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Abstract
The main aim of this study was to develop hybrid machine learning (ML)-based ensemble modeling of the rainfall-runoff 
process in the Katar catchment, Ethiopia. This study used four single ML models, namely the general regression neural net-
work (GRNN), long short-term memory neural network (LSTM), extreme learning machine (ELM) and Hammerstein-Weiner 
(HW) for modeling the rainfall-runoff process. Subsequently, two strategies were followed to improve the performance of the 
single models. In the first strategy, simple average ensemble (SAE), weighted average ensemble (WAE), Hammerstein-Weiner 
ensemble (HWE) and Neuro-fuzzy ensemble (NFE) were developed using the results of the single models. A hybrid Boosted 
Regression Tree (BRT) ensemble was developed in the second strategy to enhance the single models’ modeling accuracy. The 
study used ten years (2008–2017) of data for calibration and validation of the developed models. The performances of the 
developed models were assessed using root mean square error (RMSE), percent bias (PBIAS), mean absolute error (MAE) 
and Nash-Sutcliffe coefficient efficiency (NSE). The results of single ML models showed that the LSTM model gave the 
best prediction performance with NSE = 0.933 and RMSE = 5.308 m3/s in the validation phase. For ensemble modeling, the 
best result was obtained by NFE increasing the performance of HW, GRNN, LSTM and ELM models by 3.35%, 13.25%, 
2.57% and 19.9%, respectively. Evaluation of the hybrid BRT models showed that all the hybrid models provide reliable 
modeling performance with LSTM-BRT demonstrating better predictive accuracy (NSE = 0.981, RMSE = 1.999 m3/s and 
PBIAS = 0.75%). In general, the result of this study proved the promising influence of ensemble techniques and hybrid BRT 
models for rainfall-runoff modeling.
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Introduction

Accurate modeling of the rainfall-runoff process has been a 
hot topic in hydrology research as it plays a critical role in 
water resources management (Adnan et al. 2021). Rainfall-
runoff is a nonlinear and complex process influenced by 
humidity, soil moisture, topography, rainfall, groundwater 
(Mohammadi et al. 2022). Modeling the rainfall-runoff pro-
cess is vital in planning and optimizing water resources such 

as reservoir operations, watershed planning, irrigation water 
management, and navigation (Noori and Kalin 2016). It also 
plays an important role in preventing and mitigating natural 
disasters such as floods, droughts, and other extreme events 
(Asadi et al. 2019).

Due to the increasing of water resource depletion around 
the globe, accurate modeling of runoff is becoming increas-
ingly important and requires more accurate models (Adnan 
et al. 2021). However, accurate modeling of the rainfall-
runoff processes is a difficult task due to the temporal and 
spatial dynamics of the process exhibiting nonlinearity, 
complex properties and chaotic perturbations (Nourani et al. 
2021a, b). So far different modeling approaches which are 
broadly categorized as physically-based and data-driven 
models have already been applied to hydrologic modeling 
(Young et al. 2017). The physically based models such as the 
Soil and Water Assessment Tool (SWAT) require extensive 
data and time consuming (Adnan et al. 2019; Nourani et al. 
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2021a, b). This type of model also has a limitation in achiev-
ing accurate hydrological modeling (Young et al. 2017). 
When accurate modeling is more important than understand-
ing of the physics of the problem, data driven models (e.g., 
machine learning), are preferred to physically-based models 
because of their few input data requirements (Nourani et al. 
2019). Machine learning (ML)-based models have success-
fully been used for accurate modeling non-stationary and 
non-linear rainfall-runoff process (Adnan et al. 2019; Cai 
et al. 2021; Koch and Schneider 2022). The ML models are 
calibrated and tested for a specific type of data and locations. 
In data-scarce regions, common hydrologic forecasting mod-
els cannot accurately predict runoff because of the less dense 
distribution of rain gauges (Mehr et al. 2015). In this cases, 
ML models can precisely simulate runoff using single station 
or cross-station streamflow data (Nourani et al. 2021a, b).

The ML-based models used for hydrologic process mod-
eling includes Feed forward neural network (FFNN), sup-
port vector machine (SVM), Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS), general regression neural network 
(GRNN), boosted regression tree (BRT), long short-term 
memory neural network (LSTM), Hammerstein-Weiner 
(HW)and ELM. Artificial neural networks (ANNs) such as 
FFNN are known to handle highly nonlinear and complex 
problems, but the selection of lags as input is difficult and 
the accuracy of the model depends on the choice of the opti-
mal network structure (Kratzert et al. 2018). Recurrent neu-
ral networks (RNNs), on the other hand, take into account 
the sequential order of inputs and therefore capture temporal 
dynamics (Bhattacharjee and Tollner 2016). However, RNNs 
have the problem that the gradients vanish and explode when 
trained with long-term delays (Yin et al. 2021). The LSTM 
model has emerged as an alternative technique to solve these 
limitations of FFNN and RNN. According to (Kratzert et al. 
2018), the strength of the LSTM model lies in its ability to 
learn long-term dependencies between the input and output 
of the network. The LSTM cell is able to make the decision 
whether to pass the information to the next cell or to prevent 
the flow of information from the last to the next cell (Nou-
rani et al. 2022). Previous studies has applied LSTM model 
for different hydrologic modeling such as rainfall-runoff 
(Kratzert et al. 2018; Yin et al. 2021), suspended sediment 
concentration (Kaveh et al. 2021) and evaporation (Lak-
mini Prarthana Jayasinghe et al. 2022), ground water level 
(Nourani et al. 2022). The other ML model, Hammerstein-
Wiener (HW) model is known for the identification of non-
linear systems. Although the HW model has not been used 
for rainfall-runoff modeling, it has shown great potential in 
rainfall prediction (Pham et al. 2019), dissolved oxygen con-
centration (Abba et al. 2020) and turbidity of water (Gaya 
et al. 2017). The other ML model used in this study was 
generalized regression neural network (GRNN). The GRNN 
is a type of ANNs that uses only backpropagation algorithm 

for training (Mehr et al. 2015). The GRNN has been used 
in different field such as stream flow (Cai et al. 2021), dis-
solved oxygen (Abba et al. 2020) and suspended sediment 
prediction (Khan et al. 2019) and showed acceptable result.

Among the various forms of ANNs, single-layer FFNN 
have been successfully used for modeling hydrologic pro-
cesses (Nourani et al. 2020a, b; Nourani et al. 2021a, b). 
However, single hidden layer FFNNs trained based on the 
gradient method have the limitation of local convergence, 
requirement of long training time and overfitting (Niu et al. 
2019a, b). Therefore, Extreme Learning Machines (ELM) 
model, a new learning paradigm, has recently been proposed 
that drastically reduces the limitation imposed by the high 
computational time requirements to train the single-layer 
feed-forward neural network (Taormina and Chau 2015). 
The potential of ELM can be attributed in particular to its 
high learning speed and generalization capability. Hence, 
the ELM model has been widely applied in hydrological 
and environmental studies (Li et al. 2019; Mundher et al. 
2016). The other ML-based model used in different hydro-
climate modeling is BRT. The BRT model combines dif-
ferent regression trees through boosting technique (Malik 
et al. 2022). BRT is a robust and powerful prediction model, 
enhancing the accuracy of a single model by combining mul-
tiple independent models. Although it is rarely utilized for 
rainfall-runoff modeling, the BRT model has shown reliable 
performance in different fields such as reference evapotran-
spiration (Malik et al. 2022), landslide susceptibility map-
ping (Park and Kim 2019; Youssef et al. 2016) and mapping 
flush flood susceptibility (Abedi et al. 2022).

The reliability of ML models has been demonstrated by 
previous studies for hydrologic modeling in different water-
sheds around the world. Despite the reliable results of these 
ML-based models, it is evident that there is no single model 
that has been proven to be the most accurate for all types 
of datasets (Nourani et al. 2021a, b). The characteristics of 
the data, such as size, linearity, normality and magnitude 
affect the predictive power of the model (Abba et al. 2020). 
For example, when modeling a time series, one model may 
more accurately simulate the maximum values, while the 
other may predict the lower values well (Sharghi et al. 2018). 
Thus, combining several models using different ensemble 
techniques could improve the modeling performance (Phu-
koetphim et al. 2016). In this regard, Nourani et al. (2021a, 
b) used an ensemble of SVM, FFNN, ANFIS and multilin-
ear regression (MLR) using different ensemble techniques 
in suspended sediment load estimation. The result showed 
that the ensemble modeling led an improved modeling accu-
racy. Improving the accuracy of modeling has already been 
applied in various hydrologic process such as rainfall-runoff 
simulation (Nourani et al. 2021a, b), suspended sediment 
load estimation (Himanshu et al. 2017; Nourani et al. 2021a, 
b), evapotranspiration modeling (Nourani et al. 2019) and 
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earth fill dam seepage analysis (Sharghi et al. 2018). How-
ever, to the best of the authors’ knowledge, no previous stud-
ies have employed the HW and Boosted Regression Tree 
(BRT) techniques in the context of rainfall-runoff modeling. 
Additionally, there is a lack of research that has explored the 
application of hybrid ensemble BRT with ML models for 
rainfall-runoff modeling. Thus, the objective of this study 
was; (i) to compare the performance of different ML models 
namely HW, GRNN, ELM and LSTM in modeling rainfall-
runoff; (ii) to improve the overall modeling accuracy using 
four ensemble techniques namely neuro-fuzzy ensemble 
(NFE), simple average ensemble (SAE) and weighted aver-
age ensemble (WAE) and HWE (in scenario 1) and hybrid 
BRT ensemble with ML models in scenario 2. In this study, 
some robust modeling techniques that are relatively new to 
the application of rainfall-runoff modeling were considered. 
For chaotic, dynamic, and complex systems such as rainfall-
runoff, single models often lead to unreliable predictions. To 
overcome the limitations of single models in modeling com-
plex problems, hybrid models have nowadays attracted the 
attention of researchers. To this end, the hybrid BRT models 
was developed in this study to improve the predictive per-
formance of single models. The use of the hybrid ensemble 
BRT with the ML-based models (HW-BRT, LSTM-BRT, 
ELM-BRT and GRNN- BRT) for rainfall-runoff has not 
been reported in the literature.

Based on the literature review, several studies examined 
the applicability of ML models in hydrological process 
simulation. However, new algorithms for hydrologic mod-
eling must be used to enable optimum decision-making. In 
addition, most ML-based models are complicated and thus 
their calibration involves high computational costs. Recently, 
ML models such as GRNN, ELM, HW and LSTM have 
gradually gained acceptance in various water management 
applications due to their robustness, simplicity, and high 
modeling efficiency in processing large amounts of data 
compared to other ML methods. Thus, this study evalu-
ated the applicability and accuracy of the relatively simple 
LSTM, ELM, HW and GRNN models as well WAE, NFE, 
SAE, HWE ensemble techniques and the hybrid BRT model 
for rainfall-runoff in Katar catchment, Ethiopia.

Material and methods

Description of the study area

The study area, Katar catchment is a sub-watershed of the 
Ethiopian Central Rift Valley basin covering an area of 
3293 km2. Topographically the study area is located at lon-
gitude 38.899° to 39.41°E and latitude 7.359° to 8.165°N 
(see Fig. 1). The main river, Katar River and its tributaries 
flow into Lake Ziway which is the source of income for the 

fishing community, sources of water supply and irrigation 
for the community in the catchment. It is characterized by its 
complex topography in which the elevation varies between 
1635 m and 4167 m above mean sea level. The catchment 
consists of six main soil types, namely Luvisols, Cambi-
sols, Fluvisols, Vertisols, and Leptosols. The climate of the 
study area is semi-arid to sub-humid with an annual average 
temperature ranging between 16 and 20 °C. The minimum 
and maximum precipitation values of the area, based are 
729.6 mm and 1231.7 mm, respectively. The dry season 
lasts from October to May and the rainy season from June 
to September (and accounts for about 70% of the precipita-
tion). There are six meteorological stations in the study area: 
Arata, Assela, Bekoji Kulumsa, Ogolcho, and Sagure whose 
location is shown in Fig. 1. The area has one hydrometry sta-
tion (Abura) at the outlet of the catchment, which recorded a 
maximum discharge of 152.033 m3/s in August and a mini-
mum discharge of 0.106 m3/s in January.

Data type and source

In this study, ten years (2008–2017) of daily rainfall and 
runoff data of the Katar River catchment at Abura Station 
were used for model calibration and validation. The Theisen 
polygon average of rainfall from the six stations were used. 
The required climatic data (temperature and rainfall) were 
obtained from the national meteorologic agency whereas 
the runoff data were collected from the Ethiopian ministry 
of water and energy. The data used were divided into two 
subsets, with the first 70% of the data (2008–2014) used for 
calibration and the remaining 30% (2015–2017) used for 
validation of the developed models. The descriptive statistics 
of the data is shown in Table 1.

In addition to the descriptive statistics, the time series of 
the runoff and rainfall data is shown in Fig. 2.

Methodology

A review of the literature shows that several studies have 
been conducted using data intelligence algorithms and have 
yielded promising results in modeling nonlinear systems. To 
this end, the current study employed four ML-based namely 
HW, ELM, GRNN and LSTM models to estimate the rain-
fall-runoff process. The study was conducted in three steps. 
First, nonlinear sensitivity analysis was conducted to iden-
tify the most relevant input that has a significant influence on 
the output. In the second step, the rainfall-runoff process was 
modeled using HW, ELM, GRNN and ELM models. In the 
third step, the overall efficiency was improved in two sce-
narios. In the first scenario, four novel ensemble techniques 
such as SAE, WAE, HWE and NFE were developed. In the 
second scenario a hybrid BRT ensemble was employed in 
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order to boost the accuracy of individual models. The sche-
matic of the proposed meteorology is shown in Fig. 3.

Long short‑term memory (LSTM)

The LSTM model structure is a special type of RNN devel-
oped to solve the limitations of traditional RNN in learn-
ing long-term dependencies (Kratzert et al. 2018). LSTM 
can regulate and store information over time. This makes 
this model well-suited for learning long-term memory 

and dependencies effects (Koch and Schneider 2022). 
The study by (Bengio et al. 1994) showed that the tradi-
tional RNN can hardly remember sequences longer than 
10. For modeling daily runoff, this would mean that only 
the meteorological data of the last 10 days can be used 
as input for predicting the next day’s runoff. This period 
is too short considering that the memory of catchments, 
including snow, groundwater and glacier reservoirs, has a 
lag of up to several years between rainfall and runoff. All 
RNNs take the form of chained repetitive neural network 

Fig. 1   The map of the Katar catchment

Table 1   The rainfall and runoff 
data descriptive statistics

Data type Period Min Mean Max Standard deviation Coefficient 
of variation

Rainfall Whole 0 2.2767 71.2 4.8467 2.1288
(mm) Calibration 0 2.1277 71.2 4.658 2.1891

Validation 0 2.6243 52.4 5.2445 1.9984
Runoff (m3/s) Whole 0.106 12.192 152.033 19.47834 1.5976

Calibration 0.106 11.848 152.033 19.043 1.6073
Validation 0.115 12.995 126.779 20.4354 1.57255
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modules. The LSTM model, where special memory cells 
are used to store information, also have this chain similarly 
structured (Liu et al. 2019; Zhang et al. 2018).

According to Kratzert et al. (2018), the LSTM struc-
ture has a memory cell (Ct) that stores the information, and 
three circled letters (gates) that control the information flow 
within the LSTM cell (Fig. 3). The first gate, introduced by 
Gers et al. (2000), is the forget gate which controls which 
elements and to what extent the cell state vector Ct-1 will be 

forgotten. The internal LSTM model structure is shown in 
Fig. 4.

In the internal LSTM model cell, the i, f and O rep-
resents the input, forget and output gates, respectively. 
In addition, the ht and Ct represent the hidden state and 
the cell state at time t, respectively. The mathematical 
expression for the different gate and cell states of the 
LSTM model is given in the following equations (Kratzert 
et al. 2018):

Fig. 2   Time series of rainfall 
and runoff

Fig. 3   The general schematic of 
the proposed methodology
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Input gate

Where it, σ, Wi, Xi, Ui, ht-1 and bi are the input gate vector 
having value between 0 and 1, sigmoidal function, weight link-
ing input gate with inputs, input, weights from the input, out-
put from the previous time step and bias vector, respectively.

Forget gate

Where ft, Wf, Uf, and bf are the resulting of vector forget 
gate having value between 0 and 1, weight forget gate with 
inputs, weights from the input and bias vector, respectively.

Output gate

Where ft, Wf, Uf, and bf are the resulting of vector forget 
gate having value between 0 and 1, weight forget gate with 
inputs, weights from the input and bias vector, respectively.

Cell state
 For the cell state the potential update vector is calculated 

from the last hidden state (ht-1) and current input (xt) as:

Where Ct and tanh represents the cell state at the previous 
time with value in between −1 and 1 and hyperbolic tangent, 
respectively.

The cell stat (Ct), using the result of Eq. 4 is updated as:

The new hidden state (ht) is then computed by combining 
the results of output gate and the cell state as:

(1)it = �
(

WiXi + Uiht−1 + bi
)

(2)ft = �
(

WfXt + Uf ht−1 + bf
)

(3)Ot = �
(

W0Xt + Uoht−1 + bo
)

(4)Ct = tanh
(

WcXt + Ucht−1 + bc
)

(5)Ct = ft
◦Ct−1 + it

◦Ct

(6)ht = tanh
(

Ct

)

Ot

Hammerstein‑Weiner Model (HW)

HW is one of the back-box models developed for nonlinear 
system identification (Gaya et al. 2017). It consists of a 
set of interconnected parallel static nonlinear blocks and 
linear dynamics. The HW model intersection is consid-
ered a suitable representation with a more understandable 
and precise relationship to the nonlinear and linear system 
compared to the traditional ANN (Zhang et al. 2017).

In addition, the HW model incorporates a simple and 
flexible procedure for determining the specifications of 
parameters for nonlinear models and can effectively cap-
ture the physical knowledge of system properties (Pham 
et al. 2019). In the HW model, the linear dynamical system 
is embedded between two nonlinear blocks (Abba et al. 
2020). In this model, the nonlinear model is converted 
into a piecewise linear function and then transformed to 
a nonlinear output function. According to Abinayadhevi 
and Prasad (2015), the distinct linear and nonlinear blocks, 
offer the HW model the advantage of stability analysis 
being solely dependent on the linear part, which can be 
readily assessed. However, when employing general non-
linearities within the Hammerstein model, the overall 
model performance tends to reduced. The general HW 
model structure consists of three blocks: a static nonlin-
ear input block, a linear dynamic block in the middle and 
another static nonlinear output block (Pham et al. 2019) 
(Fig. 5).

In the structure of HW model, the nonlinear model is 
converted into a piecewise linear function and then trans-
formed to a nonlinear output function. In the HW:

(7)w(t) = f(u(t)), nonlinear function for the input data

(8)x(t) = w(t)B∕F, linear transfer function

(9)y(t) = f(x(t))

Fig. 4   The LSTM model cell 
internals

Fig. 5   The structure of the HW 
model
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where u(t) is the input, y(t) is the output of the system, f is 
nonlinear function for the input, h nonlinearity for the out-
put, w(t)and x(t) are internal variables that define the input 
and output in the linear block, respectively.

Generalized regression neural network (GRNN)

The GRNN is a type of radial basis function (RBF) that 
drives an estimator using only training data with back-
propagation algorithm. The GRNN model has attractive 
and important property of being self-learning and capable 
of handling complex nonlinear problems. Modeling with 
GRNN can be done accurately without using large datasets 
(Ji et al. 2017). The GRNN model has the capability of solv-
ing problems regarding approximation, smooth functions, 
and can also provide consistent and accuracy prediction 
(Heddam 2014). Moreover, the GRNN model can be suc-
cessfully used to solve various nonlinear and linear problems 
and can make accurate predictions without the need for large 
samples (Alilou and Yaghmaee 2015). The GRNN model 
is able to produce consistent predictions when the training 
data set is large and the estimation error approaches zero, 

with only minor constraints on the function (Ji et al. 2017). 
Therefore, this model is characterized by a high learning 
speed, which leads to excellent results in the field of hydro-
logical and environmental modeling. The GRNN structure 
comprises four layers: the input, pattern, summation and out-
put layers as shown in Fig. 6. In the first layer, the number 
of input units are equal to parameter numbers. The input 
and pattern layers are fully connected, with each unit rep-
resenting a training pattern and the output being a measure 
of the distance from the input to the stored patterns. The 
summation layer connects each pattern layer to two neurons 
(the S- and D-summation neurons). The D and S summation 
neurons compute the unweighted and weighted output of the 
pattern layer (Mehr et al. 2015).

Extreme learning Machine (ELM)

The ELM model is an improved training method pro-
posed to address the shortcomings of the conventional 
FFNN with a single hidden layer, which is a gradient-
based method (Niu et al. 2019a, b). According to Niu 
et al. (2019a, b), in ELM model, the theoretical basis is 
that if all the hidden node’s activation function are notice-
ably differentiable, a simple linear system can be used to 
directly assign the weights of the hidden-output neurons 
after randomly determining the bias and the weights of 
the hidden and input neurons. In comparison to current 
training methods for conventional FFNN, the ELM model 
can mitigate a number of problems such as slow learning 
and stopping criteria while maintaining satisfactory gen-
eralization ability (Mundher et al. 2018). The limitation 
of ELM is that it is sensitive to selection of number of 
hidden neurons. The general sketch of the ELM model is 
shown in Fig. 7.

Assuming that the ELM network contains an input layer 
with n nodes, a hidden layer with L nodes, and an output 
layer with m nodes, the output of ELM model with regard 
to N samples (xi, ti) ϵ Rm x Rn can be written as:

Fig. 6   The schematic diagram of GRNN model (Ji et al. 2017)

Fig. 7   The structure of the ELM 
model
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Where Oi, ti ϵ Rm and xi ϵ Rn, βi, wi, g, wi.xi and bi are the 
ELM output, the output and input vector of the ith sample, 
weight linking hidden node and output layer, weights linking 
input layer and hidden node, activation function, inner prod-
uct of xi and wi, and the ith hidden neuron bias, respectively.

The assumption in ELM model is that all data samples 
can be approximated by the network output with zero error 
and thus the following equation always holds:

Where H and T are the hidden layer’s output matrix 
with regard to N samples and the output of N data samples, 
respectively.

Data preprocessing and Model Evaluation Criteria

When modeling with black box models, both input and out-
put data should first be normalized to bring all variables 
into the same range before feeding them into the models. 
This will ensure that all data receive equal attention, remove 
dimension and avoid data with small values being overshad-
owed by those in the upper number range (Nourani et al. 
2019). In addition, data normalization simplifies numerical 
calculations in the model, which in turn increases modeling 
accuracy and reduces the time required to determine the 
local/global minimum. In this study, normalization of the 
data was performed using Eq. 12 to bring the value between 
0 and 1:

Where Xn, Xmax, Xi and Xmin represents the normalized, 
maximum, actual and minimum value of the dataset.

The accuracy of climatological and hydrological pro-
cess simulation models must be assessed in both calibra-
tion and validation phases. To better evaluate the predictive 
performance of the models, at least one statistical error 
and one goodness-of-fit measure should be used (Nourani 
et al. 2018). Thus, in this study, Nash-Sutcliffe efficiency 
(NSE), mean absolute error (MAE), root mean square error 
(RMSE), percent bias (PBIAS) and coefficient of deter-
mination (R2) were used to evaluate the accuracy of the 
proposed single, hybrid and ensemble models based on 
the recommendation of (Moriasi et al. 2015). The NSE 
usually takes values between -∞ and 1 and measures how 
well the computed value matches the actual runoff value. 
A perfect match between the computed and the actual data 
exists when the NSE value is 1. The closer the NSE is to 
1, the more accurate the prediction. The RMSE, one of the 

(10)Oi =
∑L

i=0
�i.g

(

wi.xi + bi
)

, i = 1, 2,…… ,N

(11)H� = T

(12)Xn =
Xi − Xmin

Xmax − Xmin

statistical error measures, was used in this study. Its value 
ranges from 0 to +∞, and a perfect model gives a RMSE 
value of 0. The MAE measures the actual error difference 
between the predicted and observed values by ignoring the 
influence of negative values. Low MAE value indicates 
accurate model prediction. The PBIAS indicator measures 
the average tendency of modeled value to be smaller or 
larger than the observed value. A positive PBIAS value 
indicates that the model tends to overestimate the observed 
values, while a negative PBIAS value indicates that the 
model tends to underestimate the observed values (Jimeno-
Sáez et al. 2018). A value of zero indicates that the model 
has no bias and its predictions are unbiased. Coefficient of 
determination (R2) describes the degree of association or 
collinearity between the predicted values and the observed 
values. It ranges from 0 to 1, with higher values indicating 
a better fit between the model and the data.

Ensemble techniques

Given similar datasets, one model may perform better than 
others, and if different datasets are used, the results of the 
models would be completely different. To take advantage of 
each model without neglecting the general nature of the data, 
the ensemble technique can be developed, which uses the 
output of each model as input, assigning a certain importance 
to each model using an arbitrator to offer the output (Kiran 
and Ravi 2008; Nourani et al. 2021a, b). The capability of 
ensemble technique in improving the overall prediction has 
been proven in several areas including hydrologic process, 
water resource, environment, regression and classification 
(Sharghi et al. 2018). The ensemble technique is a type of 
ML that is used to combine the results of multiple models 
to improve the final predictive performance (Elkiran et al. 
2019). The main goal of the ensemble technique is to obtain 
more reliable and accurate estimates than would be possi-
ble by a single model. According to Kiran and Ravi (2008), 
ensemble techniques are categorized as linear and nonlinear 

(13)NSE = 1 −

∑N

i=1

�

Qob − Qpr

�2

∑N

i=1

�

Qob−Qob

�2
−∞ < NSE ≤ 1

(14)RMSE =

�

1

n

∑n

i=1

�

Qob − Qpr

�2
0 ≤ RMSE < ∞

(15)PBIAS =
�∑n

i (Qob−Qpr)100
∑n

i
Qob

�

−∞ ≤ PBAS < ∞

(16)R2 =

�

∑n

i=1

�

Qob−Qob

��

Qpre−Qpr

��2

∑N

i=1

�

Qob−Qpr

�2
∑n

i−1

�

Qpre−Qpr

�2 0 ≤ R2 < 1



2483Earth Science Informatics (2023) 16:2475–2495	

1 3

ensemble technique. The linear ensemble technique includes 
the linear ensembles by weighted median, weighted average 
and simple average. In the nonlinear ensemble technique, 
in the other hand, black-box models are used as nonlinear 
kernels to obtain an ensemble result. Abba et al. (2020) also 
divided ensemble techniques into two categories, heterogene-
ous and homogeneous ensembles. When ensemble unit con-
sists of different learning algorithms, it is called heterogene-
ous, but when it consists of the same learning algorithms, it is 
defined as homogeneous. Nourani et al. (2018) recommended 
heterogeneous ensemble technique to achieve the prediction 
accuracy and overcome the model diversity. Therefore, in this 
study, in scenario 1 two linear i.e., SAE and WAE and two 
nonlinear ensemble techniques, such as neuro fuzzy ensem-
ble (NFE) and Hammerstein-Weiner ensemble (HWE) were 
used to model the rainfall-runoff process of Katar catchment.

Linear ensemble

The SAE and WAE techniques are the most common model 
combination studies in hydrology and used as a reference 
to compare with the results of other ensemble technique 
such as neural ensemble. In the simple average ensemble 
(SAE) technique model combination is carried out by taking 
the arithmetic average of the runoff output of HW, GRNN, 
LSTM and ELM models as:

Where Qt, Qti and N represents the output of ensemble 
technique, the ith model output and number of single models 
(N-4).

Similarly, in the WAE technique, the ensemble output is 
calculated by assigning a unique different weight to each 
single model’s output based on their relative importance. 
The ensemble prediction using WAE is calculated as:

Where: wi is the weight assigned to ith single model and 
calculated as:

Where NSE is the Nash-Sutcliffe efficiency of the ith 
model.

Nonlinear ensemble technique

Nonlinear averaging, in the nonlinear ensemble technique, 
is performed by training nonlinear kernels such as ANN, 

(17)Qt =
1

N

∑N

i
Qti

(18)Qt =

∑N

i=1
wiQti

(19)wi =
NSEi

∑N

i=1
NSEi

ANFIS and HW models using the runoff values of the indi-
vidual models. Recently, the applicability of the nonlinear 
ensemble (e.g., neural network ensemble) has attracted 
attention in various fields of hydrological and environ-
mental studies, e.g., vehicle traffic noise (Nourani et al. 
2020a, b), seepage analysis of earth dam (Sharghi et al. 
2018), suspended sediment load (Nourani et al. 2021a, b) 
and all have noted the better performance of the nonlin-
ear ensemble over the single models. The above studies 
also recommended the use of other nonlinear kernels as an 
alternative for ensemble modeling. Therefore, this study 
proposes two nonlinear ensemble technique namely the 
neuro-fuzzy ensemble (NFE) and Hammerstein-Weiner 
ensemble (HWE) to improve the overall efficiency of rain-
fall-runoff modeling. The ANFIS model is a black-box 
model first developed by (Jang 1993) that combines the 
learning algorithm of neural networks (NN) and the rea-
soning capability of fuzzy interference systems (FIS). The 
hybrid between NN and FIS enables the ANFIS model to 
handle complex nonlinear hydrologic problems such as the 
rainfall-runoff process. Thus, in the NFE ensemble tech-
nique, the runoff values obtained from ELM, GRNN, HW 
and LSTM were fed into the ANFIS model input layer and 
the corresponding runoff value was determined by using 
different membership functions and a hybrid algorithm. 
The NFE technique has never been used as a model com-
bination method in rainfall-runoff modeling. The NFE is 
chosen as a nonlinear ensemble because of its performance 
in previous studies in other fields such as suspended sedi-
ment load estimation(Nourani et al. 2021a, b) and particu-
late matter concentration prediction (Umar et al. 2021).

The other nonlinear ensemble technique used in this study 
was the HW ensemble (HWE) which is chosen because of its 
accuracy shown in modeling with a single model. Although 
the HW model has not previously been used in runoff mode-
ling, this technique has shown tremendous potential in water 
resources research (Pham et al. 2019). The schematic of the 
proposed ensemble process is shown in Fig. 8.

Scenario 2: Hybrid Boosted Regression Tree (BRT) ensemble

The ANN model has been considered in previous studies as 
appropriate to deal with complex nonlinear problems. Nev-
ertheless, recent studies have reported several difficulties and 
shortcomings in simulating hydrological processes with the 
traditional ANN and other ML-based models. As a result, 
researchers no longer rely solely on single ML-based mod-
els to capture the nonlinear nature of hydrologic processes. 
Therefore, higher prediction accuracy could be achieved by 
developing hybrid models (Abba et al. 2020). In this regard, 
this study proposed a novel hybrid BRT ensemble with four 
machine learning algorithms such as ELM, LSTM, GRNN, 
and HW in scenario 2.
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The BRT is a powerful ensemble tree for classification 
and prediction that is a combination of machine learning and 
statistical techniques. The BRT ensemble combines multiple 
models and merges them into a single model to boost the 
accuracy of each model in prediction problems (Youssef 
et al. 2016). The more advanced application of BRT is the 
simulation of natural phenomena where the input and out-
put variables have a nonlinear relationship. Elimination of 
outliers or data transformation is not required in BRT before 
fitting the complex nonlinear relationship and establishing 
the interaction between predictor and output variables (Elith 
et al. 2008). The RBT model uses boosting and regression 
algorithm. Information is represented in decision trees in a 
way that is easy to visualize and intuitive, and has numerous 
other beneficial properties. According to Elith et al. (2008), 
surrogates are used by tree to modify the missing data in the 
input variable and are not sensitive to outliers. Boosting is 
a method used to increase the modeling accuracy based on 
the idea that it is easier to find many rough rules of thumb 
than a highly accurate single predictive rule. In the BRT 
model, fitting several trees overcomes the major limitation of 
the low predictive accuracy of single tree models (Youssef 
et al. 2016).

The RBT model itself, as an ensemble technique provides 
a suitable relationship between input and target variables. 
Hence, the proposed hybrid RBT with machine learning 
models applied in this study combines the best fit single 
model in the form of an ensemble tree. Although many 
hybrid models using optimization algorithms have been pro-
posed to improve and evaluate the modeling accuracy, to the 
best of the author’s knowledge, the hybrid combination of 
the ensemble method (i.e., RBT) with the ML-based models 
(HW-RBT, LSTM-RBT, ELM- RBT and GRNN-RBT) has 
not been used before.

Result and discussion

As mentioned earlier, this study has three objectives such as 
to develop four different ML models for rainfall-runoff mod-
eling, improving the modeling accuracy using two nonlinear 

and two linear ensemble techniques, and finally to propose a 
hybrid BRT ensemble using the outputs of the single mod-
els. Thus, the results of sensitivity analysis, single models, 
ensemble techniques and the hybrid BRT model for rainfall-
runoff modeling is presented in the following subsections.

Sensitivity analysis

Preprocessing of individual inputs is important in any 
hydrologic time series modeling because their selection can 
significantly affect the efficiency of individual models. An 
important step in hydrologic process modeling using ML-
base techniques is the selection of appropriate input vari-
ables to feed to the various models (i.e., GRNN, ELM, HW 
and LSTM). The reason is that including large numbers of 
input parameters can lead to overfitting, which makes the 
modeling process complex and can lead to unrealistic results 
(Malik et al. 2022; Nourani et al. 2021a, b). Too few inputs, 
on the contrary, can reduce the accuracy of the modeling. In 
general, the factors (causal variables) for the rainfall-runoff 
process can be rainfall, temperature, lag runoff, and catch-
ment characteristics. The input variables used in different 
studies often differ depending on the availability of data. 
Most studies used rainfall and lagged runoff as input vari-
ables (Adnan et al. 2019; Kisi et al. 2013), while some other 
studies also included additional factors such as evaporation 
or temperature as input variables (Hadi et al. 2019).).

Previous studies have shown that the current runoff value 
(Qt) are strongly correlated with its previous value (Kisi 
et al. 2012). Therefore, the inclusion of lag values in mod-
eling can indirectly account for the influence of various fac-
tors affecting runoff formation. Pearson correlation has been 
used in previous studies to identify important inputs (Shara-
fati et al. 2020). Nourani et al. (2020a, b), however, criticized 
the applicability of the linear ensemble for the selection of 
dominant inputs in nonlinear hydrological processes. The 
strength of nonlinear sensitivity approach in selecting input 
variables has been demonstrated in several studies(Nourani 
et al. 2021a, b). Therefore, this study used the HW model 
was used for sensitivity analysis to determine the effects of 
input variables, i.e., rainfall (Pt, Pt-1, Pt-3) and lagged run-
off (Qt-1, Qt-2, Qt-3, Qt-4, and Qt-5) on output (Qt). This 

Fig. 8   The schematic of the 
ensemble process
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method is a single-input-single-output method in which one 
input variable at a time was fed into the HW model to simu-
late Qt. In this way, the relationship between the potential 
input variable and the output was determined without con-
sidering the influence of the other input variables and ranked 
based on their RMSE and NSE values, as shown in Table 2.

Table 2 shows that the inputs Qt − 1 Qt-2, Qt − 3 and Pt-1 
had lowest RMSE value and were the most relevant inputs 
and ranked first, second, third and fourth, respectively. The 
inputs such as Qt − 5, Pt − 1, Qt − 6, Pt − 2 and Pt − 3 were identi-
fied as less relevant and removed from the input combina-
tion set. Thus, the current runoff was modeled the by single 
ML-based models (GRNN, ELM, HW and LSTM) using 
different combinations of Qt − 1 Qt-2, Qt − 3, Qt-4, Pt and Qt-5 
as input. Afterward, different input combinations with the 
dominant inputs were developed for predicting runoff at the 
current day (Qt) using the four single models and only the 
best result obtained from each model were presented and 
discussed.

Results of the Single machine learning models

For each input combinations, the LSTM, GRRN, ELM and 
HW models were calibrated and validated and the perfor-
mance of the models were evaluated using NSE, RMSE, R2 
and PBIAS and the best result is presented in this section. 
One of the most key tasks in modeling using ML models is 
to adjust hyperparameters to achieve maximum accuracy. It 
should be noted that the best structure of hyperparameters 

for all four models was obtained by trial and error as shown 
in Table 3.

Performance comparison of the four single models were 
performed, and the results obtained are shown in Table 4. 
From the ML models, LSTM was found to be the best model 
for predicting rainfall-runoff, followed by HW, GRNN and 
ELM. The statistical performance indices of LSTM in terms 
of NSE, MAE, RMSE, and PBIAS was 0.968 and 0.933, 
1.521(m3/s) and 2.321(m3/s), 3.41(m3/s) and 5.30 8(m3/s), 
−4.19 and − 4.41, in the calibration and validation phase, 
respectively. The LSTM model provided the highest R2 and 
NSE and the lowest RMSE and PBIAS compared to the 
other models. It improves the performances of HW, ELM 
and GRNN by 7.56%, 16.9% and 9.12% based on the valida-
tion phase NSE values. Based on the statistical performance 
guideline set by Jimeno-Sáez et al. (2018) and Moriasi et al. 
(2015), the LSTM model led very good modeling result. The 
superiority of LSTM model, as deep learning model, could 
be due to its high potential for extracting complex features 
from data due to their hierarchical structure compared to 
conventional ML models and achieve much better perfor-
mance when the amount of data is sufficient (Rahimzad et al. 
2021). In addition, according to Xiang et al. (2020), the high 
accuracy of the LSTM model could be due to its capability 
of considering between time series and capable of remem-
bering information over long time of data such as seasonal-
ity, cyclical behavior and trends, which is not possible with 
the other computing models. After LSTM, HW model was 

Table 2   Sensitivity analysis result

Input RMSE (m3/s) NSE Rank

Qt-1 4.9699 0.865 1
Qt-2 6.7761 0.817 2
Qt-3 7.9649 0.772 3
Qt-4 8.9742 0.698 4
Pt 9.6859 0.554 5
Qt-5 14.493 0.493 6
Pt-1 16.345 0392 78
Qt-6 20.339 0.359 9
Pt-2 20.876 0.291 10
Pt-3 21.56 0.194 11

Table 3   Hyperparameters for 
single models

Model Tuning parameter models

LSTM Max epoch = 100; number of hidden units = 200; optimization = Adamax; learning 
rate = 0.01; Dropout rate = 0.4

ELM Number of hidden nodes = 2; Activation function = sigmoid; Regularization parameter = 6;
HW Nonlinearity = piecewise linear; max iteration = 50; tolerance = 0.001
GRNN Hidden layers = 2; spread constant = 1; learning rate = 0.1

Table 4   Results of single models for rainfall-runoff modeling

Period Performance 
measure

ELM GRNN HW LSTM

Calibration NSE 0.803 0.87 0.93 0.968
R2 0.803 0.877 0.932 0.972
RMSE (m3/s) 8.452 6.925 5.046 3.41
PBIAS (%) −1.275 −0.33 −1.956 −4.19
MAE (m3/s) 3.815 3.29 2.974 1.521

Validation NSE 0.798 0.845 0.926 0.933
R2 0.802 0.855 0.927 0.937
RMSE (m3/s) 9.088 7.794 5.546 5.308
PBIAS (%) 2.64 4.2 −1.845 −4.41
MAE (m3/s) 4.346 3.661 3.228 2.321
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the next best model with the statistical performance indices 
in terms of NSE, MAE, RMSE, PBIAS and R2 value of 
0.926, 3.228m2/s, 5.546 m3/s, −1.845, and 0.92, respectively 
in the validation phase. The HW model provided the highest 
R2 and NSE and the lowest RMSE and PBIAS compared to 
the GRNN and ELM. Indeed, the high performance of the 
HW model is not surprising, as it is an emerging nonlinear 
system identification model that has shown promising capa-
bilities on highly complex problems (Abba et al. 2020; Gaya 
et al. 2017; Pham et al. 2019). The results show that the HW 
model was able to improve the prediction accuracy of the 
ELM, and GRNN models by 16% and 8.3%, respectively, 
based on the validation phase NSE value. Also, The PBIAS 
value of all the models were found to be negative in both 
the calibration and validation phases, which according to 
Moriasi et al. (2007), a negative PBIAS value indicates that 
the model is overestimating the observed values.

Different model performance measures have been used 
by different researchers, including statistical, graphical, 
or a combination of them. According to Harmel et al. 
(2014), it is important to use a combination of both 
statistical and graphical performance measures to get a 
robust assessment of model performance. This is because, 
some statistical performance measures, such as the NSE, 
can perform well even when low values are poorly fitted 
(Moriasi et al. 2015). In such cases, graphical measures 
can provide additional evidence of where the model per-
formance is inadequate. Thus, this study used time series, 
scatter plot, flow duration curve (FDCs) and Taylor dia-
gram to evaluate the performance of the developed mod-
els. In this regard, Fig. 9 shows the scatter plot and time 
series variation between observed and predicted runoff 
by single ML models.

As can be seen from Fig. 9g., the LSTM model appears 
to have better performance in runoff prediction, especially 
during dry periods of the year. In the LSTM model, the 
predicted hydrograph was much smoother and fits the gen-
eral hydrograph trends (Fig. 9h) as well as the data points 
were closer to 1:1 line (Fig. 9g). However, the LSTM 
model as shown in the time series plot, failed to accurately 
catch the peak flows. Similar results of LSTM model’s 
inefficiency in catching the peak flow have been reported 
in other studies (Rahimzad et al. 2021). The time series 
and scatter plot of HW model (Fig. 9e and f) shows that 
the data points are hardly deviate from the observed value 
and line. The time series plot of HW model also shows 
a consistent pattern with the observed hydrograph espe-
cially in peak flows, which is a significant performance 
compared to the other competing models. The series plot 
of ELM (Fig. 9b) and GRNN (Fig. 9d) models contained 
some noises especially in large flows. In addition, the two 
models (ELM and GRNN) generate more points deviating 
from the observed runoff values and with larger distances 

to the ideal line compared to the LSTM and HW models. 
The statistical measure and graphical illustration results 
suggest that especially the LSTM and also HW models 
are able to capture the complex nonlinear nature of the 
rainfall-runoff process in both calibration and validation 
phase. The superiority of the LSTM model over the other 
competing models obtained in this study is supported by 
previous studies (Kaveh et al. 2021; Rahimzad et al. 2021; 
Yun et al. 2021). The HW model is applied in this study 
for the first time for rainfall-run off modeling also showed 
a promising performance. The HW model performance in 
modeling nonlinear problems have been reported in pre-
vious studies conducted in other fields (Abba et al. 2020; 
Pham et al. 2019) In general, the ELM model was found 
to be the least accurate model in both the calibration and 
validation phases.

Comparative evaluation was performed for the best 
individual models in the validation phase based on a 
two-dimensional Taylor diagram, as shown in Fig. 10. 
Taylor diagram summarizes and highlights several sta-
tistical indices such as standard deviation (SD) and cor-
relation coefficient (r) between the actual and predicted 
values (Taylor 2001). From the figure, it can be seen 
that the better goodness of fit of runoff modeling was 
achieved with LSTM model with a value of r = 0.968, 
followed by HW (r = 0.962), GRNN (r = 0.924) and 
ELM (r = 0.875).

As stated by Jimeno-Sáez et al. (2018), the statistical 
performances, scatter and time series plots could not give 
an explicit performance comparison at different value inter-
vals. This problem can be solved by applying flow duration 
curves (Tibangayuka et al. 2022). In this study, in addition 
to the statistical measures used to evaluate the performance 
of the models, the results were also analyzed using flow 
duration curves (FDCs) to visually compare and illustrate 
the differences between the measured and predicted runoff 
by single models. This provides a graphical representation 
of the model’s performance and can help identify specific 
segments of flow where the model may be over or under 
estimating the runoff (Jimeno-Sáez et al. 2018). Thus, this 
study developed the FDCs for the single model as shown 
in Fig. 11. Pfannerstill et al. (2014) developed a method 
to improve the evaluation of the models’ performance by 
dividing the FDCs into different segments. In this study, to 
evaluate the performance of the models at different phases 
of the hydrograph, the FDCs were divided into five seg-
ments as very low (>Q95), low (Q70-Q95), medium (Q20-
Q70), high (Q5-Q20) and very high (<Q5) flows based 
on the recommendation of Jimeno-Sáez et al. (2018) and 
Pfannerstill et al. (2014); where Qp denotes the runoff with 
probability of exceedance (%). As shown in Fig. 10, LSTM 
model provide better performance in low and very flow seg-
ment, GRNN model led better performance in medium flow 
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segment, LSTM and ELM provide better performance in low 
and very low flows. For example, the observed Q95 value 
was 1.0012m3/s while the predicted values by ELM, LSTM, 
HW and GRNN was 1.81 m3/s, 1.0896 m3/s, 0.46 m3/s and 
1.592 m3/s, respectively. This indicates LSTM model pre-
dicts the Q95 runoff better than the others. Similarly, the 
observed Q20 value was 21.643 m3/s while the predicted 
values by ELM, LSTM, HW and GRNN was 20.526 m3/s, 
24.452m3/s, 25.84 m3/s and 20.756 m3/s, respectively, indi-
cating better modeling efficiency of GRNN and ELM. The 
observed Q5 value was 60.032 m3/s while the predicted 
values by ELM, LSTM, HW and GRNN was 54.268 m3/s, 

64.696 m3/s, 59.767 m3/s and 54.6 m3/s, showing the supe-
riority of HW model at this point.

A detail performance analysis of each model at different 
segment of the FDCs was also made based on the RMSE 
value (as shown Table 5). The RMSE values in the table 
indicate that the low and very low flows was better mod-
eled using LSTM model. The GRNN was better at mod-
eling medium flows (RMSE = 0.795 m3/s) and HW model 
was better at modeling very high flows with RMSE value of 
RMSE = 5.692 m3/s. Based on the RMSE value, the ELM 
model provides a better modeling result compared to the 
HW and LSTM models in medium and high flows. This 

Fig. 9   Scatter and time series 
plot for single models in the 
validation phase
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shows that even the least accurate model provides better 
result at a certain segment of the hydrograph.

The results of this analysis show that different models can 
lead to different performances at different segments in the 
hydrograph. Therefore, more accurate modeling of the rain-
fall-runoff process can be achieved by combining the results 
of individual models. For this purpose, ensemble modeling 
was developed in two scenarios in this study. In the first 
scenario, WAE, SAE, NFE and HW were used to combine 
the results of the individual models (LSTM, ELM, HW and 
GRNN). In the second scenario, a hybrid BRT ensemble 
technique was used to improve the overall modeling perfor-
mance. These ensemble methods and hybrid BRT combine 

the results of multiple models to obtain a more accurate esti-
mate of the runoff.

Result of ensemble technique (scenario 1)

As stated earlier, the ensemble techniques presented in this 
study aim to improve the accuracy of the individual mod-
els (i.e., ELM, LSTM, GRNN and HW). To this end, the 
advantages of individual models are combined and the best 
results of each single models were considered as the sub-
sequent input parameters for the ensemble technique. For 
the SAE and WAE techniques, modeling was conducted 
using Eqs. (17) and (18), respectively. Whereas, the two 
nonlinear ensemble models (HWE and NFE) were mod-
eled by using a similar approach as the respective indi-
vidual models. The results of the ensemble techniques are 
shown in Table 6. From the results, all linear ensemble 
techniques and HWE have higher performance than the 
individual models, with the exception of LSTM. The NFE 
ensemble technique improved all the models although the 
improvement for LSTM model was not significant. This 
leads to the conclusion that for modeling the rainfall-run-
off process in Katar catchment, the ensemble technique 

Fig. 10   Taylor diagram for single models in the validation phase

Fig. 11   FDCs of single models 
in the validation phases

Table 5   The RMSE values (m3/s) of individual models in each hydro-
graph segment

Hydrograph 
phase

Flow range 
(m3/s)

HW LSTM ELM GRNN

Very low flow [0.115–0.995] 0.62 0.091 0.864 0.623
Low flow [0.998–1.479] 0.239 0.144 0.831 0.614
Medium flow [1.479–21.643] 1.6 1.291 0.997 0.795
High flow [21.643–59.96] 3.391 4.131 2.805 2.151
Very high flows [60.032–126.779] 5.692 6.301 8.385 7.485
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provides the most reliable result. The reason for the lower 
performance of the ensemble techniques compared to the 
LSTM model could be because of the weakness of the 
other individual models in the ensemble unit. According 
to Abba et al. (2020), the modeling performance of ensem-
ble techniques depends on the accuracy and efficiency of 
each of the individual models. For example, in the SAE 
technique, the athematic average of all individual mod-
el’s is used to generate the ensemble output. According 
to Nourani et al. (2020a, b), linear averaging gives values 
higher than the least performing models and lower than 
the most accurate model. In WAE technique, on the other 
hand, assigns weights to the outputs of individual model 
based on their relative importance to enhance the predic-
tive accuracy. These phenomena may prove to be a weak-
ness for prediction accuracy improvement of the ensem-
ble techniques. Some studies have shown that ensemble 
techniques perform less than a single model (Abba et al. 
2020). The statistical performance indices in Table  6 
shows that the WAE ensemble technique has slightly better 
accuracy compared to SAE. The NFE technique provides 
the best result with the value of NSE = 0.973 and 0.957, 
MAE = 1.3432.918 m3/s and 2.918 m3/s, PBIAS = -0.271 
and 0.797 and RMSE = 3.155 m3/s and 4.232 m3/s, respec-
tively in calibration and validation phases. The NFE tech-
nique improved the performance of ELM, LSTM, GRNN 
and HW models by 19.9%, 2.57%, 13.25% and 3.35%, 
respectively, based on the validation phase NSE value. The 

NFE technique has not been used in rainfall-runoff study, 
but its robustness has been demonstrated in several studies 
conducted in other field (Nourani et al. 2020a, b; Nourani 
et al. 2021a, b; Umar et al. 2021). The superiority of NFE 
could be due to that it is hybrid learning algorithm that 
combines the advantages of both ANN and FIS and able to 
handle the nonlinear and complex rainfall-runoff process.

Hybrid BRT ensemble result (scenario 2)

In the scenario 1 of ensemble modeling, the best ensemble 
technique (NFE) couldn’t show a significant improvement 
for LSTM (best single) model. Thus, this study developed 
a hybrid of the RBT ensemble (LSTM-BRT, ELM-BRT, 
HW-BRT, and GRNN-BRT) to enhance the accuracy and 
compare with the ensemble techniques (senarion1) dis-
cussed in Section 3.3. Similar to the single and ensemble 
models, the prediction accuracy of the developed hybrid 
models was evaluated using NSE, R2, RMSE, MAE, and 
PBIAS. The results of the hybrid BRT models in both the 
calibration and validation phase are shown in Table 7. As 
can be seen in Table 7, LSTM-RBT outperformed all the 
other hybrid models with the highest value of NSE = 0.987 
and 0.978, R2 = 0.987 and 0.981, and the lowest values of 
RMSE = 2.999 m3/s and 2.199 m3/s, MAE = 1.034 m3/s and 
1.438 m3/s and PBIAS of 0.117% and 0.75% in the calibra-
tion and validation phases, respectively. Based on the sta-
tistical performance indices, it was proved the superiority 

Table 6   The result of ensemble 
techniques (scenario 1)

Period Hybrid models R2 RMSE (m3/s) MAE (m3/s) NSE PBIAS (%)

Calibration SAE 0.932 5.004 2.289 0.931 −2.76
WAE 0.937 4.824 2.212 0.936 −2.964
HWE 0.941 4.662 2.594 0.94 4.43
NFE 0.973 3.155 1.343 0.973 −0.271

Validation SAE 0.912 6.091 2.874 0.911 −2.388
WAE 0.931 5.442 2.765 0.929 −2.554
HWE 0.93 5.45 2.918 0.931 2.75
NFE 0.957 4.232 1.867 0.957 −0.797

Table 7   The result of hybrid 
BRT models

Hybrid models R2 RMSE
(m3/s)

MAE
(m3/s)

NSE PBIAS (%)

Calibration HW-BRT 0.979 3.142 1.314 0.976 4.4
GRNN-BRT 0.926 5.175 2.484 0.926 2.085
LSTM-BRT 0.987 2.199 1.034 0.987 0.117
ELM-BRT 0.898 7.335 3.834 0.872 −2.26

Validation HW-BRT 0.97 3.707 2.449 0.967 0.385
GRNN-BRT 0.93 5.506 2.861 0.927 0.5
LSTM-BRT 0.981 2.999 1.438 0.978 0.75
ELM-BRT 0.87 7.471 3.709 0.866 2.76
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of all hybrid models despite the better prediction accuracy 
of LSTM-RBT. The hybrid LSTM-BRT model increased 
the accuracy of the LSTM, HW, GRNN and ELM model 
by 4.82%, 6.59%, 16.8% and 23.68%, respectively based on 
the NSE value in the validation phase. The ELM-BRT, HW-
BRT, and GRNN-BRT increased the performance (based 
on NSE value) of their counterpart in the single model by 
8.52%, 9.7% and 4.43%, respectively in the validation phase.

Figure 13 shows the scatter plots and time series between 
the observed and predicted values of the four-hybrid ensem-
ble models. From Fig. 13, it can be seen that the agree-
ment between the observed and predicted runoff values 
was achieved in the following order: LSTM-BRT > HW-
BRT > GRNN-BRT > ELM-BRT. Moreover, the perfor-
mance of the hybrid models developed in the study are con-
sidered very good in modeling the rainfall-runoff modeling 
based on the guidelines set by Moriasi et al. (2015), as the 
NSE, R2 and PBIAS value for all models is greater than 
0.80, 0.85 and less than ±5, respectively in both calibration 
and validation phases.

Generally, the comparison of modeling accuracy between 
the ensemble and hybrid models (i.e., Scenario 1 and 2) 
showed that the best hybrid BRT ensemble model (i.e., 
LSTM-RBT) outperformed all four-ensemble techniques 
(WAE, SAE, NFE and HWE). According to Abba et al. 
(2020), using ensemble of different models like BRT with 
other highly promising nonlinear models such as ELM, 
LSTM, GRNN and HW can further enhance the robust-
ness of the BRT model. This is because, combining mul-
tiple models helps to reduce the variance and bias of the 
predictions, resulting in a more accurate and robust model. 
Another reason could be due to the BRT model uses an 
ensemble of different decision tree models, which allows 
it to fit complex nonlinear relationships and automatically 
address interaction effects between the predictions. This 
results in high accuracy for the BRT model. Similarly, the 
statistical performance comparison results showed that HWE 
and NFE techniques were superior to the other three hybrid 
BRT morsels (i.e., ELM-BRT, LSTM-BRT and GRNN-
BRT). A more detailed comparison of the observed and 
predicted runoff values using the single models, ensemble 
techniques and the hybrid BRT models revealed the impor-
tance of using both the ensemble techniques and the hybrid 
BRT models to increase the prediction performance of the 
single models. Similar to the single and ensemble models, 
the performance of the hybrid models was also compared 
using scatter and time series plots as shown in Fig. 13. From 
the figure, the scatter plot of predicted hybrid BRT models 
specially LSTM-BRT and HW-BRT modes were very close 
to the actual runoff values and the 1:1 line showing their 
accurate prediction. The ELM-BRT model provide the worst 
performance compared to the other ensemble techniques. 
As shown in Fig. 12a, the data points of ELM-BRT model 

are more scattered and far from the diagonal line specially 
in large runoff values. Also, Fig. 13b shows the ELM-BRT 
model follow the pattern of the hydrograph well during low 
flow periods, but not in the high flow period of the flow of 
the years.

Fig. 12a-h provides visual representation using scat-
ter and time series plots of the four different ensemble 
techniques (SAE, WAE, HW-E and NFE) to compare 
their performance in the validation phase. The time 
series plot can show the deviation of ensemble tech-
niques from the actual value at different time. The fig-
ure shows that NFE led the best agreement and pat-
tern with observed runoff and catches the high and 
low flows with high accuracy. In the linear ensemble 
techniques (SAE and WAE), the data points deviate the 
corresponding observed values and unable to catch the 
peak f lows. The ensemble results of this study were 
compared with findings by Nourani et al. (2020a, b), 
Nourani et al. (2021a, b) and Umar et al. (2021) and 
found fair similarity.

The performance of ensemble technique and hybrid 
BRT models were also compared using box-plot 
as shown in Fig. 14. The boxplot in Fig. 14 investi-
gates the variability of observed runoff as compared 
to those obtained from ensemble and hybrid models 
using their quartile and interquartile ranges (IQR). 
Figure  14a depicts that better consistent result was 
found between the variability of runoff value pre-
dicted by NFE (IQR = 14.92 m3/s) and observed value 
(IQR = 15.19  m3/s). Among the hybrid BRT models 
(Fig. 14b), the most consistent value was obtained by 
HW-BRT model (IQR = 15.08 m3/s).

Conclusions

In the current study, the performance of four ML models 
such as ELM, LSTM, HW and GRNN were evaluated for 
modeling of the rainfall-runoff process in Katar catchment, 
Ethiopia. Subsequently, to improve the accuracy of the 
single models, four different ensemble techniques such as 
SAE, WAE, HWE and NFE (Scenario 1) as well as hybrid 
BRT models (Scenario 2) were used separately. The mod-
eling performance of the developed models was evaluated 
and compared using statistical performance indices (NSE, 
R2, MAE, PBIAS and RMSE), FDCs, scatter plots, time 
series and Tylor diagram. Prior to the modeling, a sensitiv-
ity analysis between input variables and the output vari-
able (Qt) was performed using a nonlinear input variable 
selection method. In summary, the results of the single 
ML models showed that the LSTM model performed best 
in modeling the rainfall-runoff process, followed by the 
HW, GRNNN, and ELM models. The LSTM model had 
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a performance accuracy that was 10.41%, 0.76%, 16.92%, 
2.4% and 0.4% higher than the GRNN, HW, ELM, SAE 
and WAE models based on the NSE value in the valida-
tion phase. Among the four ensemble techniques, the NFE 
ensemble had the best performance in both calibration and 
validation phases. The NFE technique improved the per-
formance of ELM, HW and GRNN by reducing the RMSE 
value by 52.41%, 22%, and 44.5%, respectively, in the vali-
dation phase. Also, the best ensemble technique in sce-
nario 1 (NFE), had 2.793%, 3.014%, and 5.05% higher NSE 
value than the HWE, WAE and SAE technique, respec-
tively, in the validation phase. Moreover, the developed 
hybrid models (LSTM-BRT, GRNN-BRT, ELM-BRT and 

HW-BRT) all had better performance than their counter-
part single models with the superior performance obtained 
by the LSTM-BRT model. The overall results of this study 
show the promising effect of the ensemble techniques and 
specially hybrid BRT models for predicting the rainfall-
runoff process in the Katar catchment in Ethiopia. Future 
studies should evaluate the proposed hybrid ensemble tech-
niques for other hydrologic processes modeling. Moreover, 
the study also recommended the use of other alternatives 
such as new deep learning models and optimization algo-
rithms in conjunction with the promising ensemble models 
(e.g., random forest) in future studies to improve the overall 
modeling accuracy.

Fig. 12   Scatter and time series 
plot of observed and predicted 
runoff by ensemble techniques 
in the validation phase
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Fig. 13   Scatter and time series 
plot of observed and hybrid 
model’s runoff in the validation 
phase

Fig. 14   The comparison of the 
box plot for (a) the ensemble 
technique and (b) hybrid BRT 
models
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