswari L 
	 agila.l@vit.ac.in

	 Ganji Tejasree 
	 ganji.tejasree2020@vitstudent.ac.in

1	 School of Information Technology and Engineering, Vellore 
Institute of Technology, Vellore 632014, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-023-01109-1&domain=pdf


594	 Earth Science Informatics (2024) 17:593–616

1 3

1970, remote sensing images have contributed to persistent as 
well as legitimate knowledge of the land surface area (Petitjean 
et al. 2012). These satellite images have the proficiency to grab the 
entire land (Puletti et al. 2016). Some of the satellite hyperspectral 
sensors are AVIRIS, ROSIS, Hyperion, and MODIS (Haq et al. 
2021a; Haq et al. 2020; Haq et al. 2021b). The captured images 
extract the LULC information using image processing techniques. 
An aforementioned satellite community has emerged the improve-
ments in image classification approaches throughout the period 
of time to map the LULC (Haq 2022a). Through digital image 
processing, there is an extent for mapping the LULC. However, 
as a result of numerous factors corresponding to the procedure, 
building the LULC maps using image processing techniques is a 
challenging task (Manandhar et al. 2009).

Hyperspectral remote sensing imagery emerged a few dec-
ades ago and can gently enhance LULC mapping. A large 
number of uninterrupted spectral bands, along with diminutive 
bandwidths could be accumulated for hyperspectral imaging 
(Bioucas-Dias et al. 2013). These images will give more details 
about spectral bandwidths collected by multispectral sensors. 
And it will provide new opportunities for LULC applications 
(Chutia et al. 2016). And also, it will give a large quantity of 
information that leads to the Hughes phenomenon. To help the 
difference between classes, the amount of predictor features 
may add data. Also, it will raise the complexity. A small dataset 
sample size may not be sufficient to characterize this complex-
ity. To decrease the complexity, we have to add more features 
rather than increase the dimensions of the data (Maxwell et al. 
2018). As a consequence of the confined proportion of training 
data specimens, in addition to the nonessential details exhibited 
across all features, hyperspectral image classification (HSI) is 
a difficult task. And also, the uncertainties accompanying the 
atmospheric and geographic effects present in the spatial resolu-
tion. Some machine learning algorithms like supervised, unsu-
pervised, and semi-supervised classification methods are availa-
ble to get high LULC classification accuracy using hyperspectral 
images (Haq et al. 2021c). Supervised classification will be used 
when the user has labeled input samples. Some supervised clas-
sification algorithms are random forest (RF) and support vector 
machine (SVM) (Ghamisi et al. 2017; Haq et al. 2022). Unsu-
pervised classification is used when the user has unlabelled sam-
ples; the training model will take the labels from them. Some 
unsupervised classification algorithms are k-nearest neighbors 
(Cariou et al. 2020). Semi-supervised classification will be used 
when the user has more labeled and fewer unlabelled samples. 
Some of the semi-supervised classification algorithms are self-
organizing algorithms. Each algorithm will give the best results 
based on the datasets we have used (Ma et al. 2016).

In recent years, for hyperspectral image classification (HSIC) 
use of deep learning-based algorithms has been increasing, and 
they are achieving good results in LULC classification (Haq 
2022b). To get high LULC classification accuracy, we must per-
form feature extraction and band selection before classification. 

This helps us remove the redundancy among the features, avoids 
the Hughes phenomenon, and decreases the computational cost. 
When we have high-dimensional input features in the dataset, we 
have to extract the features from that data. Here are some of the 
feature extraction methods, PCA (principal component analy-
sis) (Hotelling 1933), autoencoders (AE), LDA (linear discrimi-
nant analysis), and t-SNE (stochastic neighboring embedding). 
PCA will be used to find the subspace of principal components 
from the input feature vectors (Fauvel et al. 2009). To distin-
guish the low-dimensional hyperspace based on miscellaneous 
classes LDA is used (Chang and Ren 2000). LDA and PCA are 
known as global linear algorithms, that could never perform 
efficiently in nonlinear scattered data circumstances (Kambhatla 
and Leen 1993). As a consequence of these arguments, a cou-
ple of researchers have suggested nonlinear feature extraction 
algorithms for hyperspectral images (Zhang et al. 2008). They 
are ISOMAP (isometric mapping), LLE (local linear embed-
ding) (Bachmann et al. 2005), and spherical stochastic neighbor-
ing embedding (SSNE) (Lunga and Ersoy 2012). Particularly, 
the above-mentioned nonlinear feature extraction approaches 
to handle an individual feature as input, i.e., spectral features 
(Segl et al. 2003). A multiple-feature extraction technique to 
subordinate a probability-preserving projection structure to get 
more features from the data, i.e., t-SNE. A probability distribu-
tion is fabricated based on t-SNE for each feature (Devassy and 
George 2020).

To perform the non-destructive diagnosis to get significant 
information from the different bands in hyperspectral images, 
t-SNE is used. a t-SNE-based dimensionality reduction method 
to analyze the ink. Nonlinear equivalence features among the 
spectra are used to extract the features and measure them 
through a lower dimension t-SNE. To validate ink spectral 
information graphically and measurably, t-SNE is giving good 
results compared to other feature extraction methods (Devassy 
and George 2020). A modified stochastic neighbour embedding 
(MNSE) in favour of numerous feature dimensionality reduc-
tion. This will build a probability distribution function based on 
t-SNE for the respective feature. Compared to additional ongo-
ing dimensionality reduction techniques, the intended approach 
has been utilizing a hyperspectral image’s spectral and spatial 
features. By using MNSE the hyperspectral image classification 
accuracy is also increased (Zhang et al. 2013).

Several studies have been conducted on the band selec-
tion strategy algorithms; a Minimum Noise band selection 
technique is suggested in (Bajwa et al. 2004). Depending 
on the characteristics of each band, the minimum noise 
method will work, that bands are represented by the high 
signal-to-noise ratio (SNR) and low correlation. A progres-
sive band selection method has been proposed in (Ettabaa 
and Salem 2018), which differs from all the traditional band 
selection methods. This is going to be approving the more 
than a few picked bands; out of that, distinct endmembers are 
exploited for spectral unmixing. Researchers are focusing on 
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optimization-based band selection methods to improve clas-
sification accuracy. For band selection global optimization 
algorithms are used; they are the GSA (gravity search algo-
rithm) (Zhang et al. 2019), GA (genetic algorithms) (Saqui 
et al. 2016), PSO (particle swarm optimization) (Zhang et al. 
2017), and FA (firefly algorithm) (Su et al. 2015). Due to 
low convergence speed, the gravity search algorithm does 
not satisfy the global search band selection strategy. Genetic 
algorithms have a more significant number of parameters; 
owing to that, the execution is complex; there is a possibility 
to fall into local optimum readily. This is also not giving good 
results for global search band selection. The band discovery 
rate is low when firefly algorithms are used. The accuracy 
rate is low, and the convergence speed is also very low. To 
overwhelm these issues, a contemporary heuristic algorithm 
is suggested. That is Grey Wolf Optimization (GWO), which 
was introduced in 2014. GWO has fewer modifications in 
parameters, high execution, and rapid convergence compared 
to other optimization methods, but it still has a few flaws. 
For example, while solving multimodal functions, the con-
vergence speed is slow, as well as that is uncomplicated to 
descend victim to the drawbacks of local extremes (Wang 
et al. 2022). Because of this action, we have used the global 
search-based grey wolf optimization (GWO) band selection 
method to select the bands because GWO gives very few 
computational results compared with other existing optimi-
zation methods.

Semi-supervised band selection using an optimal graph 
(BSOG) is proposed in (Teng et al. 2022). It will perform the 
band selection as well as it will learn the local structuring 
bands. This intellectual similarity matrix is accommodative 
in contradiction to demonstrating the input similarity matrix 
to find out greater local configuration. A particular superlative 
band subset might be picked by assessing the gained projec-
tion matrix W. The proposed method is giving better results 
than the other existing methods. A modified Grey wolf optimi-
zation (MGWO) to select the number of bands from a scene is 
proposed in (Wang et al. 2021). The operations are performed 
based on the index of grey wolves. The intended technique is 
evaluating the variation of a particular band and calculating 
the worst fitness function. The suggested technique accom-
plished higher results for hyperspectral image classification 
than the other one. A band selection approach based on a 
modified cuckoo search optimization surrounded by correla-
tions following the initialization procedure is demonstrated in 
(Sawant et al. 2019). The metaheuristic cuckoo search algo-
rithm might drop into the local optimum solution. At the same 
time, they have initiated a strategy under interconnections to 
avoid the decline toward the local optimum solution.

Hyperspectral imaging is used to capture images; these 
images have rich spectral and spatial information. Spectral 
and spatial information is observed from the earth, and the 
generated image will be stored in the hyperspectral data cube. 

This data cube is 3D, two sides of the cube have spectral 
information, and one side has spatial information. The pro-
cedure of hyperspectral image classification is to establish 
the land-cover class of individual hyperspectral pixels, which 
are presented in hyperspectral images. As a consequence of 
the absence of accessibility of hyperspectral datasets that are 
available in public and the large size of the land cover classes, 
hyperspectral image classification is difficult. Since 2012, 
researchers have been focusing more on deep learning meth-
ods for LULC classification, and the classification results are 
promising (Otter et al. 2020). The deep learning techniques are 
enumerated towards spectra-spatial-based and spectral-based 
approaches. Spectral-based approaches are familiar with the 
spectral signatures of a single pixel for hyperspectral images. 
The spectral-spatial-based methods are used to explore the 
adjacent hyperspectral pixels of hyperspectral image classifi-
cation. The convolutional neural network (CNN) as well as the 
fortunate deep learning algorithm are the most prevalent (Haq 
et al. 2023; Haq 2022c). Because it will use the hidden layers 
to extract the deep features for LULC classification (Lee and 
Kwon 2017). First, for HSI classification CNN is turned out to 
be used through various hidden layers. Then, to classify HSIs 
directly from their spectral domain, a deep convolutional neu-
ral network (deep-CNN) is employed. To withdraw the spectral 
features from hyperspectral images, 1D-CNN is exploited. But 
it involves input in a one-dimensional vector. 2D-CNN is also 
introduced for both spectral and spatial hyperspectral image 
classification, this combines the spectral and spatial features 
to give better results for classification. However, it is missing 
some information from spectral features (Roy et al. 2019).

Land use/ land cover (LULC) data obtaining is an essential 
stage because the source of information is utilized to receive 
the environmental variables, to improve the high-quality 
LULC maps LULC classification is used. Hyperspectral 
images have several issues: holding abundant spectral data, 
high dimensionality of information, and a smaller amount of 
training instances. Because of these issues, LULC classifica-
tion is difficult. To overcome these issues, (Christovam et al. 
2019) proposed supervised classification methods. They are 
random forest (RF), support vector machines (SVM), and spec-
tral angular mapping (SAM). RF and SVM are determined 
along with 176 surface reflectance bands. PCA is used for the 
dimensionality reduction, and for classification, SVM and RF 
were used. The hyperspectral image classification has achieved 
good results using the SAM, SVM, and RF. To minimize the 
spectral shift produced by the adjacency factor, a correlation 
coefficient-weighted spatial filtering operation technique is 
suggested (Yang et al. 2022). To introduce the operation into 
the kernel collaborative representation method with Tikhonov 
regularisation (KCRT), the weighted spatial, spectral KCRT 
method is used to construct the land cover classes. The main 
problem of this proposed method is to label a pixel in hyper-
spectral images due to small-sized labeled samples.
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An attention mechanism was also introduced to get high 
classification accuracy. Since CNN struggled to represent 
long-distance dependencies to gather global context data, the 
bulk of attention techniques for HSI classification now in use 
is based on the convolution layer. As a result, classification 
accuracy might be improved. Adding the channel attention 
mechanism to a squeeze-sand-excitation network (SENet) 
enhanced the classification accuracy (Hu et al. 2018). To 
enhance the feature maps using a squeeze operator and an 
excitation operation, a spatial-spectral squeeze-and-excitation 
network (SSSE) has been proposed. Additionally, including 
the attention mechanism is a well-known model, that can sig-
nificantly enhance categorization performance. To compute 
the attention map, the sigmoid function, as well as the tanh 
function, was used (Wang et al. 2019). An extreme learning 
machine (ELM) ensemble method was proposed in (Su et al. 
2017), to achieve good accuracy. By using correlation analy-
sis, they have divided the spectral bands into Multiview. They 
have used random rotation to view the multiple coordinate 
spaces. Then, ensembled strategy pruning is designed for low 
complementary and, consequently, classification results.

Very recently, a model called transformers was introduced for 
hyperspectral classification. Transformers are developed for natu-
ral language processing (Mishra et al. 2023). Transformers will be 
working based on the self-attention mechanism (He et al. 2021). 
Transformers will be used attention to design a global depend-
ency across a concatenation by time of input. To transform the 
input data from one sequence to another, a self-attention encoder 
and decoder are used. These decoder and encoder sequences are 
known as “tokens”, in the model, the tokens are represented as 
feature vectors in the primary data. The transformers are also 
used to extract the features from sequence data. Transformers 
will give the best weights to the initial data by using a multi-layer 
perceptron (MP). The transformer’s mapping considers it when 
a piece of exhaustive information is implemented to an image 
data. And it leads to a sudden intensification in the model’s size 
and a significant computational and training overhead. Therefore, 
image feature extraction is limited in transformers. To classify an 
image, we have various transformer models: vision transform-
ers (ViT) (Palani and Loganathan 2023a, b; Aberna et al. 2023), 
Swin transformers (SwinT) (Agilandeeswari and Meena 2023), 
DeiT, and so on. The tokens are fixed scale, vision transformer 
will take all the tokens in a fixed size scale; because of this ViT 
is unstable for the vision applications. Swin transformers are also 
used for LULC classification, but their computational complexity 
will depend on the image size. And also, it is used to enable the 
development of hierarchical feature maps (Zhang et al. 2022). 
A multiscale convolutional embedding module with transform-
ers for hyperspectral images is proposed in (Jia and Wang et al. 
2022). To make use of the unlabelled samples, a self-supervised 
pre-training task is also developed. For the mask autoencoder, 
the proposed pre-training technique addresses the masks only 
on equivalent tokens away from the central pixel in the encoder.

The contribution of this paper is to classify the Land Use/
Land Cover classification using hyperspectral images with 
a deep kernel attention transformer algorithm to get high 
classified accuracy.

The remaining paper is arranged like this, The proposed 
method is elaborated in Section II, the dataset description is 
given in Section III, evaluation metrics are explained in Sec-
tion IV, and Section V demonstrates the experimental results 
followed by limitations of the proposed method and future 
scope. Finally, the conclusions are drawn in Section VI.

Proposed method

There has been a relatively new attempt to apply deep learning 
approaches to classify the land use/land cover (LU/LC) using 
hyperspectral images. However, there are still some difficul-
ties in this area due to limited labels. To overwhelm above 
mentioned difficulties, a deep kernel attention transformer 
(DKAT) is suggested to classify the land use/ land cover 
(LULC) classification using hyperspectral images. First, we’re 
extracting the features from the dataset using t-distributed sto-
chastic neighboring embedding (t-SNE); this will apply the 
probability function to get the features. To pick the informa-
tive bands from the extracted features, a grey wolf optimizer 
(GWO) is applied. Then we apply the classification method 
on the selected bands, i.e., deep kernel attention transformer 
(DKAT), to get the accurate classified results. Figure 1 shows 
the proposed framework of the DKAT-based land use/land 
cover (LULC) classification. In satellite image classification 
approaches, the single-feature extractors will recognize the 
majority of selective features. Without taking into considera-
tion, the spatial features of an adjacent pixel, single-feature 
extractors want to investigate respective pixels one at a time 
through their spectral features. To obtain efficient data across 
all the pixels, extracting complicated characteristics based on 
each spectral and spatial region is crucial in LULC classifi-
cation using hyperspectral images. Here are the reasons to 
use the t-SNE in this work; the uppermost significant point is 
that t-SNE holds the ability to maintain both global as well 
as local forms of the data. An additional purpose of t-SNE is 
that it will be used to designate the probability equivalence in 
connection with the high- to low-dimensional feature interval. 
Eventually, t-SNE presents good results for both nonlinear 
as well as linear data. The reason for selecting the GWO, it 
is a global optimization algorithm that can find the best pos-
sible solution for the band selection problem, even if it’s non-
convex. GWO is indeed an efficient algorithm. It can find the 
global optimal solution in a reasonable amount of time, which 
makes it a great tool for solving complex problems. GWO’s 
robustness is one of its greatest strengths, and it makes it suit-
able for a wide range of applications, including band selec-
tion problems where the initial conditions can be tricky to 
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determine. With GWO, we can have confidence that we will 
get accurate results regardless of the initial conditions. The 
reason for selecting the Deep Kernel Attention Transformer is 
that it is a recently proposed classifier model for hyperspectral 
images. Learning the long-range dependencies between pixels 
is critical for hyperspectral images since the spectral bands 
contain information about different parts of the image. To 
overcome these flaws, the DKAT model is proposed, which 
can take the features from a kernel attention mechanism to 
capture the dependencies. DKAT is an excessive model for 
hyperspectral image classification because it is robust to noise. 
Even though hyperspectral images can be noisy, DKAT can 
ignore the noise and focus on the important features of the 
image to achieve high accuracy. Its kernel attention mecha-
nism is particularly useful for capturing spectral band infor-
mation, making it a promising classifier for improving hyper-
spectral image classification.

t‑SNE (t‑ distributed stochastic neighbouring 
embedding)

Vander Maaten and Hinton developed the t-SNE algorithm 
in 2008. This algorithm can convert the higher dimensional 
values into lower dimensions. The elaborated divergence 
of traditional SNE (stochastic neighbouring embedding) is 
t-SNE, it is designed to meet the needs of a single-feature 
nonlinear dimension diminution. This is going to work in 
familiar with the standardization about the halved expanses 
as long as a combined probability dissemination beyond the 
contribution of representative pairs. High-dimensional inter-
vals among data points towards the conditional probabilities 
will be transformed initially by SNE. In such a way that it 
will portray the common features. The resemblance of Xk to 
measurement point Xl is announced through the conditional 
probability Pk∕l . And also, the probability of Xl will be iden-
tified as employing Xk as its neighbour, if the neighbours are 
incorporated in the same way to their probability density 
subject to the Gaussian centered at Xk . It is represented by

Here, the variance of the Gaussian is represented as �i , it 
is concentrated explicitly on datapointXk . Additionally, the 

(1)Pk∕l =
exp(−���Xk − Xl

���2∕2�2)
∑

k≠lexp(−���−Xk − Xl
���2∕2�2

i
)

t-SNE algorithm acknowledges the independent variables 
as the “perplexity”. It could be ascertained as an advance 
concerning more than a few efficient neighbours. Perplex-
ity is determined scientifically as in the following equation

Here, H(pi) is represented as the Shannon entropy, Pi is 
represented to calculate in bits.

This approach relies on the pairwise intervals among the 
points; it will spontaneously identify the variance of �i , it 
ensures that the adequate number of neighbours matches the 
perplexity input by the user. To prevent overcrowding, the stu-
dent t-distribution is used by t-SNE. It utilizes just one degree of 
freedom. The allocation of the probability at a lower dimension 
is ql∕k , it can be mathematically defined in the below equation

The lower dimensional equivalents yk and yl of the high-
dimensional data points Xk andXl . To calculate the conditional 
probability Eq. (1) is used. If the lower-dimensional equiva-
lents of yk and yl are used to model the high-dimensional data 
points Xk andXl , then the conditional probability of Pk∕l and 
qk∕l is equal. If a mismatch has occurred between the Pk∕l and 
qk∕l , SNE will find the lower-dimension representations to 
avoid the mismatch. To evaluate the correspondence among 
two distributions, Kullback-Leiber (KL) divergence is used. 
To underestimate the measurement of comprehensive data 
points of KL divergence, SNE will be using the gradient 
descent method. As long as the KL divergence is not sym-
metric, an immense volume of mistakes has been eventuated. 
To underestimate the KL divergence among the conditional 
distributions of Pk∕l andqk∕l , a joint probability distribution P 
is a single KL divergence in the lower-dimensional space. A 
joint probability distribution of Q in the lower dimension is 
diminished. The cost function has been provided as

(2)perp
(
Pi

)
= 2

H(pi)

(3)H(pi) = −
∑

k

Pk∕llog2Pk∕l

(4)ql∕k =
(1 + ��yl − yk��2)−1∑
k≠l(1 + ��yk − yl��2)−1

(5)C = KL(P||Q) =
∑

l

∑

k

plklog
plk

qlk

Fig. 1   The proposed architecture of DKAT-based classification
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where, plk is given by in Eq. (6) and qlk can also be used 
the Eq. (4). Minimizing the cost function in Eq. (5) is now 
mentioned as a symmetric SNE.

The probabilities across the innovative distance are dem-
onstrated in the following equation

Here, n represents the size of the dataset. Figure 2 illus-
trates the extracted features from the Pavia University and 
Salinas datasets.

(6)Pl∕k =
(Pl∕k + Pk∕l)

2n

Algorithm   for Hyperspectral image classification using DKAT
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Band selection using Grey Wolf Optimisation

Band selection is used to choose the informative bands from 
the hyperspectral data cube. By using the combinational opti-
mization problem, band selection is formulated. Depending 
on the class separability evaluators and the classification accu-
racy in this paper, we have proposed a new fitness function. 
We have selected a new meta-heuristic method designated as 
a grey wolf optimization (GWO) to optimize that fitness func-
tion. Meta-heuristic means, a high-level independent algo-
rithmic framework (developed for optimization algorithms). 
Mirjaliali Mohammed and Lewis developed grey wolf optimi-
zation in 2014 from Griffith University, Australia. This meta-
heuristic algorithm has been used to solve many different 
fields. It is developed by taking the inspiration of nature and 
is also related to physical phenomena, evolutionary concepts, 
or animal behaviour. GWO is stimulated through the social 
hierarchy and hunting procedure of grey wolves. These grey 
wolfs are from the candidate family. Grey wolves are estab-
lished in an immensely structured pack, and the volume of 
the pack is 5 to 12. Various ranks have been given to the pack 
of wolves, they are Alpha, Beta, Delta, and Omega wolves. 
Figure 3 represents (a) the Hierarchy of grey wolf organiza-
tion, and (b) the grey wolf hunting process.

Alpha wolf  The grey wolf family’s captain is called the 
alpha wolf. A male alpha wolf and a female alpha wolf 
will represent the pack’s leader. Other members will follow 
the instructions given by the Alpha. It is accountable for 
decision-making regarding sleeping places, hunting, time 
to wake up, and many others.

Beta wolf  A beta wolf is represented as a secondary stage of 
the grey wolf hierarchy. The superior contender to lead the 
wolves is this wolf. The alpha wolf will benefit from it for 
both decision-making and other purposes. The alpha wolf 
will receive input from the beta wolf.

Delta wolf  If the wolf is neither Alpha, Beta, nor Omega, 
it is Delta wolf. It dominates the omega wolf; to avoid the 
hazards, it will work for the pack. Delta wolf will deliver 
the food to the pack.

Omega wolf  The lowest order of grey wolf is the Omega 
wolf. This will play the challenge of a scapegoat (a victim 
who is blamed for the mistakes or faults of others). Scouts, 
hunters, elders, and caretakers will come under this category. 
They are allowed to eat last, to avoid the internal conflicts 
and difficulties in the pack it will work.

Working principle of grey wolf optimization  GWO algo-
rithm impersonates grey wolves’ leadership and hunting 
mechanism.

The primary stages for grey wolf hunting are:

1.	 Piercing for the prey
2.	 Chasing, tracking, and approaching the prey
3.	 Encircling, pursuing, and harassing the prey until it stops 

moving
4.	 Attacking the prey

Step 1: piercing for the prey: grey wolf targets the prey
Step 2: if the selected prey runs away, the pack will 
chase the prey to kill. Example: once the target is entered 
into the territory, i.e., wolf territory. A group of animals 
defines Wolf territory against another.

Chasing animal (i.e., the prey/ target) to other waiting wolves.
The following are the specifications for the mathematical 

model of the grey wolf optimization (GWO) social hierarchy:
The method of hunting is regarded as an optimization 

process,

•	 The optimum solution is determining the prey,
•	 Fitness solution as an alpha wolf (α)
•	 The second-greatest resolution is Beta wolf (β)
•	 The third finest interpretation is Delta wolf (δ), and
•	 Omega wolf (ω) follows these three wolves.

Mathematical model of encircling the prey  Throughout the 
hunting, grey wolves encircle the prey. Encircling behaviour 
is modeled as:

(7)��⃗D = |��⃗C.���⃗Xp −
�⃗X(t)|

(8)�⃗X(t + 1) = |���⃗Xp(t) −
�⃗A.��⃗D|

Fig. 2   a Pavia University, b Salinas datasets extracted features
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Here, the current iteration is represented as t, and the 
location of the prey is determined as ���⃗Xp , the position of the 
grey wolf is represented as �⃗X , coefficient vectors are given 
as �⃗A, ��⃗C , and ��⃗D is the distance of the vector.

�⃗A, ��⃗C is calculated as:

Here, the random vectors are represented as ��⃗r1, ��⃗r2  , 
ranges from [0,1], component �⃗a is linearly decreased from 
2 to 0 around reputations.

To improve the grey wolf location, the above equations 
are used. In accordance with the location of the grey wolf 
Eqs. (7) and (8) are various places approximately the best 
example of investigative agents might be able to concern 
about the contemporary location by regulating the stand-
ards of A & C. Equations (9), and (10) are used for calcu-
lating the vectors.

Step 3: grey wolf hunting: The grey wolf starts hunting 
by locating the prey. They will target the weak or elderly 
ones. Large animals like moose may stand on their ground 
and fight. Wolf may choose to try other prey rather than 
risk attacking large animals willing to fight.

Mathematical model of hunting the prey  The hunting pro-
cess is directed by Alpha; it is assumed that �, �, � have 
enhanced understanding of the position of the prey (i.e., the 
optimum solution). Additional wolves will upgrade their 
positions according to the position of �, �, �.

(9)�⃗A = 2 �⃗a.��⃗r1 − �⃗a

(10)��⃗C = 2.��⃗r2

(11)����⃗D𝛼 = |C1.X𝛼 −
�⃗X(t)|

(12)����⃗D𝛽 = |C2.X𝛽 −
�⃗X(t)|

(13)����⃗D𝛿 = |C3.X𝛿 −
�⃗X(t)|

(14)���⃗X1 = | ���⃗X𝛼 − A1.
����⃗D𝛼)|

Here, A1,A2,A3 and C1,C2,C3 are the coefficient vectors. 
���⃗X𝛼 ,

���⃗X𝛽 ,
���⃗X𝛿  are the positions of the vectors of �, �, �.

The location of the grey wolf is upgraded by

Step 4: killing the prey: The alpha wolf will terminate 
the hunt by attacking the prey. Once the prey has been 
hunted, the alpha wolf will eat first.

A mathematical model for attacking the prey  If the prey 
interrupts stimulating, the wolves should attack to complete 
the hunting. During the iteration, the model finishes by 
decreasing �⃗a from 2 to 0. As �⃗a decrease, �⃗A also decreases. 
A < 1 forces the wolf to attack the prey. |A|> 1 diverse from 
prey and locate greater prey. C vectors are random values; 
interval ranges from [0,2]. C prevents placing a few addi-
tional weights on the prey to make it complicated for the 
wolves to find it.

Fitness function  The degree to which a particular design 
solution adheres to the stated objectives is summarised using 
a fitness function. It is a specific kind of objective function. 
In genetic programming and optimization problems, fitness 
functions are used to direct simulations toward the best pos-
sible design solutions. To select the bands using the grey 
wolf optimization, we are using the fitness function in three 
different ways; they are

	 i.	 Correlation coefficient Measure: It is used to find the 
correlation between the bands. The correlation coef-
ficient measure between two neighboring bands is uti-
lized as the decision criterion to determine whether 
the two bands are substantially correlated. The two 
bands must be merged if this correlation exceeds a 
particular threshold, at which point they are deemed 
redundant. The correlation is calculated by using the 
below formula

(15)���⃗X2 = | ���⃗X𝛽 − A2.
����⃗D𝛽)|

(16)���⃗X3 = |���⃗X𝛿 − A3.
����⃗D𝛿)|

(17)�⃗X(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

/
3

Fig. 3   a Hierarchy of Grey 
Wolfs, b Grey wolf hunting 
process
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		    Here, CorM (bi, bj) is the correlation coefficient 
between the bi and bj bands, 

∑
bi,bj

 is the covariance 
between the bi and bj bands, σ is the variance.

		    The correlation coefficient between the band varies 
from band bi = −1 and band bj = +1 . If the correla-
tion is close to + 1 and -1, it demonstrates the presence 
of a strong linear dependency between the two bands. 
And the two bands are supposed to be incorporated. 
Whereas 0 indicates no linear dependence.

	 ii.	 Distance Calculation: Distance calculation is used to 
calculate the distance between bands. Here, we consider 
the minimum distance between the band and to band. 
To calculate the distance between the bands and meas-
ure the class separability for selected bands, the Jeffries-
Matusita (JM) distance is used. If we are considering 
the two classes i and j, then the JM distance between the 
i class and j class is provided in the following equation

		    Here, Bij is the Bhattacharyya distance. It is defined as

		    Here, mi,mj are representing the mean vector of the 
classes and 

∑
i,
∑

j are representing the class covariance.

To decide which bands to use in a binary classification 
task, the Jij distance is used. But for band assertions in a 
multi-class classification problem, we must discover the 
bands that give the average JM distance. The average dis-
tance is given in Eq. (21)

Here, Jij is JM distance between the α, β, δ, and ω wolves, 
i and j are bands. p 

(
�i

)
and p(�j) are representing the class 

prior probabilities. C represents the total number of classes.

	 iii.	 Maximum information Entropy (MIE): To select the 
bands with maximum information to improve the clas-
sification accuracy, maximum information entropy 
(MIE) is used. The optimum probability distribution is 
the one with the maximum information entropy. Shan-
non entropy is the fundamental unit of information in 
information theory. Let R be a vector; its information 
quality can be quantified discretely

(18)CorM(bi, bj) =

∑
bi,bj

�
�(bi)�(bj)

(19)Jij =

√
2(1 − eBij )

(20)

Bij =
1

8
(mi − mj)

T (

∑
i +

∑
j

2
)(mi − mj) +

1

2
In[

�(
∑

i +
∑

j)∕2�
�
∑

i�1∕2�
∑

j�1∕2
]

(21)D(bi, bj) =
∑c

i=1

∑c

j=1
p
(
�i

)
p(�j)Jij

		    Here, E(R) is the entropy of R, p(yi) is the prob-
ability and yi is the component of R.

		    A straightforward way is directly collecting those 
features with high entropy to determine the most dis-
tinct feature subset, in which raw data information is 
taken notice of the maximum extent. If the feature 
subset has s features, the issue can be mathematically 
described as,

where E(Ri,j) is the correlation between the ith and jth 
bands.

Imagine, N grey wolves are inputted across the early popula-
tion; this is going to be indispensable to establish an entropy of 
the particular grey wolf at the beginning of the population using 
the Eq. (22). correspondingly, to designate the grey wolves, the 
first three maximum entropies should be interchangeable, and 
are allocated as α, β, and δ wolf one after another. The leftover 
grey wolves are contemplated as ω wolves. Deficiency of the 
location of the prey might be useful to interchange the adequate 
location vector of the prey with the position of the α wolf.

Every grey wolf is accomplished to track down the prey 
and confine it. Surrounding the prey throughout the hunt can 
perhaps be the Eqs. (7) to (10) and setting a=2.

Consequently, every wolf is surrounded by the prey is 
essential to enhance at the right time in the context of the 
locations of α, β, and δ wolves to enclose the prey. The hunt-
ing process is fulfilled by calculating from Eqs. (11) to (17). 
Repeating the encircling and searching process frequently 
will lead to the finest result.

The fitness function for the grey wolf optimizer (GWO) 
is defined as

Here, Fn is the fitness function of α, β, λ and ω. CorM(bi, bj) 
is representing the correlation coefficient between the bands 
bi and bj . Db(bi, bj) is the distance calculation of the bands 
bi and bj . MIE(bi, bj) is representing the maximum informa-
tion entropy of the bands bi and bj . The selected band subset 
of the Salinas dataset is depicted in Fig. 4.

Deep kernel attention transformers

In this article, we have suggested a novel transformer-
based model named Deep Kernel Attention Transformer 
(DKAT). Deep kernel attention transformer working flow 
is designed based on Visual Transformer (ViT). ViT is 

(22)E(R) = −
∑

i
p(yi)log2p(yi)

(23)MIE(bi, bj) =
1

s

∑s

i,j=1
E(Ri,j)

(24)Fn = CorM(bi, bj) + Db(bi, bj) +MIE(bi, bj)
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a model developed for image classification; it is used to 
apply transformers like architecture over image patches. 
Vision Transformers require partitioning the input image 
into patches of the same shape and vectorization of the 
patches. Vectorization means reshaping a tensor into a vec-
tor. If the patches are defined as d1 × d2 × d3 tensors, and 
then the vectors d1d2d3 × 1 dimensional vectors. After the 
image is split into n layers from 1, 2, 3…… .., n , then we 
have to apply the dense layer. The output of the dense layer 
will be Z1 = Wx1 + b , here linear activation function is not 
applied. The dense layer is only the activation function. 
Here, W and b are the parameters; likewise, all the vectors 
will get the dense layer output. So, that dense layer has the 
same parameters. The Deep Kernal attention transformer 
(DKAT) and working procedure of DKAT are depicted in 
Fig. 5.

In addition, we need to add the position encoding to the 
vectors Z1, Z2, Z3,……… , Zn. An input image is broken 
down into n patches; each patch has a position that is an 
integer between 1 to n. Positional encoding maps an inte-
ger to a vector, and the shape of the vector is the same as 
Z. Add the positional encoding vectors to the Z vectors. 
In this way, the ‘Z’ vector captures a patch’s content and 
position. X1 to Xn are the vectorization of n patches. Let 
vectors Z1 to Zn be the best results of linear transformation 
and positional encoding. They are the representation of the 
n patches. They capture both the content and positions of 
the patches. Aside from the m patches, we use the cls token 
for classification. We are using the cls token because the 
output of the transformer is an embedding layer, it takes 
input as a cls token, and it will provide the output as Z0 . 
Z0 has the shape of the other Z vectors. The output of the 
kernel Attention layers is a sequence of n + 1 vectors. And 
then adding another layer of kernel attention layer and dense 

layers. The kernel attention layer and dense layers consti-
tute the transformer encoder network. The outputs are the 
sequence of n + 1 vectors denoting the kernel attention lay-
ers, feed-forward layers, and multi-layer perceptron (MLP). 
Network vector c0,……,n are the output of the transformer. 
To perform the classification task, we need only c0 . It is the 
feature vector extracted from the image. Feed c0 into a Soft-
Max classifier. The classification results will be based on 
c0 . The classifier output vector is P. P’s shape, depending on 
the amount of classes in the input. For example, the Indian 
Pines dataset has 16 classes. So, vector P has 16 classes. 
These vectors also indicate the classification results. Dur-
ing training, we compute the cross entropy of vector P and 
the ground truth of the dataset. Then, we will add the gra-
dient of cross-entropy loss concerning the model param-
eters and the performance of gradient descent to update the 
parameters. This allows DKAT to learn hierarchical context 
information and adjust hyperparameters like `N` to control 
the scope of self-attention calculation. Additionally, DKAT 
uses a hierarchical training strategy to improve its generali-
zation capabilities, allowing it to learn more generalizable 
features. In the first stage of training, DKAT is trained on a 
small dataset of patches, and in the second stage, DKAT is 
fine-tuned on a larger dataset of patches. Table 1 shows the 
hyperparameter tuning of DKAT.

Dataset description

Dataset characteristics

When endeavouring to create a model for hyperspectral 
data cubes, one must take into account the various data-
set characteristics that play a pivotal role in determining its 

Fig. 4   Selected band subset 
from Salinas dataset
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performance and generalization. This is because of the fac-
tors such as the size of the hyperspectral data cubes, spatial 
and spectral resolutions, noise levels, and potential class 
imbalance can have a significant impact on the model’s 
ability to accurately and reliably perform in real-world sce-
narios. Through the careful optimization of these key fac-
tors, we can ensure that our model is capable of delivering 
accurate, reliable, and effective results in a variety of real-
world applications. The dataset characteristics table is given 
in Table 2.

Indian Pines (IP)

Using an AVIRIS sensor at a place with mixed vegetation 
in northwest Indiana, this dataset was collected. It includes 
145 × 145 pixels, here individual pixel includes 224 spec-
tral bands wavelengths extending from 0.4–2.5 µm. This IP 
dataset has 16 number classes. As an example, ‘Oats’ con-
tain only 20 labeled samples, although ‘Soyabean-mintill’ 
has 2455 labeled pixels. In Fig. 6, (a) false-color composite 
(FCC) image, (b) ground truth reference map is shown, and 
(c) detailed classes, with their training and testing samples 
are described in Table 3. We can download the Salinas data-
set by using the below link

https://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​
Remote_​Sensi​ng_​Scenes#​Indian_​Pines.

Salinas

Using AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer), the Salinas dataset was collected. The 
dimensions of every image are 512 × 217 pixels. It has 
a high spatial resolution of 3.7 m per pixel. This dataset 
encompasses 204 spectral bands, but some low signal-to-
noise-ratio bands were eliminated. It also has 16 classes. 

In Fig.  6, (d) false-color composite (FCC) image, (e) 
ground truth reference map is specified as well as in (f) 
detailed classes with their training and testing samples are 
described. In Table 3, we can download the Salinas dataset 
by using the below link

https://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​
Remote_​Sensi​ng_​Scenes#​Salin​as.

Pavia University (PU)

In the location of northern Italy in 2001, using a Reflective 
Optics System Imaging Spectrometer sensor this dataset was 
acquired. The aforementioned dataset capability is 610 × 340 
pixels. This dataset has nine (9) urban land-cover classes, 
the spatial resolution of each image is 1.3 m per pixel, as 
well as the wavelength range is from 430 to 860 nm. Pavia 
university has 103 spectral bands. In Fig. 6, (g) false-color 
composite (FCC) image, (h) ground truth reference map are 
given as well as in (i) detailed classes with their training 
and testing samples are described in Table 4, and we can 
download Pavia University dataset from below link

Fig. 5   a Deep Kernel Attention 
Transformer (DKAT), and b 
Working procedure of DKAT

Table 1   Hyperparameter tuning of DKAT

Parameters Size

Kernel size 3*3
Number of filters 16
Number of layers 10
Attention heads 8
Hidden units 64
Learning rate 0.001
Optimizer Adam
Batch size 32
Epochs 25
Loss Sparse Categorical Cross Entropy

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas


604	 Earth Science Informatics (2024) 17:593–616

1 3

https://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​
Remote_​Sensi​ng_​Scenes#​Pavia_​Unive​rsity_​scene

Botswana

This dataset is collected using NASA EO-1 sensors in Oka-
vango Delta, Botswana. This has 145 bands with a pixel 
resolution of 1476*256. In Fig. 6, (j) false-color composite 
(FCC) image, (k) ground truth reference map is given as 
well as in (l) detailed classes with their training and testing 

samples are described in Table 4, This dataset is accessible 
in the lower link, so download it freely.

http://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​
Remote_​Sensi​ng_​Scenes#​Botsw​ana.

Kennedy Space Center (KSC)

This dataset is collected from the Kennedy space center 
in Florida using NASA AVIRIS sensors. This has 176 

Table 2   Dataset characteristics

Collection loca-
tion

Acquisition 
equipment

Number of 
categories

Number 
of bands

Number of 
bands after 
denoising

Data size (Pixel) Spatial 
resolution 
(m)

Spectral 
coverage 
(µm)

Indian Pines (IP) Indiana, USA AVIRIS 16 224 220 145*145 20 0.4 ~ 2.5
Salinas Salinas Valley, 

California
AVIRIS 16 224 220 86*63 3.7 0.4 ~ 2.5

Pavia University 
(PU)

Northern Italy ROSIS 9 103 103 610*601 1.3 NA

Botswana Okavango Delta, 
Botswana

NASA
E0-1

14 145 NA 1496*256 30 NA

Kennedy Space 
Center (KSC)

Kennedy Space 
Centre, Florida

NASA AVIRIS 13 176 NA 512*614 NA 0.4 ~ 2.5

Fig. 6    a IP RGB image, b ground truth, c classes, d Salinas RGB image, e ground truth, f classes, g PU RGB image, h ground truth, i classes, j 
Botswana RGB image, k ground truth, l classes, and m KSC RGB image, n ground truth, and o classes

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Botswana
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Botswana
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bands and 13 classes. 512*614 pixels in the wavelength 
400-2500 nm of the electromagnetic spectrum. In Fig. 6, 
(m) false-color composite (FCC) image, (n) ground truth 
reference map are given as well as in (o) detailed classes, 
with their training and testing samples are described in 

Table 4. By using below link we can freely access the 
dataset

http://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​
ral_​Remote_​Sensi​ng_​Scenes#​Kenne​dy_​Space_​Cente​r_.​
28KSC.​29.

Table 3   Explanation of the Indian Pines (IP) and Salinas dataset

Indian Pines Salinas

Class number Class Training Testing Class Training Testing

Land Cover Classes Land Cover Classes
 C1 Alfalfa 5 41  Fallow 11 1965
 C2 Grass-trees 71 659  Stubble 22 3978
 C3 Hay-windrowed 46 432  Broccoli_green_weeds_1 11 1998
 C4 woods 123 1142  Broccoli_green_weeds_2 20 306
 C5 Grass-pastures 47 436  Corn_senesced_green_weeds 18 3260
Land Use Classes Land Use Classes
 C6 Corn-notill 139 1289  Celery 19 3560
 C7 Corn 23 214  Lettuce_romainc_4wk 9 1059
 C8 Corn-min 81 749  Lettuce_romainc_5wk 11 1916
 C9 Oats 2 18  Lettuce_romainc_6wk 5 911
 C10 Soyabean-notill 95 877  Lettuce_romainc_7wk 6 1064
 C11 Soyabean-clean 58 535  Fallow_rough_plow 8 1386
 C12 Soyabean-mintill 240 2215  Fallow_smooth 14 2664
 C13 Grass-pasture-mowed 3 25  Vineyard_untrained 40 7228
 C14 Wheat 20 185  Vineyard_vertical_trellis 10 1797
 C15 Stone-Steel-Towers 9 84  Grapes_untrained 62 11209
 C16 Buildings-Grass-Trees 38 348  Soil_vineyard_develop 34 6169

Total 1000 9249 Total 300 53829

Table 4   Description of Botswana, Kennedy Space Centre, and Pavia University dataset

Botswana Kennedy Space Centre Pavia University

S.no Class name Training Testing Class name Training Testing Class name Training Testing

Land Cover Classes Land Cover Classes Land Cover Classes
 C1 Exposed soils 1 93  Scrub 33 314  Tress 72 2992
 C2 Hippo grass 2 97  Willow Swamp 23 220  Bare Soil 118 4911
 C3 Floodplain grasses1 3 245  Cabbage Palm Hammock 24 232  Meadows 436 18213
 C4 Floodplain grasses2 3 209  Cabbage Palm/Oak Hammock 24 228 Land Use Classes
 C5 Reeds1 3 263  Slash Pine 15 146  Gravel 49 2050
 C6 Riparian 3 263  Oak/ Broadleaf Hammock 22 207  Shadows 22 925
 C7 Fierscar2 3 253  Hardwood Swamp 9 96  Bitumen 31 1299
 C8 Acacia woodlands 4 306  Graminoid Marsh 38 352  Asphalt 155 6476
 C9 Acacia shrublands 3 242  Spartina Marsh 51 469  Painted metal sheets 31 1314
 C10 Acacia grasslands 4 297  Cattail Marsh 39 365  Self-Blocking Bricks 86 3596
 C11 Short mopane 2 177  Mud Flats 49 454 - - -
 C12 Mixed mopane 3 262 - - - - - -
Land Use Classes Land Use Classes - - -
 C13 Water 3 264  Salt Marsh 41 378 - - -
 C14 Island interior 3 197  water 91 836 - - -

Total 40 3168 Total 459 1297 Total 1000 41776

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_.28KSC.29
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_.28KSC.29
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_.28KSC.29
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Evaluation metrics

To understand the efficiency of the suggested algorithm for 
LULC classification, there are some evaluation metrics. 
They are Kappa coefficient (KC), overall accuracy (OA), 
and average accuracy (AA). The techniques mentioned 
above are exploited to test the pixels and confusion metrics 
[ Tcc′ ] are used to precise the given classifier.

1.	 Overall accuracy: Overall accuracy refers to the per-
centage of pixels correctly categorized into all the pix-
els. It is defined as

	   Here, T represents the confusion matrix of the chosen 
classifier, and  Tcc is represents the number of testing 
pixels.

2.	 Average accuracy: Average accuracy calculates the 
average per-class classification accuracy, whereas the 
proportion of pixels in a specific class is correctly classi-
fied to all of the pixels in that class is known as per-class 
accuracy.

	   Here, T represents the number of difficult pixels, and 
Tcc’ signifies the confusion matrix of a given classifier.

3.	 Kappa coefficient: The Kappa coefficient tries to fix 
OA by lowering its worth in the presence of an agree-
ment that could be reached by chance.

Experimental results

The purpose is to assess the anticipated method’s accuracy, 
the outcomes are compared in this section to those of vari-
ous land use/land change (LU/LC) classification algorithms 
that are currently in use. The existing methods used to com-
pare the Pavia University, Indian Pines, and Salinas datasets 
are PCA-CNN (Chen et al. 2021), SVM (Chen et al. 2014), 
CNN-PPF (Li et al. 2016), GCN-CNN (Hong et al. 2020), 
DHC-Net (Zhu et al. 2018). Principal component analysis 
(PCA) is the dimensionality reduction technique for feature 
extraction and classification of convolutional neural net-
works (CNN). And the combination of the PCA-CNN gives 
better results for hyperspectral image classification. It’s a 
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classic machine learning approach used for training on small 
datasets. For SVM, the kernel function is used. Cost value 
and gamma values are used for the kernel and combinedly 
selected to get the average performance of the classified out-
put. A CNN framework is developed based on PPF. PPFs 
are employed to increase the number of training samples. 
This can compensate for the lack of training sample data. It 
stands for graph convolutional network-convolutional neural 
network. It is a new concatenated fusion framework. In this 
method, the extracted features from CNN have been given to 
the GCN classifier. The combined use of CNNs and GCNs 
gives more accurate results for Hyperspectral image classifi-
cations. A deformable convolutional neural network is used 
to get the convolutional sampling locations. The size and 
shape of the hyperspectral images are composite because 
of spatial circumstances. Classifying land use/ land cover 
(LULC) classes using hyperspectral images is difficult by 
a reason of a lower amount of training samples. To over-
come this issue, we have proposed a deep kernel attention 
transformer (DKAT) for classifying the land use/ land cover 
(LULC) classes (Tables 5 and 6).

Interpretability  By understanding Deep kernel atten-
tion transformers (DKAT), we can unlock the potential 
for greater interpretability in our transformers. With ker-
nels, we can measure the similarity between tokens in a 
sequence, providing us with valuable insights. DKAT takes 
this one step further, allowing us to easily visualize atten-
tion weights and comprehend why certain tokens are being 
emphasized. The traditional matrix approach can be clumsy, 
but with DKAT’s kernel set, we can simplify the visualiza-
tion process. Imagine the impact this can have on real-world 
applications, where accuracy and reliability are paramount. 
Embrace the power of DKAT and unlock the full potential 
of our transformers. With the use of DKAT, not only we 
can enhance interpretability, but we can also simplify the 
process of explaining the model’s predictions. Traditional 
transformers can be challenging to comprehend as predic-
tions are based on attention weights alone. However, DKAT 
goes a step further by taking into account kernels when mak-
ing predictions. This allows us to identify the significant 
tokens for the prediction, leading to a clearer understanding 
of the model’s prediction. This aspect of DKAT is particu-
larly helpful in real-world scenarios where predictions need 
to be explained.

Training data  The Deep Kernel Attention Transformer 
(DKAT) is a novel approach to hyperspectral image clas-
sification that overcomes the challenge of insufficient 
training data. DKAT leverages a kernel attention mecha-
nism to capture extended relationships between pixels, 
resulting in enhanced accuracy in categorizing images 
even with a limited number of training examples. We have 
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learned that the kernel attention mechanism is an effec-
tive method for capturing extended relationships between 
pixels in hyperspectral image classification. It works by 
first learning a set of kernels that represent different spa-
tial relationships between pixels, which are then used to 
attend to different parts of the image. This helps to capture 
long-range dependencies that are often important for clas-
sification, and enhances accuracy even when there is a 
limited amount of training data available. DKAT involves 
learning a set of kernels that represent different spatial 
relationships between pixels, which can help capture long-
range dependencies and improve accuracy, even with lim-
ited training data.

Comparison with other algorithms  To verify the classifica-
tion performance of the proposed method, we have com-
pared it with some of the state-of-the-art algorithms. The 
algorithms are PCA-CNN, SVM, CNN-PPF, GCN-CNN, 
are DHC-Net. Specifically, randomly we have taken 20% 
of training samples from each class to construct the train-
ing set, and the remaining samples are used to validate the 
effectiveness of the proposed method. By using the OA, 
AA, and KC we have obtained the per-class classification 
accuracy for the proposed method including state-of-the-
art methods. For the Pavia University dataset, the proposed 
algorithm (DKAT) has been obtaining good classification 
accuracy. Compared with the SVM-based algorithms, the 
proposed method has achieved more OA, AA, and KC 
accuracy. When compared to the conventional CNN, the 
proposed algorithm yields higher accuracy. Figure 7 rep-
resents the Indian Pines dataset’s original image, ground 
truth image, and existing methods results, along with the 
suggested method. Table 7 depicts the classification per-
formance of the IP dataset with existing methods, and 

also the proposed method. Figure 8 depicts the (a) overall 
accuracy (OA), (b) average accuracy (AA), and (c) kappa 
coefficient (KC) of the existing methods and the proposed 
method for the IP dataset. Figure 9 represents the Salinas 
dataset’s original image, ground truth image, and existing 
methods results, along with the suggested method. Table 8, 
classification performance of Salinas dataset with existing 
methods, and also proposed method. Figure 10 depicts the 
(a) overall accuracy (OA), (b) average accuracy (AA), and 
(c) kappa coefficient (KC) of the existing methods and the 
proposed method for the Salinas dataset. Figure 11 repre-
sents the PU dataset’s original image, ground truth image, 
and existing methods results, along with the suggested 
method. Table 9, classification performance of the Sali-
nas dataset with existing methods, and also the proposed 
method. Figure 12 depicts the (a) overall accuracy (OA), 
(b) average accuracy (AA), and (c) kappa coefficient (KC) 
of the existing methods and the proposed method for the 
PU dataset. Figure 13 represents the KCS dataset’s original 
image, ground truth image, and existing methods results, 
along with the suggested method. Table 10 depicts the clas-
sification performance of the KSC dataset with existing 
methods, and also the proposed method. Figure 14 depicts 
the (a) overall accuracy (OA), (b) average accuracy (AA), 
and (c) kappa coefficient (KC) of the existing methods and 
the proposed method for the KSC dataset. Figure 15 depicts 
the (a) overall accuracy (OA), (b) average accuracy (AA), 
and (c) kappa coefficient (KC) of the existing methods and 
the proposed method for the Botswana dataset. Figure 16 
represents the PU dataset’s original image, ground truth 
image, and existing methods results, along with the sug-
gested method. Table 11 depicts the classification perfor-
mance of the Salinas dataset with existing methods, and 
also the proposed method.

Table 5   Computational 
complexity of DKAT for 
different datasets

Dataset Indian Pines Salinas Pavia University Botswana Kennedy 
Space Centre

Train Test Train Test Train Test Train Test Train Test

Computational 
complexity

10^8 10^5 10^7 10^5 10^8 10^5 10^6 10^5 10^5 10^5

Table 6   Execution time in 
seconds for Proposed vs. state-
of-the-art models

Method Time in 
Seconds

Time in Seconds Time in Seconds Time in 
Seconds

Time in 
Seconds

PCA-CNN (Wang et al. 2022) 378 - 814 - -
SVM (Chen et al. 2021) 156 - 533 - -
CNN-PPF (Chen et al. 2014) 286 1259 1015 - -
GCN-CNN (Li et al. 2016) - - - - -
DHC-Net (Hong et al. 2020) 468 2820 2700 - -
Proposed (DKAT) 327 235 330 239 233
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Computational complexity

We have achieved low computational complexity for all 
the algorithms used in our work because we have done 
each part individually. First, we extracted the features 
separately for each dataset using the t-SNE algorithm. 
In this, the high-dimensional intervals among data points 
towards the conditional probabilities will be trans-
formed initially by SNE. Kullback-Leiber (KL) diver-
gence is used, to evaluate the correspondence among 

two distributions. So that, we will get the useful features 
from the data. Then, we selected the bands using GWO 
from the extracted features. In GWO, we have defined a 
fitness function to select the appropriate bands, which 
are useful for classification. Here, the use of the fitness 
function is to select the relevant bands. After selecting 
a number of bands, which are having more information, 
the bands will be sent to the classifier model i.e., DKAT. 
Then the classifier model will classify the LU/LC cover 
classes. It will give the classification map as well as OA, 

Fig. 7   Classification Results of 
Indian Pines dataset a Bench-
mark dataset, b Ground Truth, 
c PCA-CNN (Chen et al. 2021), 
d SVM (Chen et al. 2014), e 
CNN-PFF (Li et al. 2016), f 
GCN-CNN (Hong et al. 2020), 
g DHC-Net (Zhu et al. 2018), 
and h Proposed DKAT

Table 7   Classification 
performance of different 
algorithms for the Indian Pines 
(IP) dataset

Class no PCA-CNN SVM CNN-PPF GCN-CNN DHC-Net Proposed method

Land cover classes
C1 81.25 100 95.65 95.65 75.61 100
C2 86.36 98.84 85.24 626 94.09 98.9
C3 87.87 98.93 84.00 72.18 97.32 99.13
C4 84.29 96.19 94.22 92.09 84.98 96.59
C5 94.963 97.99 91.59 91.96 97.70 98.12
Land use classes
C6 98.66 99.85 98.15 98.59 97.87 99.95
C7 60.87 100.0 82.86 97.14 60.00 100
C8 99.32 100.0 99.16 98.04 100.00 100
C9 33.33 94.44 96.00 100 94.44 96.26
C10 83.70 96.21 84.08 70.95 90.39 97.37
C11 96.04 98.56 72.08 73.74 99.28 98.67
C12 75.91 95.29 92.85 77.72 89.87 96.37
C13 100.0 98.42 100 99.87 100.00 99.43
C14 99.66 99.19 86.68 86.29 98.15 99.35
C15 86.55 99.42 94.35 83.10 81.56 99.36
C16 95.29 94.19 100 100 100.00 95.26
OA (%) 91.60 98.36 85.00 78.25 95.53 98.42
AA (%) 85.23 97.96 91.06 87.35 91.33 99.13
Kappa (%) 90.39 98.13 82.95 75.19 94.89 98.62
Bold indicates the maximum class-wise classification accuracy of the proposed model for Indian Pines 

(IP) dataset when compared to other existing systems
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AA, and KC. We can also use this model for real-time 
applications and also for large-scale applications. But we 
have to select the number of features, and bands accord-
ing to the problem with which we are going to work.

The time complexity of the DKAT model is calcu-
lated using the O(n*s*k). Here, n is the number of sam-
ples, s is the size of the image i.e., height, width, bands, 
and k is the attention heads. The Indian pines dataset has 
1000 training samples, the image size is 100*100*10, and 
the number of attention heads in our model is 8, so the 
computational complexity of the Indian pines dataset is 
O(1000*100*100*10*8) = 10^8 The computational com-
plexity for the deep learning models increases with the 
number of samples, the number of dimensions, and the 
number of hidden layers. The computational complexity of 
the DKAT model is shown in Table 5, and the computation 
time in seconds for different models is depicted in Table 6.

Limitations and future scope

The number of kernels used in DKAT can have a signifi-
cant impact on the accuracy of its classifications. If the 
number of kernels is too small, it may not be able to cap-
ture the long-range spatial dependencies in the data, while 
if the number of kernels is too large, it may become too 
computationally expensive to train and run. It’s important 
to find the right balance to ensure optimal performance. 
The size of the kernels used in DKAT can also affect 
the classification accuracy. If the kernels are too small, 
then the model may not be able to capture the important 
features in the data. If the kernels are too large, then the 
model may be less sensitive to noise. It’s important to 
find the right balance to ensure optimal performance. The 
accuracy of DKAT’s classification can be affected by the 
quality of its training data. If the training data does not 
accurately represent the test data, DKAT may not perform 
well in generalizing.

Fig. 8   Classification performance of existing methods along with the proposed method of the Indian Pines dataset, a Overall accuracy, b Aver-
age accuracy, and c Kappa coefficient

Fig. 9   Classification results of Salinas dataset a Benchmark Data, b Ground Truth, c PCA-CNN, d SVM, e CNN-PPF, f GCN-CNN, g DHC-
Net, and h proposed method
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Table 8   Classification 
performance of different 
algorithms for the Salinas 
dataset

Class PCA-CNN SVM CNN-PPF GCN-CNN DHC-Net Proposed method

Land cover classes
 C1 95.50 98.81 98.66 99.20 65.85 99.45
 C2 99.07 99.30 99.09 99.95 89.34 98.13
 C3 88.45 96.96 99.17 97.38 92.50 99.48
 C4 97.68 99.70 99.87 99.51 62.91 97.14
 C5 99.48 96.18 95.30 98.55 95.85 96.87
Land use classes
 C6 99.62 99.60 99.57 99.98 99.24 99.65
 C7 99.68 99.63 99.61 99.81 36.00 97.81
 C8 85.26 74.50 84.84 66.84 96.74 85.91
 C9 95.43 99.06 98.50 99.85 50.00 99.16
 C10 97.24 87.74 90.90 93.71 68.73 87.18
 C11 98.55 97.23 99.27 98.41 69.65 98.42
 C12 99.99 98.96 99.99 99.94 76.74 97.13
 C13 99.93 98.50 99.19 99.88 100.00 99.26
 C14 99.39 93.43 94.71 98.37 97.01 96.19
 C15 71.49 64.96 75.23 73.82 75.79 77.59
 C16 98.70 98.84 98.93 97.94 91.57 98.12
 OA (%) 91.48 88.31 92.14 88.72 91.46 95.46
 AA (%) 95.34 93.96 95.80 95.50 82.06 83.35
 Kappa (%) 90.51 87.11 91.24 87.47 90.24 94.05

Fig. 10   Classification performance of existing methods along with the proposed method of the Salinas, a Overall accuracy, b Average accuracy, 
and c Kappa coefficient

Fig. 11   Classification results of PU dataset a Benchmark Data, b Ground Truth, c PCA-CNN, d SVM, e CNN-PPF, f GCN-CNN, g DHC-Net, 
and h proposed method
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Table 9   Classification 
performance of different 
algorithms for the Pavia 
University dataset

Class PCA-CNN SVM CNN-PPF GCN-CNN DHC-Net Proposed method

Land cover classes
 C1 96.28 95.58 95.19 81.32 98.51 98.89
 C2 91.31 96.10 85.98 94.90 99.97 99.99
 C3 95.56 98.68 89.46 85.53 93.23 97.58
Land use classes
 C4 99.21 94.17 90.98 94.75 98.93 99.15
 C5 100.0 100.0 99.91 99.88 100.0 99.43
 C6 100.0 100.0 92.87 89.62 99.62 99.75
 C7 99.54 99.63 94.58 90.42 97.94 98.67
 C8 97.51 99.12 87.36 78.95 98.46 99.33
 C9 100.0 97.79 99.13 100 100.0 99.98
 OA (%) 93.35 96.95 89.66 90.46 99.11 99.19
 AA (%) 97.71 97.90 91.30 90.60 98.52 99.32
 Kappa (%) 93.35 95.91 86.54 87.41 98.82 99.14

Fig. 12   Classification performance of existing methods along with the proposed method of Pavia University, a Overall accuracy, b Average 
accuracy, and c Kappa coefficient

Fig. 13   Classification results of KSC dataset, a Benchmark Data, b Ground Truth, c PCA-CNN, d SVM, e CNN-PPF, f GCN-CNN, g DHC-Net, 
and h proposed method
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Table 10   Classification 
performance of different 
algorithms for the Kennedy 
Space Centre dataset

Class PCA-CNN SVM CNN-PPF GCN-CNN DHC-Net Proposed method

Land cover classes
 C1 92.23 90.71 99.18 99.63 89.57 99.63
 C2 92.81 85.7 100 90.15 85.07 90.15
 C3 93.39 88.39 98.39 89.64 88.46 99.64
 C4 86.54 77.69 95 87.23 79.81 87.23
 C5 77.5 70 93.44 99.06 99.38 99.06
 C6 89.66 87.93 87.66 95.14 92.17 95.14
 C7 92.86 87.14 93.75 99.52 95.22 99.52
 C8 91.93 84.89 87.48 90.03 87.03 90.03
 C9 89.72 97.72 91.69 99.91 99.84 99.91
 C10 95.02 89.61 85.56 99.29 91.34 99.19
Land use classes
 C11 87.63 88.54 85.77 92.34 85.04 92.34
 C12 88.53 97.33 79.9 95.22 86.12 95.22
 C13 89.93 95.2 92.03 87.31 75.88 97.31
 OA (%) 93.41 91.67 94.49 97.87 93.97 97.11
 AA (%) 89.82 87.75 91.52 94.23 88.85 95.77
 Kappa (%) 91.78 89.91 92.40 95.85 91.21 96.12

Fig. 14   Classification performance of existing methods along with the proposed method of KSC dataset a Overall accuracy, b Average accuracy, 
and c Kappa coefficient

Fig. 15   Classification performance of existing methods along with the proposed method of Botswana dataset a Overall accuracy, b Average 
accuracy, and c Kappa coefficient
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In the future, classifying land use land cover using hyper-
spectral images with Multiple attentions in Deep kernel 
attention transformer (DKAT) is looking very promising. 
Even though it is a new method, DKAT has already shown 
impressive results. As research in this area progresses, 
DKAT may become even more capable and adaptable. One 
possible improvement is making the kernels more flexible 
to capture even more intricate spatial relationships. Another 
way to optimize the kernel attention mechanism is to reduce 
its computational cost and make it more efficient.

Conclusion

This article proposes a Deep Kernel Attention Transformer 
(DKAT) for land use/land cover (LU/LC) classification 
using hyperspectral images. To classify LULC, we have 
used two methods. One is feature extraction; the other is 
band selection. To extract the features from the land cover, 
t-distributed stochastic neighbouring embedding is used. 
Searching-based band selection using grey wolf optimizers 
(GWO) is used for selecting the informative bands from 

Fig. 16   Classification results of Botswana dataset, a Benchmark Data, b Ground Truth, c PCA-CNN, d SVM, e CNN-PPF, f GCN-CNN, g 
DHC-Net, and h proposed method

Table 11   Classification 
performance of different 
algorithms for the Botswana 
dataset

Class PCA-CNN SVM CNN-PPF GCN-CNN DHC-Net Proposed method

Land cover classes
 C1 90.32 92.18 99.18 95.87 79.31 97.87
 C2 94.15 65.72 99.02 92.32 98.19 92.32
 C3 91.39 98.39 98.39 79.64 86.29 79.64
 C4 83.54 73.93 100 88.21 99.81 89.21
 C5 67.91 77.54 93.44 100 99.86 100
 C6 81.16 82.99 89.62 98.24 94.17 99.24
 C7 72.66 87.85 93.75 89.29 97.32 89.29
 C8 81.93 84.95 87.48 87.98 96.18 87.98
 C9 99.42 99.12 91.93 97.74 97.17 97.74
 C10 97.02 85.41 78.62 100 98.74 100
 C11 89.32 78.94 81.75 95.26 89.94 95.26
 C12 87.31 99.73 73.91 97.19 91.62 97.19
Land use classes
 C13 89.39 99.19 96.45 99.11 85.18 99.11
 C14 93.66 79.21 99.89 87.59 78.95 87.59
 OA (%) 91.13 90.53 94.49 96.87 95.63 97.93
 AA (%) 87.08 86.08 91.52 92.81 92.33 93.74
 Kappa (%) 89.81 88.75 92.40 94.37 93.94 95.37
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the dataset. After selecting the bands from the land cover, 
we have classified the land cover by using the DKAT. In 
DKAT, we have used multiple dense networks and kernel 
attention layers to enhance classification accuracy. We 
have calculated the accuracy using overall accuracy (OA), 
average accuracy (AA), and kappa coefficient (KC). The 
proposed method performance has been checked with five 
publicly available datasets, namely Indian Pines, Salinas, 
Pavia University, Botswana, and Kennedy Space Cen-
tre. For real-world scenarios, our proposed method gives 
robust results. In the real world, by using our proposed 
method can work with any dataset for classification. Com-
ing to LU/LC change classification, we can know how 
much land cover classes have been spread or decreased 
around the land, and how much the land use classes have 
been used. As a result, we got the best classification accu-
racy compared with the state-of-the-art methods.
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