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Abstract
Ship detection is a meaningful and challenging task in processing of remote sensing image data. Specifically, the main
challenges faced by ship detection in remote sensing images (RSIs) include the variable direction and dense arrangement of
ships, as well as the complex nearshore scenes. To address the above challenges, this article proposes an arbitrary-oriented ship
detection network based on Kullback-Leibler divergence (KLD) regression. Firstly, a coordinate attention module (CAM)
is designed to capture direction-aware and position-sensitive features, which enhances the attention to ships in complex
scenes. Meanwhile, a reinforced feature fusion network (RFF-Net) combined with CAM is constructed to obtain fusion
features containing rich semantic and location information. Then, the orientation-invariant model (OIM) is introduced to
generate depth rotation-invariant features, which improves the adaptability of the network to arbitrary-oriented ships. Finally,
a regression loss function based on KLD is defined to solve the problem of boundary discontinuity and realize the accurate
detection of densely arranged ships. The experimental results demonstrate that the proposed method reaches 89.87% and
83.62% average precision (AP) on the HRSC2016 and DOTA Ship data sets, respectively, achieving state-of-the-art ship
detection performance.

Keywords Reinforced feature fusion network · Orientation-invariant model · Kullback-Leibler divergence · Ship detection ·
Remote sensing images (RSIs)

Introduction

With the vigorous development of deep learning and opti-
cal remote sensing technology, the study of optical remote
sensing images (RSIs) has attracted extensive attention.
Ship positioning and monitoring play a vital role in civil
and military affairs such as ocean environment perception,

Communicated by: H. Babaie

B Yantong Chen
chenyantong@dlmu.edu.cn

Jialiang Wang
wangjialiang@dlmu.edu.cn

Yanyan Zhang
zhangyanyan999@dlmu.edu.cn

Yang Liu
ly1120211369@dlmu.edu.cn

1 Department of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China

enemy reconnaissance, and maritime management. It is a
key research subject in the field of RSI intelligent process-
ing (Deng et al. 2019). Due to the complexity of scenes and
the difference of ships, it is undoubtedly a great challenge to
accurately and quickly detect ships from optical RSIs.

At present, ship detection in optical RSIs is faced with the
following three difficulties.

(1) Dense arrangement: As shown in Fig. 1(a), port ships are
usually densely arranged, and the intersection over union
(IoU) between ship bounding boxes is more sensitive to
angle changes due to the large aspect ratio.

(2) Variable direction: As shown in Fig. 1(b), ships in RSIs
may appear in any direction, which requires the detector
to have accurate angle prediction ability.

(3) Complex background: The background is complex. The
detection of nearshore ships is easily disturbed by the
complex background. As shown in Fig. 1(c), the con-
tainer area on shore is easily confused with the cargo
ship on shore.
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Fig. 1 Difficulties in remote
sensing ship detection. (a)
Dense arrangement. (b) Variable
direction. (c) Complex
background

Traditional ship detection methods mostly rely on hand-
designed features, and require a lot of prior knowledge to set
many parameters in the algorithm, which has high complex-
ity. Shuai et al. (2016) first selected the threshold through
the binary segmentation algorithm to maximize the differ-
ences between objects and backgrounds. Then ships are
extracted accurately through morphological operation, fea-
ture calculation and object identification. Song et al. (2014)
presented an approach based on biological visual heuristic
features, which combines local binary pattern (LBP) and
visual saliencymechanism to focus on ship detection in com-
plex background. Li-Bing et al. (2011) described the outline
of offshore ships by using the curve of variable angle chain,
which is invariant to rotation, scaling, and translation. This
method can promote the detection accuracy of offshore ships
to a certain degree. Zhu et al. (2010) proposed a hierarchi-
cal and operable ship detection method based on shape and
texture features. It uses simple shape analysis to eliminate
false region proposals, so as to extract ship region proposals
with as few missed detections as possible. Finally, the ship is
detected by the semi-supervised classification method com-
bining multiple features. Although these traditional methods
claim to achieve fine detection results, the detection perfor-
mance in complex scenes is unsatisfactory.

In the past decade, deep learning has been deeply applied
in remote sensing object detection, and various new and reli-
able ship detection methods emerge in endlessly. Nie et al.
(2020) improved theMaskR-CNNand obtained a ship detec-
tion and segmentation network with better detection effect,
which uses spatial and channel attention mechanisms to
adjust the weights of each pixel and channel, respectively.
Therefore, the object features can obtain better response in
the featuremap. For the specific aspect ratio and arrangement
of ships in RSIs, Zhao et al. (2020) reset the proportion and
number of anchors, which effectively improves the speed and
accuracy of ship detection. Shi et al. (2020) added decon-
volution and pooling feature modules on the basis of SSD
to fuse deep and shallow features, which strengthened the
correlation between object features and promoted the detec-
tion accuracy of the network. Chen et al. (2021) improved

YOLOv3 by using the attentional mechanism. By using a
lightweight expansive attentional module, significant fea-
tures for ship detection tasks are extracted to achieve the
optimal balance between detection accuracy and speed. All
of these methods directly transfer the general object detec-
tion method to ship detection. However, in the case of dense
arrangement of ships, labeling the ships with horizontal
boxeswill result in partial overlap of objects.Moreover, ships
usually have a large aspect ratio, and horizontal box labeling
will lead to limited detection accuracy.

To solve the problems when using horizontal boxes to
label ships, Zhong et al. (2019) adopted the rotated boxes for
ship detection. By introducing the feature pyramid pooling
module into the rotation region of interest (RRoI), the precise
positioning of ships is achieved. Yang et al. (2018) designed a
rotating dense feature pyramid network (FPN) to improve the
efficiency of feature fusion,which can accurately detect ships
in various scenes. Liu et al. (2018) proposed a network for
detecting arbitrary-oriented ships, which improves the detec-
tion effect of small ships by extracting fine-grained features.
Moreover, the network adds angle information to the bound-
ing box regression, so that the detection box can accurately
locate the entire ship area. Li et al. (2020) presented a multi-
level adaptive pooling based on spatial variables, which can
enable the network to obtain more appropriate ship features.
Furthermore, the application of double branch regression net-
work makes the angle and other variables can be predicted
independently, which undoubtedly improves the accuracy of
ship positioning. Han et al. (2021) designed a two-way dense
feature fusion network, which canmaximize the use ofmulti-
layer features. The dual mask attention module can refine the
fused features to improve the detection performance in dense
scenes. Most of these methods are two-stage rotating object
detection algorithms with high detection accuracy. Since a
great quantity of anchors with different scales and angles
are set, these detection networks have the problems of many
parameters, large amount of calculation and slow detection
speed. Moreover, these methods all adopt regression method
based on five-parameters, in which the angle regression will
face the problem of boundary discontinuity. Therefore, it

123

3244 Earth Science Informatics (2023) 16:3243–3255



is difficult to achieve high-precision arbitrary-oriented ship
detection.

Given the difficulties in the field of remote sensing
ship detection, and the limitations of current ship detection
methods. In this article, we propose a single-stage Kullback-
Leibler divergence regression network (KRNet) based on
RetinaNet (Lin et al. 2017) for arbitrary-oriented ship detec-
tion in RSIs. Specifically, the main work and contributions
of this article are concluded as follows.

(1) A reinforced feature fusion network (RFF-Net) combin-
ing coordinate attention module (CAM) is constructed
to extract fusion features containing rich semantic and
location information. The CAM can enhance the feature
representation of ships, so as to detect ships in complex
backgrounds more accurately.

(2) The orientation-invariant model (OIM) is introduced to
generate depth rotation-invariant features, which can
improve the adaptability of the network to arbitrary-
oriented ships.

(3) A regression loss function based on Kullback-Leibler
divergence (KLD) is proposed,which can solve the prob-
lem of boundary discontinuity and promote the scale
invariance of the network. By using KLD loss, high-
precision detection of arbitrary-oriented ships can be
realized, especially for densely arranged ships.

The remaining of this article is structured as follows.
Section 2 introduces the related works of object detec-
tion, including general object detection and rotating object
detection. Section 3 describes the details of the proposed
ship detection network KRNet. The experimental results are
reported and analyzed in Section 4. Finally, the conclusion
of this article is given in Section 5.

Related work

General object detection

Atpresent, there aremainly twokinds of general object detec-
tion algorithms, namely single-stage and two-stage object
detection algorithms. The two-stage object detection algo-
rithm products region proposals using corresponding visual
features and classifies each region of interest (RoI). As the
foundation work of the two-stage object detection algorithm,
R-CNN (Girshick et al. 2014) takes the lead in using selective
search to product bounding boxes and extracts RoI features
through convolutional neural network (CNN). SPP-Net (He
et al. 2015) proposes spatial pyramid pooling (SPP), which
directly extracts fixed-size features from the feature map for
the classification and regression of the candidates. Faster R-
CNN (Ren et al. 2015) innovatively replaces selective search

with region proposal network (RPN), so that the detection
process shares the convolution features of all images. RPN
predicts both object bounding box and category confidence at
each location, which speeds up the inference speed. R-FCN
(Dai et al. 2016) proposes a location sensitive score map
to weigh the translation sensitivity of the network. Besides,
full convolution network (FCN) is used to enhance feature
extraction and improve classification effect.

The single-stage object detection algorithmcan predict the
location and category of the object simultaneously, which
is the essential difference between it and two-stage object
detection algorithm. YOLO (Redmon et al. 2016) divides
the input image into multiple grid cells and directly locates
and classifies the objects in each grid cell, which signifi-
cantly improves the detection speed. SSD (Liu et al. 2016)
detects objects independently on different level featuremaps.
Specifically, low-level and high-level feature maps are used
to detect small and large objects, respectively. This simple
optimization strategy is actually very useful for small object
detection. RefineDet (Zhang et al. 2018) proposes an anchor
refinement module, which performs quadratic regression on
the bounding box to further promote the detection accuracy.
DSSD (Fu et al. 2017) uses the deconvolution module to
strengthen the feature extraction of the network and intro-
duces residual units to optimize the detection effect.

Rotating object detection

For the directionality of text objects and remote sensing
objects, a variety of rotating object detection algorithms are
developed, which can simultaneously predict the location,
size and angle of objects. RRPN (Ma et al. 2018) first borrows
the structure of RPN and adds the setting of anchor angle in
RPN. It also presents RRoI-Pooling to obtain the object fea-
tures of region proposals, which ensures the efficiency of text
detection. RRCNN (Liu et al. 2017) extracts rotating object
features through RRoI-Pooling and uses multi-task non-
maximum suppression (NMS) for multi category objects. To
reduce computational complexity, RoI-Transformer (Ding
et al. 2019) designs an RRoI learning mechanism that uses
horizontal anchors to explore rotation information. CAD-
Net (Zhang et al. 2019) proposes global context network and
pyramid local context network, which are used to capture
global scene and local object context information, respec-
tively. Moreover, a spatial attention mechanism is introduced
to focus on regions with more important information.

The single-stage object detection algorithm also performs
well in rotating object detection. EAST (Zhou et al. 2017)
uses FCN and NMS to greatly improve detection efficiency.
To accommodate text regions in all directions, both horizon-
tal and rotated anchors are adopted. TextBoxes++ (Liao et al.
2018) uses horizontal and rotated rectangular boxes to label
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Fig. 2 Architecture of KRNet

multi-oriented text and introduces a long convolution ker-
nel to accommodate slender text lines. R3Det (Yang et al.
2021) adopts rotated anchors during the feature refinement
stage to accommodate dense scenes. Meanwhile, a feature
thinning module is designed to reconstruct and align fea-
tures through feature interpolation, which greatly promotes
the detection accuracy. To accommodate the periodicity of
angles, CSL (Yang and Yan 2020) transforms the regression
task of angles into a classification task. Although good detec-
tion results have been obtained, themethod still has problems
such as unbalanced angle classes, many parameters and large
loss.

Proposedmethod

In this section, we exhaustively describe the architecture of
KRNet. The architecture of KRNet is shown in Fig. 2, which
is composed of backbone, RFF-Net, OIM, and prediction
network. The backbone is ResNet50 (He et al. 2016), which
uses the residual structure to solve the gradient disappearance
problem during deep network training. Based on FPN (Lin
et al. 2017), RFF-Net embedded in CAM was constructed
to enhance the process of feature fusion and the represen-
tation of the objects. OIM (Zhou et al. 2017) can generate

depth rotation-invariant features to effectively promote the
detection ability of rotating objects. The prediction network
classifies and regresses the objects, with KLD Loss as the
regression loss function to achieve high-precision detection
of rotating objects.

Reinforced feature fusion network

CNNs usually needs to carry out multiple downsampling to
obtain different levels of feature maps, and then complete
the task of multi-scale object detection. The high-level fea-
ture map has low resolution, large receptive field, and strong
semantic information. But it contains weak location infor-
mation, which may lead to the loss of small objects. On the
contrary, the low-level featuremap has high resolution, small
receptive field, and weak semantic information. However,
thanks to its strong location information, it is beneficial to
small object detection. Therefore, in order to obtain feature
maps containing rich semantic and location information, it
is necessary to strengthen the process of multi-level feature
fusion.

RFF-Net is built by skillfully embedding CAM in FPN,
and its structure is shown in Fig. 3. After an input image is
processed by the feature extraction networkResNet50, three-
stage feature maps {C3,C4,C5}with the number of channels

Fig. 3 Structure of RFF-Net
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{512, 1024, 2048} are obtained. For the above feature maps,
a top-down feature fusion strategy is adopted. Firstly, fea-
ture mapC5/C4/C3 is input into CAM to capture spatial and
channel information, and then feature map P̄5/P̄4/P̄3 with
256 channels is obtained after a 1 × 1 convolution. After
a 3 × 3 convolution, feature map P̄5 is converted to fea-
ture map P5. Feature map P̄5/P̄4 is added to feature map
P̄4/P̄3 after up-sampling and CAM, and feature map P4/P3
is obtained after a 3 × 3 convolution. Finally, fusion feature
maps {P3, P4, P5} with 256 channels are obtained. Further-
more, to further strengthen the network’s ability to detect
multi-scale objects, feature map P5 is downsampled twice
successively to obtain feature maps P6 and P7. The above
feature fusion process is described as follows:

P̄l = Conv1×1(CAM(Cl)), l = 3, 4, 5 (1)

Pl =

⎧
⎪⎪⎨

⎪⎪⎩

Conv3×3(CAM(

Upsample(P̄l+1)) + P̄l),
l = 3, 4

Conv3×3
(
P̄l

)
, l = 5

Downsample(Pl−1), l = 6, 7

(2)

where Conv1×1 denotes 1 × 1 convolution, and Conv3×3

denotes 3×3 convolution. CAM represents coordinate atten-
tion module.

Traditional attention mechanisms usually only consider
spatial or channel attention. Even if both spatial and channel
attention are considered, they cannot be effectively com-
bined.CAMcan capture cross-channel information aswell as
orientation and location sensitive information. Considering
that the ship has long and narrow shape features and obvious
direction features, CAM is introduced into FPN. Thismethod
can enhance the feature representation of ships, so as to locate

and identify ships more accurately. The application of CAM
can greatly improve the detection effect of ships under com-
plex background. The structure of CAM is shown in Fig. 4.
The calculation process of CAM can be roughly described as
follows. Firstly, the feature map is orthogonally pooled in the
spatial dimension to obtain orientation and location sensitive
feature vectors. Secondly, the two orthogonal feature vec-
tors are concatenated and encoded to integrate cross-channel
information. Finally, the encoded feature vector is split and
decoded to apply attention weight.

Specifically, for an input map Fin ∈ R
C×H×W , where C

denotes the number of channels. H andW denote height and
width, respectively. By averaging pooling along orthogonal
directions in the spatial dimension, we obtain two orthogonal
feature vectors containing orientation and location sensitive
information, which can be calculated as follows:

vx (k, i) = 1

W

W∑

i=1

Fin(k, i, j) (3)

vy(k, j) = 1

H

H∑

j=1

Fin(k, i, j) (4)

where vx (k, i) ∈ R
C×H×1 and vy(k, j) ∈ R

C×1×W repre-
sent the horizontal and vertical feature vectors, respectively.

To embed the spatial information into the channel dimen-
sion, we concatenate the two orthogonal feature vectors
together to obtain the aggregated feature vector vx,y ∈
R
C×1×(H+W ). Next, we encode the aggregated feature vec-

tor, which means squeezing its channel by r times. Through
the above squeezing operation, we integrate cross-channel
information into the encoded feature vector, which can be

Fig. 4 Structure of CAM
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expressed as

ven = Swish(Conv1×1(vx,y)) (5)

where Swish (Ramachandran et al. 2017) means a smooth
and non-monotonic activation function. The expression for
the Swish function is Swish (v) = v

/(
1 + e−βv

)
, where β is

a constant or trainable parameter, and β = 1 is set by default.
The vector ven ∈ R

C/r×1×(H+W )."
After obtaining the encoded feature vector containing

accurate location information, a decoding stage is required to
apply the attention weight to the input feature map. We first
split the feature vector ven along the horizontal and vertical
directions, and the two split feature vectors are shown in

vxen, v
y
en = Split(ven) (6)

where Split indicates the dimension splitting operation. The
vector vxen ∈ R

C/r×1×H , vy
en ∈ R

C/r×1×W .
For the split feature vectors, a 1×1 convolution is adopted

to restore the number of channels before the encoding stage.
Finally, we obtain the feature vectors with the same number
of channels as the input feature map. The decoded attention
weights along two orthogonal directions can be expressed as
follows:

vxde = Sigmoid(Conv1×1(v
x
en)) (7)

v
y
de = Sigmoid(Conv1×1(v

y
en)) (8)

where Sigmoid means a non-linear activation function. vxde ∈
R
C×H×1 and v

y
de ∈ R

C×1×W are the attention weights
embedded in the horizontal and vertical spatial directions,
respectively.

Byapplying thedecoded attentionweights, thefinal output
feature map Fout ∈ R

C×H×W is given as

Fout (k, i, j) = vxde(k, i) × v
y
de(k, j) × Fin(k, i, j). (9)

Orientation-invariant model

The classical linear convolution is not rotation-invariant at
all, and the rotation invariance of the network only comes
from data augmentation and multiple pooling operations. In
this case, the network is weak in detecting rotating objects
due to lack of rotation invariance. To improve the adaptability
of the backbone network to rotating objects, OIM is intro-
duced to enhance the consistency of features. Specifically,
we embedOIM into the prediction network to generate depth
rotation-invariant features to promote the detection ability of
arbitrary-oriented ships. OIM is composed of active rotating
filter (ARF) and oriented response pooling (ORPooling).

We defineARF as a K×K×N filter, where K denotes the
size of the filter kernel, and N denotes the number of orien-
tation channels of the filter. ARF constructs the arrangement
of oriented structures in an extra dimension, and it serves
to explicitly encode the location and orientation of the input
feature map. Specifically, ARF actively rotates N − 1 times
during convolution to product a feature map with N orien-
tation channels, which contains explicitly encoded location
and orientation information. The oriented response convo-
lution between ARF F and feature map M is described as

I (i) =
N−1∑

n=0
F (n)

θi
∗ M (n), θi = i 2πN , i=0, · · · , N−1 (10)

where I (i) represents the i-th orientation channel of the out-
put feature map I , and Fθi represents a new filter obtained

by rotating F clockwise by θi . F (n)
θi

and M (n) are the n-th
orientation channel of Fθi and M , respectively.

Fig. 5 Structure of OIM
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Since ARF only encodes the captured multi-directional
image responses, the current output feature map is not
rotation-invariant. Next, we introduce ORPooling to extract
within-class rotation-invariant features. ORPooling isdevoted
to select the orientation channel with the strongest response
in the feature map I as the final output feature map Î , which
is shown in

Î =max(I (n)), 0<n<N−1. (11)

The structure of OIM is shown in Fig. 5. ARF contains
the canonical filter itself and its multiple non-materialized
rotated versions, and it can be visualized as N directional
points on a K × K grid. ORPooling is essentially a pool-
ing operation. For the feature map extracted by CNN, it first
convolves with ARF to capture the location and orientation
information of different ships, and then ORPooling is per-
formed to obtain the feature map with rotation invariance.
The rotation-invariant features of arbitrary-oriented objects
with the same center point are identical, which is a very
useful and noteworthy information for arbitrary-oriented
ship detection. In addition, oriented response convolution
only introduces a few parameters, and ORPooling does not
introduce any parameters at all. Therefore, embedding OIM
hardly affects the inference speed of the network.

Kullback-Leibler divergence

Among the detection methods for arbitrary-oriented objects,
the five-parameter regression method represents arbitrary
objects by adding an additional angle parameter θ . This
regressionmethod introduces boundarydiscontinuity, includ-
ing angle periodicity and boundary commutativity. The
former is mainly due to the bounded periodicity of the angle
parameter, and the latter is related to the definition of the
bounding box. The dramatic increase in loss at the boundary
makes the regression form of the model inconsistent at the
boundary and non-boundary, which will lead to the problem

of boundary discontinuity. In addition, the eight parameter
regression method uses the coordinates of four vertices or
the vectors from the center point to the four sides to rep-
resent arbitrary-oriented objects. This regression method is
conducive to learning the geometric features of the object, but
it will inevitably introduce toomany parameters. To solve the
problems brought by traditionalmethods and further promote
the detection ability of the network for arbitrary-oriented
ships, we define a regression loss function based on KLD.
The bounding box of the arbitrary-oriented ship and its 2-D
Gaussian distribution are shown in Fig. 6.

We convert the rotated bounding box B(x, y, w, h, θ) to a
2-D Gaussian distribution N (μ,�). The mean value μ and
covariance matrix � can be calculated as follows:

μ = (x, y)� (12)

�
1
2 = R�R�

=
(
cos θ − sin θ

sin θ cos θ

) (
w
2 0
0 h

2

) (
cos θ sin θ

− sin θ cos θ

)

=
(

w
2 cos

2θ + h
2 sin

2θ w−h
2 cos θ sin θ

w−h
2 cos θ sin θ w

2 sin
2θ + h

2 cos
2θ

)
(13)

where x , y, w, h and θ represents the center point, length,
width, and angle of the rotated bounding box, respectively.
R indicates the rotation matrix, and � indicates the diagonal
matrix of eigenvalues.

TheKLDbetween two 2-DGaussian distributions is given
as

Dkl(Np ‖ Nt ) = 1
2

(
μp − μt

)�
�−1

t
(
μp − μt

)

+ 1
2Tr

(
�−1

t �p

)
+ 1

2 ln
|�t ||�p| − 1

(14)

or

Dkl(Nt ‖ Np) = 1
2

(
μp − μt

)�
�−1

p

(
μp − μt

)

+ 1
2Tr

(
�−1

p �t

)
+ 1

2 ln
|�p|
|�t | − 1

(15)

Fig. 6 Rotated bounding box
and its 2-D Gaussian
distribution. (a) Rotated
bounding box of ship. (b) 2-D
Gaussian distribution of rotated
bounding box
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whereNp(μp, �p) andNt (μt , �t ) represent the 2-D Gaus-
sian distributions of the predicted box and ground-truth box,
respectively.CombiningEqs. (12) and (13), it can be seen that
each term in Dkl(Nt ‖ Np) is composed of partial parameter
coupling. Specifically, the first term of Dkl(Nt ‖ Np) is a
coupling term about xp, yp, wp, h p and θp, the second term
is a coupling term aboutwp, h p and θp, and the third term is a
coupling term about wp and h p. It is obvious that all param-
eters in Dkl(Nt ‖ Np) form a chain coupling relationship,
called full coupling. In contrast to Dkl(Nt ‖ Np), although
the second and third terms in Dkl(Np ‖ Nt ) are both cou-
pling terms, the first term is semi-coupled, which is caused
by �−1

t . Therefore, Dkl(Np ‖ Nt ) is semi-coupled. Since
the parameters in the fully-coupled Dkl(Nt ‖ Np) influence
each other and optimize together, we design the regression
loss function based on it, so that the optimization mechanism
of the network is self-modulated.

The parameter gradient is dynamically updated accord-
ing to the characteristics of the object, which is the most
prominent feature of KLD and the best embodiment of its
advantages. In particular, the gradient weight of the angle
parameter can be updated according to the aspect ratio of
the object, which is crucial for high-precision detection. For
objects with large aspect ratio, a slight angle deviation will
result in a severe accuracy degradation. Furthermore, KLD
has been shown to be scale invariant. It can be concluded that
using KLD Loss as the regression loss function of arbitrary-
oriented ship detection can not only solve the problem of
boundary discontinuity, but also further promote the scale
invariance of the network. In this way, we can carry out high-
precision detection of arbitrary-oriented ships, especially for
densely arranged ships.

Prediction network

As for the design of anchors, we match five scale anchors
{8, 16, 32, 64, 128}withfive feature layers {P3, P4, P5, P6, P7}.
Each anchor has three scales {20, 2 1

3 , 2
2
3 } and three ratios

{1 : 2, 1 : 1, 2 : 1}, so there are nine anchors at each
position of the feature layer. As shown in Fig. 2, multi-
scale ship detection was carried out on five feature layers
{P3, P4, P5, P6, P7}.

The prediction network is composed of five scale detection
heads, and each detection head contains two sub-networks,
namely classification and regression subnets. The classifica-
tion subnet predicts the probability of the detection object
appearing in the anchor. The location, size and angle of
the detection box are predicted by the regression subnet.
The input of the prediction network is the output of the
OIM, and both sub-networks consist of five 3 × 3 convo-
lution layers. The size of the prediction feature layer of the
classification and regression subnets is K A × H × W and

5A × H × W , respectively. Where A indicates the number
of anchors at each position of the feature layer, and A = 9
in this article. K indicates the number of object categories
to be detected. There is only one object category of ships in
this article, so K = 1. The regression of rotated bounding
box B(x, y, w, h, θ) is shown in

tx = (
xp − xa

)/
wa,ty = (

yp − ya
)/

ha

tw = log
(
wp

/
wa

)
,th = log

(
h p

/
ha

)

tθ = θp − θa

(16)

where Bp(xp, yp, wp, h p, θp) and Ba(xa, ya, wa, ha, θa)
represent the predicted box and anchor, respectively. The out-
put of the prediction network is Bt (tx , ty, tw, th, tθ ), which
includes the normalized coordinates of the prediction box
relative to the anchor. Since we use the horizontal anchors,
θa = −π

/
2 is set by default.

In addition, MaxIoUAssigner is adopted to distinguish
positive and negative samples, and the IoU thresholds of pos-
itive and negative samples are set to 0.5 and 0.4, respectively.
Finally, we adopt the Rotate-NMS post-processing strategy
to remove redundant predicted boxes.

Loss function

For the end-to-end detection network KRNet, the multi-task
loss function for training can be expressed as

L = λ1

N

N∑

n=1

Lcls(pn, tn) + λ2

Npos

Npos∑

n=1

L reg(bn, gtn) (17)

where N and Npos indicate the number of total and positive
anchors, respectively. Lcls indicates the classification loss
function. tn means the binary label of n-th anchor, and the
labels of the positive and negative anchors correspond to 1
and 0, respectively. pn denotes the n-th prediction probability
of the corresponding class. Lreg indicates the regression loss
function. bn means the n-th bounding box, and gtn denotes
the ground-truth of n-th object. The hyper-parameters λ1 and
λ2 are used to control the trade-off. In this article, λ1 = 1
and λ2 = 2 are set by default.

FocalLoss is used as the classification loss function,which
is given as

Lcls =
{−α(1 − p)γ log p, t = 1

− (1 − α) pγ log (1 − p) , t = 0
(18)

where t denotes the label of the sample, and pmeans the pre-
diction probability of a positive sample. The hyper-parameter
γ is used to reduce the loss weight of easily classified sam-
ples, which makes the network focus more on difficultly
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classified samples. The hyper-parameter α is the balance fac-
tor that balances the number of positive and negative samples.
In this article, γ = 2 and α = 0.25 are set by default.

KLD Loss is used as the regression loss function, which
is given as

L reg = 1 − 1
τ+ f (D)

, τ ≥ 1 (19)

where D indicates the KLD, and D = Dkl(Nt ‖ Np) is set by
default. f (·) is a function that can perform nonlinear trans-
formation on D, which can make the loss smoother and more
expressive. In this article, we adopt the non-linear function
f (D) = log(D+1). The hyper-parameter τ is used to adjust
the loss, and τ = 1 is set by default. KLD Loss can not
only solve the problem of boundary discontinuity, but also
has the characteristics of scale invariance and high-precision
detection.

Experiments

Data sets and evaluationmetrics

We evaluate the proposed KRNet in two public optical RSI
data sets, HRSC2016 and DOTA Ship.

(1) HRSC2016: HRSC2016 (Liu et al. 2017) is a pop-
ular remote sensing ship data set, in which all images are
obtained from six well-known ports on Google Earth. The
data set includes 1061 images with 2976 ship objects, and
the training, validation and test sets are composed of 436,
181 and 444 images, respectively. In HRSC2016, the image
size ranges from 300 × 300 to 1500 × 900, and the image
resolution is between 2 and 0.4 meters.

(2) DOTA Ship: DOTA (Xia et al. 2018) is a large-scale
data set for remote sensing object detection, which includes
2806 images with 15 common object categories. In DOTA,
the image size is between 800×800 and 4000×4000. In our
experiments, 420 labeled images with 36258 ship objects are
selected to construct a new remote sensing ship datasetDOTA
Ship. Specifically, we obtain the training set and test set with
315 and 105 images, respectively, by randomly assigning
these images. Considering the size of the original image in
DOTA is too large, we crop it to the size of 1024× 1024 and
retain as many ship objects as possible.

In our experiments, we adopt the authoritative evaluation
indicator average precision (AP) to evaluate the performance
of different ship detection methods. Precision and Recall are
defined as follows:

Precision = TP

TP + FP
(20)

Recall = TP

TP + FN
(21)

where TP, FP and FN represent the number of true positive,
false positive and false negative samples, respectively. For
the discrimination standard of TP, when the IoU between
the predicted box and the ground-truth box exceeds 0.5, the
object is considered to be correctly detected.

AP can be calculated as

AP =
1∫

0

P(R)dR (22)

where P(·) and R represent precision and recall, respectively.

Implementation details

Weimplement the proposedKRNet in thePytorch framework
onUbuntu v20.04 system. All experiments are evaluated on a
high-performance computer with Intel Core i7 10700F CPU,
NVIDIA GeForce RTX 3070 GPU, and 32-GBmemory. For
the two public data sets, we uniformly resize the input image
size to 800 × 800. Besides, We initialize the backbone net-
work with ResNet50 pre-trained on ImageNet. The SGD
optimizer is adopted for network training, and the momen-
tum and weight decay are set to 0.9 and 0.0001, respectively.
The initial learning rate is set to 0.0025, and the batch size is
set to 2. We train the network 50k iterations in total, and the
learning rate decays by 10 and 100 times after 40k and 45k
iterations, respectively.Moreover, we adopt randomflipping,
random rotation, and random scaling for data augmentation
to improve the robustness of the network.

Comparison with other methods

The loss curves of KRNet during training on HRSC2016 are
shown in Fig. 7. loss_cls means the classification loss, and

Fig. 7 Loss curves during training on the HRSC2016 data set
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Table 1 Performance comparison of different detectionmethods on the
HRSC2016 data set

Method Backbone Image size AP(%) Speed(FPS)

R2CNN ResNet101 800 × 800 73.07 2

IENet ResNet101 1024 × 1024 75.01 9

RRPN ResNet101 800 × 800 79.08 3.5

R2PN VGG16 800 × 800 79.6 < 1

RRD VGG16 384 × 384 84.3 -

RoI-Trans ResNet101 512 × 800 86.2 6

R3Det ResNet101 800 × 800 89.26 12

KRNet ResNet50 800 × 800 89.87 19.7

loss_bbox means the regression loss. In this experiment, the
network is trained by 50k iterations in total, and the learn-
ing rate decays after 40k and 45k iterations, respectively. As
shown in Fig. 7, the fitting process of the total loss curve is
stable and the convergence effect is good. After 40k itera-
tions, the loss gradually tends to be stable.

To verify the validity and feasibility of the proposed
KRNet, we compared KRNet with seven popular rotation
detection methods on HRSC2016, including R2CNN (Jiang
et al. 2017), IENet (Lin et al. 2019), RRPN, R2PN (Zhang
et al. 2018), RRD (Liao et al. 2018), RoI-Trans and R3Det.
The performance comparison of different detection methods
on HRSC2016 is shown in Table 1.

As shown in Table 1, KRNet reaches 89.87% AP with
a detection speed of 19.7 frames per second (FPS) on
HRSC2016, which surpasses the above seven comparison
methods. Compared with the classical two-stage rotation
detection method R2CNN, our proposed method achieves
significant improvements by 16.80% in AP and 17.7 FPS
in detection speed. Furthermore, compared with advanced
single-stage rotation detection method R3Det, our proposed
method has faster detection speed andAP is further improved
by 0.61%. The backbone of all detection methods except
KRNet is ResNet101 orVGG16,which have farmore param-
eters than ResNet50. Nevertheless, KRNet still achieves the
best detection performance, which fully highlights its supe-
riority.

Fig. 8 Comparison of the detection results by different methods. (a) Ground Truth. (b) RRPN. (c) RoI-Trans. (d) R3Det. (e) KRNet
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Figure 8 shows the detection results of different methods
in various scenes on the HRSC2016 data set. Figure 8(a) is
Ground Truth, Fig. 8(b) is RRPN, Fig. 8(c) is RoI-Trans,
Fig. 8(d) is R3Det, and Fig. 8(e) is the proposed KRNet.
RRPN has poor detection results for small ships and densely
arranged ships, which is mainly manifested as missed detec-
tion. Besides, its detection box does not fit well with the ship.
RoI-Trans also missed a few small ships in specific scenes.
The detection result of R3Det is relatively good, but it has
false detection in complex background areas. Comparedwith
the above threemethods, our proposedmethod can locate and
detect ships more accurately. In particular, KRNet has good
detection results for small and densely arranged ships, and
its false detection rate is lower in complex background areas.

To further verify the robustness of the proposed KRNet,
we evaluated KRNet on DOTA Ship with larger scenes and
more ship objects. Correspondingly, KRNet is compared
with other rotation detection methods, including R2CNN,
RRPN, SCRDet (Yang et al. 2019), R3Det and RoI-Trans.
The performance comparison of different detection methods
on DOTA Ship is shown in Table 2.

The experimental results in Table 2 show that KRNet
reaches 83.62% AP on DOTA Ship, which is superior to the
other five comparison methods. Compared with the common
rotation detectionmethods R2CNN, RRPN and SCRDet, our
proposed method achieves great improvements by 27.37%,
24.50%, and 8.93% in AP, respectively. In addition, com-
pared with advanced rotation detection methods R3Det and
RoI-Trans, our proposed method achieves improvements by
3.87% and 0.58% in AP. The experimental results on DOTA
Ship fully verify the robustness and effectiveness of KRNet.

Ablation studies

Our proposed method introduces RFF-Net to increase object
attention, OIM to generate depth rotation-invariant features,
and high-precision KLD Loss to promote the detection accu-
racy of ships. In order to fully evaluate the contribution of

Table 2 Performance comparison of different detectionmethods on the
DOTA Ship data set

Method Backbone Image size AP(%)

R2CNN ResNet50 800 × 800 56.25

RRPN ResNet50 800 × 800 59.12

SCRDet ResNet101 800 × 800 74.69

R3Det ResNet101 800 × 800 79.75

RoI-Trans ResNet101 512 × 800 83.04

KRNet ResNet50 800 × 800 83.62

Table 3 Ablation studies of each module on the HRSC2016 data set

Baseline RFF-Net OIM KLD AP(%) Speed(FPS)

✓ 79.95 21.4

✓ ✓ 83.91 20.6

✓ ✓ ✓ 85.93 19.7

✓ ✓ ✓ ✓ 89.87 19.7

each module in KRNet, we performed ablation studies on
HRSC2016. It should be noted that all experiments adopt
the same training and data augmentation strategies, and the
research results are shown in Table 3. In this article, the base-
line is RetinaNet-H (Yang et al. 2021) with Smooth L1 Loss
as the regression loss.

As shown in Table 3, there is only 79.95% AP at baseline,
and the detection speed is 21.4 FPS. When FPN in baseline
is replaced by RFF-Net, AP increases by 3.96%, and the
detection speed reduces by 0.8 FPS. With the addition of
OIM, AP increases by 2.02% again, and the detection speed
reduces by 0.9 FPS. After replacing Smooth L1 loss with
KLD Loss, the detection speed remained unchanged, and
AP further increases by 3.94% to 89.87%. Compared with
baseline, the detection speed ofKRNet is only reduced by 1.7
FPS, still maintaining a fast detection speed of 19.7 FPS, and
APunexpectedly increases by9.92%.Obviously, the ablation
studies fully demonstrate the effectiveness and importance of
RFF-Net, OIM and KLD Loss in KRNet.

Conclusion

In this article, an arbitrary-oriented ship detection network
KRNet is proposed to solve the problem of low detection
accuracy caused by dense arrangement, variable direction,
and complex background of nearshore ships in RSIs. Firstly,
an RFF-Net combined with CAM is constructed to obtain
rich multi-scale fusion features and enhance the attention
to ships. Secondly, the OIM is embedded before the predic-
tion network to generate depth rotation-invariant features and
improves the ability of the network to detect rotating objects.
Finally, a regression loss function based onKLD is defined to
further promote the detection accuracy of arbitrary-oriented
ships while solving the problem of boundary discontinuity.

Experiments on the HRSC2016 and DOTA Ship data sets
show the performance comparison between the proposed
KRNet and other popular rotation detection methods. On the
HRSC2016data set,KRNet achieves 89.87%APat the detec-
tion speed of 19.7 FPS. Meanwhile, on the more challenging
DOTA Ship data set, KRNet also reaches 83.62% AP. The
ablation studies fully verify the contribution of the modules
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proposed in KRNet. In summary, the experimental studies
prove that the proposed method reaches state-of-the-art ship
detection performance.
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