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Abstract
Advanced Hyperspectral image sensors can capture high-resolution land cover images. Many supervised Machine learning 
(ML) and Deep learning (DL) algorithms succeeded in the Hyperspectral image classification for various applications. Sci-
entific findings reveal that supervised learning methods’ performance heavily depends on training set size, i.e., labelled by 
the ground truth collection. Labelling a large volume of hyperspectral images is tedious and time-consuming. Research in 
Active learning (AL) aims to determine the minimal set of samples for labelling, ensuring that model performance is unaf-
fected by training using a minimal set of samples. This article examined fundamental AL and cutting-edge methods used for 
hyperspectral image classifications. This article also focuses on the cutting-edge approach known as Active Deep Learning 
(ADL). ADL combines the strong discriminative capabilities of the deep learning model with active learning. This article 
examined the use of ADL for the Hyperspectral images (HSIs) classifications and reviewed opportunities and challenges. At 
last, the experiment illustrates and evaluates the integration of the DL model with several AL approaches.

Keywords Hyperspectral image classification · Machine learning · Active learning · Deep active learning

Introduction

Hyperspectral imaging records spectral reflectance of visible 
and near-infrared bands in remote sensing. Hyperspectral 
image sensors provide hundreds of spectral band reflectances 
of the earth’s surface (Khan et al. 2018). These narrow and 
continuous spectral bands can efficiently discriminate the 
pixels of land cover images. Many applications like agri-
culture, geology, forestry, and urban planning use HSIs data 
for resource management (Adão et al. 2017; Gao et al. 2021; 
Kahraman and Bacher 2021). With advanced technology, 
high-resolution hyperspectral imaging sensors can capture 

earth observation as digital imagery in HSIs cubes. Effec-
tive processing techniques are required to extract valuable 
information from this enormous volume of data.

Hyperspectral image classification aims to categorize 
each pixel vector of an image into specific classes corre-
sponding to the image content. Due to its diverse applica-
tions, HSI classification has received significant attention 
over the past years. Figure 1 shows statistics of scientific 
articles published in the last six years. The statistics col-
lected from the Google Scholar search engine with the key-
words:" Hyperspectral image classification." is included in 
the article’s title. According to statistics, the research com-
munity has increasingly focused on hyperspectral image 
classification. HSIs classification techniques presented in 
the literature broadly cover spectral-based and spectral-
spatial-based classification algorithms. The spectral-based 
approach uses spectral reflectance for the classification, 
whereas spectral-spatial-based algorithms consider the spa-
tial features along with the spectral reflectance to use the 
spatial correlation.

Various unsupervised Machine learning algorithms, 
such as k-means clustering (Zhang et al. 2016a) and fuzzy 
c-means clustering (Salem et al. 2016), can identify pat-
terns from unlabeled data for classification. Supervised 
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ML algorithms like the random forest (Zhang et al. 2018), 
logistic regression (Qian et al. 2012), and support vector 
machines (Moughal 2013) that required labelled samples 
for the training are also widely used and have given promis-
ing results for the HSIs classification. Due to the constant 
evolution of Machine learning, Deep learning, the subdo-
main of ML, has gained more attention due to its success 
in various fields. Supervised DL techniques have received a 
lot of attention for the classification of hyperspectral images. 
Deep learning can automatically learn hidden patterns from 
the data, so the DL model received more attention than the 
other supervised ML models. The main challenges of super-
vised HSIs classifications include higher dimensionality or 
redundancy, large spectral and spatial variability and lack 
of labelled data (Datta et al. 2022). Various dimensional-
ity reduction approaches exist to reduce dimensionality; 
Principle Component Analysis (PCA) is one of the most 
popular methods because of its ease of use and effective-
ness. Changes in illumination, atmosphere, and environ-
mental conditions can generate spatial and spectral signal 
variations. Spatial filtering, spatial normalization, and spec-
tral unmixing are the techniques for dealing with spectral 
and spatial variability. The performance of the supervised 
machine learning model depends on the quantity and the 
quality of the labelled dataset used for the model training 
(Yang et al. 2018). Specifically, the DL models need more 
labelled samples to train great number of learning param-
eters. This article discusses current strategies put forth by 
the research communities to address the shortage of labelled 
data for the HSIs classification.

Hyperspectral image classification with limited labelled 
samples is more attractive because labelled datasets in 
remote sensing are expensive and time-consuming to pro-
duce. The large spatial area and accessibility to locations can 
make it difficult and costly to acquire suitable training sets 
through field surveys. As a result, training sets often include 
fewer samples for the extensive coverage of the scene 

(Crawford et al. 2013). Using visual interpretation, one can 
also acquire labelled data from high-resolution images. But 
this method is erroneous, subjective, and dependent on the 
analyst’s knowledge. Searching for small data sets with high 
training utility is worthwhile to lower the cost of human 
annotation. The performance of the classifier is not affected 
in this way. Given the availability of unlabeled data, it is 
also advantageous to exploit the spectrum information in 
both the labelled and unlabeled data to provide better clas-
sification results.

Semisupervised learning, Transfer learning, Few-shot 
learning, and Active learning are the major categories to 
overcome the limited labelled training data problem.

Semisupervised learning uses labelled and unlabeled 
datasets to train models (Sawant and Prabukumar 2020). 
The three main Semisupervised learning method groups are 
pseudo labelling (Wu and Prasad 2017; Patel et al. 2020), 
graph-based methods (Ma et al. 2016), and generative meth-
ods (He et al. 2017). Few-shot learning aims to recognize 
new categories of input samples from a few annotated sam-
ples. Few-shot learning significantly improves performance 
once the deep learning model is tuned (Liu et al. 2018b). 
Cross-domain (Li et al. 2021) and fusion-based (Liang et al. 
2021) few-shot learning was proposed for HSIs classifica-
tion. Transfer learning, which includes transferring knowl-
edge between two or more related domains, addresses the 
insufficiency of labelled samples. Literature covers heteroge-
neous transfer learning (He et al. 2019) and ensemble-based 
transfer learning (Liu et al. 2020) with DL models for HSIs 
classifications.

Active learning methods seek to construct representative 
training data sets for the supervised learning algorithm at 
the lowest possible cost. It can efficiently acquire discrimi-
native features, with a minimum set of labelled samples, by 
selecting representative or highly-informative samples for 
manual labelling from the unlabeled pool. Many primary 
and advanced AL techniques are applied to mitigate the 
problem of a limited labelled dataset of HSIs classification. 
Active deep learning (ADL) is an emerging field that com-
bines deep learning and active learning. This paper focuses 
on recent articles on active learning, and ADL applied for 
hyperspectral image classifications.

Contributions

The contributions of this article are as follows:
Survey on active learning: This review summarizes the 

various active learning techniques used in HSI classifica-
tions to overcome the problem of limited labelled samples. 
The article covers both basic AL techniques and advanced 
options for improvement.

Active deep learning: Active deep learning is an emerg-
ing field capable of extracting discriminative features by the 

Fig. 1  Statistics of published articles title included "Hyperspectral 
image classification." according to Google Scholar



1977Earth Science Informatics (2023) 16:1975–1991 

1 3

DL model with limited labelled samples. The comprehen-
sive and insightful surveys of state-of-the-art methods of 
ADL with HSIs classification are described and thoroughly 
surveyed.

Comparative analysis of AL methods: This article also 
emphasizes how the ADL is used to classify HSIs. It also 
examines the effects of various AL techniques using the 
same DL frameworks. The impact of the AL parameters is 
analyzed using the classifier test accuracy results.

Literature reveals comprehensive and insightful surveys 
on active learning methods; some are specific to remote 
sensing. For example, the authors in (Thoreau et al. 2022) 
compared different AL techniques with HSIs classifications. 
The author implemented various fundamental AL techniques 
with the same framework (SVM-ML model) to analyze the 
performance. Jia et al. (Jia et al. 2021) comprehensively 
review the state-of-the-art deep learning-based methods 
for HSI classification with few labelled samples. The first 
article emphasizes the different AL methods, while the sec-
ond emphasizes the different classifiers to train with limited 
labelled samples. This article presents a recent survey on 
active learning and active deep learning for the classification 
of hyperspectral images.

Organization

Sect. "Active learning" describes active learning and the dif-
ferent categories of AL. Sect. "Advanced Active Learning 
Techniques" describes advanced AL approaches applied to 
the HSIs classifications. Sect. "Active deep learning" defines 
Active deep learning for HSIs classifications and its major 
problems and solutions. Sect. "Experiment" of the article 
presents the experimental setup and results of multiple active 
learning (AL) methods with a deep learning (DL) model 
as the classifier. Sect. "Conclusion and discussion" is the 
conclusion and discussion.

Active learning

Active learning (AL) is a method that selects informative 
samples from an unlabeled dataset, utilizing human input 
to label these selected samples while training a supervised 
machine learning model. This approach aims to reduce the 
reliance on a large labelled training dataset. There are two 
main types of AL: stream-based and pool-based. In stream-
based AL, the algorithm receives each unlabeled sample 
one at a time and decides whether to query for the label. 
On the other hand, Pool-based AL involves a sizable pool 
of unlabeled samples that are presented to an AL acquisi-
tion function for selection and manual labelling. In an AL 
framework, both a supervised machine learning algorithm 
and an acquisition function play crucial roles (Yang et al. 

2018). The acquisition function serves as a query technique 
to choose informative samples for manual labelling. Figure 2 
illustrates the iterative process of pool-based AL, where 
a limited labelled training dataset trains the supervised 
machine learning model. It subsequently selects samples 
from the pool of unlabeled data for annotation based on the 
model’s predictions. This article focuses on discussing the 
pool-based AL technique.

Active learning techniques

Various AL methods have been applied in different domains 
in the last two decades. This section will overview the most 
often used methods and broadly divide them into four cat-
egories: posterior probability-based, margin-based, commit-
tee-based, and learning-based, as shown in Fig. 3.

• Posterior probability-based: Supervised ML models 
trained by labelled training datasets define the class pre-
diction probability of the unlabeled pool dataset. The 
predicted posterior probability of unlabeled samples rep-
resents the prediction’s uncertainty. Uncertain sampling 
(Lewis and Catlett 1994) is the method to select the most 
uncertain data points for labelling based on the calcu-
lated entropy from the prediction output of the classifier. 
Mutual information (MacKay 1992) defines a Bayesian 
framework to measure the effectiveness of the candidate 
data point. Breaking tie (BT), (Luo et al. 2005) select 
the candidate sample with a minimum difference of the 
highest two-class prediction probabilities. Multiclass 
classification problems are more suitable for this method. 
The least confidence (LC) (Culotta and McCallum 2005) 
selects the candidate sample with the least prediction 
probability.

Fig. 2  Pool-based AL framework
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• Margin-based: Margin-based sampling methods are more 
suitable with classifiers like Support vector machines 
(SVM). Margin sampling (Tuia et al. 2011) selects sam-
ples for labelling with a minimum distance from the 
hyperplane. Multiclass level uncertainty (Melgani and 
Bruzzone 2004; (Demir et al. 2010) is another margin-
based sampling method that extends MS for the mul-
ticlass classification problem. In this method, the one-
against-one and one-against-all strategies are used with 
multiple SVM classifiers to find the uncertain and diverse 
samples for the annotation. Significance Space Construc-
tion (Pasolli et al. 2010) is a method that constructs sig-
nificance space to direct the sample selection with the 
SVM classifier. Best-versus-Second-Best (BvSB) (Joshi 
et al. 2009) generalizes margin-based multiclass uncer-
tainty compatible with the large data size and multiple 
class classification.

• Committee-based: Committee-based AL method makes a 
committee and takes decisions based on multiple super-
vised learning models. Query by Committee (QBC) 
(Seung et al. 1992) is the first committee-based method 
to decide the sample selection based on maximum disa-
greement. The QBC approach is improved by running 
the algorithm several times, resampling the data, and 
choosing and picking the point by majority voting (Abe 
1998; Tuia et al. 2009). Adaptive maximum disagree-
ment (Leskes 2005; Di and Crawford 2010) is another 
improved committee-based algorithm considering learner 
diversity in voting.

• Learning-based: Recently, learning-based AL have been 
proposed to overcome the limitations of heuristics-based 
AL methods. The performance of the various heuristics-
based AL methods depends on the dataset complexity 

and the learning model. Due to the success of reinforce-
ment learning (RL) by Atari (Mnih et al. 2013) game 
playing, many areas use RL to solve the complex prob-
lem of different domains. Recently the learning-based 
AL methods were proposed with the RL framework. 
Active learning by learning (Hsu and Lin 2015) is an 
adaptive method that selects the AL method from the dif-
ferent heuristic-based AL techniques based on the K-arm 
bandit theory. Learning active learning (Konyushkova 
et al. 2017), a data-driven AL method, can outperform 
the various heuristics-based AL methods. Reinforced 
Active Learning (Haußmann et al. 2019) is a policy net-
work for the AL based on deep reinforcement learning.

• Others: Bayesian Active Learning by Disagreement 
(BALD) and Coreset are well-known AL algorithms. 
BALD (Houlsby et al. 2011) method gains information 
from predictive entropies, which can work with complex 
classification models. Many language processing and 
image processing tasks use deep neural networks. The 
Coreset (Sener and Savarese 2017) AL method is defined 
as selecting a core set, which refers to a subset of data 
points chosen to enable a model trained on this subset to 
achieve competitive performance on the remaining data 
points. The Coreset algorithm is designed with a CNN 
classifier.

Uncertainty-based AL methods decisions rely on the 
model predictions. Model training with AL is not reliable 
in its initial phase. So sometimes, uncertainty base AL meth-
ods perform worse than random sampling. Margin-based 
AL method considers the inherent structure of margin-based 
classifiers like SVM. So these methods are limited by such 
a classifier. Committee-based methods take decisions with 

Fig. 3  Basic AL methods
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multiple learners, views, or features. To generate various 
views or train multiple learners is a computationally inten-
sive task. Due to their adaptability, learning-based AL 
approaches have recently become more prevalent. However, 
it’s essential to note that these approaches have predomi-
nantly been restricted to specific fields, such as language 
processing, computer vision, and object identification. As 
of now, classifications of hyperspectral images do not use 
learning-based AL.

Advanced active learning techniques

This section overviews various advanced active learning 
(AL) methods for classifying hyperspectral images (HSI). 
MultiView Active Learning (MVAL), Superpixel-based 
AL, Cluster-based AL, and Feature-based AL are the broad 
categories of these methods. Each of these categories offers 
unique approaches to enhance the efficiency and effective-
ness of AL for HSI classification tasks.

MultiView active learning (MVAL)

MultiView Active Learning (MVAL) is a technique that 
enhances the selection of candidate samples for improved 
classification performance by leveraging information from 
multiple views of an input image. By extracting and utiliz-
ing information from different perspectives or modalities 
within the image, MVAL aims to maximize sample diversity 
and informativeness. This approach ultimately enhances the 
learning process and improves the accuracy of classification 
tasks. The set of spectral bands, combinations of spectral-
spatial information, texture information, various classifiers 
output, multiple sensor inputs, or other feature extraction 
techniques provides different views of the hyperspectral 
image.

Providing various views of the input image to deliver 
diverse and complementary information is a critical chal-
lenge for MVAL (Crawford et al. 2013). The effectiveness 
of the MVAL algorithm relies on two assumptions. First, the 
generated views must be complementary, i.e., there should 
not be a correlation between the different views. Second, 
the generated views must be sufficient for any sample in an 
image to be accurately labelled by one of the views (Muslea 
et al. 2006).

With the help of clustering, uniform band slicing, and 
random selection combined with dynamic view updating 
and feature bagging, Di and Crawford (2011) produced a 
multiview of the HSIs for classification. Zhou et al. (2016) 
proposed 3D -redundant wavelet transformation to generate 
diverse multiple views of an image. To reduce the annotation 
cost, the author applied intersection-based query selection. 
The authors also suggested a singularity-based criterion to 

include spatial information for better feature extraction of 
HSIs. Coarseness, content, contrast, smooth component pair, 
and direction are used as morphological components by Xu 
et al. (2017) to produce various perspectives of one image. 
The query strategy uses the cluster distribution of unlabeled 
samples and uncertainty in classifier prediction.

Hu et  al. (2018) defined MVAL for HSIs classifica-
tion with a 3D Gabor filter to create multiple views of the 
image. They defined the AL strategy with "internal uncer-
tainty", represented by a classifier’s posterior probability, 
and "external uncertainty", represented by inconsistencies 
between views. Jamshidpour et al. (2020) proposed multi-
view, multi-learner for HSIs classification. The author used 
a genetic algorithm to create multiple views and different 
kernels as the multiple learners. With multiple learners, the 
computational complexity also increases. Xu et al. (2021) 
proposed a framework to mitigate the inaccurate prediction 
of classifiers with limited training samples. The designed 
algorithms "leave-one-class-out" use MVAL with spectral-
spatial features for HSIs classification. Candidate samples 
for the annotation are selected based on the contribution 
of the training and the level of classification confidence. 
Cai et al. (2021) proposed phase-induced Gabor filters to 
generate multiple views of the HSIs for classification. The 
proposed algorithm can adjust the Gabor filter’s frequency 
response characteristics through the different phase values.

Multiview active learning techniques perform well in 
the field of HSIs classification. HSIs carries hundreds of 
spectral band along with high spatial resolutions. Process-
ing large-scale 3D image cubes with multiple views raises 
computational requirements. Algorithms also need multiple 
classifiers/learners, adding to the computational complexity.

Superpixel based AL

The superpixel aggregates similar pixels to produce mean-
ingful entities and reduce further processing steps. The 
literature defines graph-based, watershed-based, density-
based, clustering-based, and wavelet-based superpixel algo-
rithms. Stutz et al. (2018) comprehensively reviewed all such 
superpixel algorithms. Superpixel is widely used in image 
segmentation to over-segment the image for downstream 
processing. Superpixels, collections of related pixels for a 
hyperspectral image, allow for compelling spatial-spectral 
features for HSIs classification. Priya et al. (2015) illus-
trates using superpixels and information fusion to extract 
vital spatial data for classifying HSIs. Guo et al. (2016) 
suggested Superpixel-based active learning for classifying 
HSIs. The proposed AL method extracts spectral and spatial 
features like texture from the superpixel to enhance the AL 
performance.

Semisupervised active learning is a framework that gen-
erates pseudo labels from the actively selected samples. 
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Liu et al. (2018c) proposed superpixel-based Semisuper-
vised active learning for HSIs classification. The author 
defined superpixels based on local similarity to generate 
pseudo-labels for semi-supervised learning. The pseudo-
label candidate sample is selected based on the breaking 
tie AL technique. Lu and Wei (2021) proposed multiscale 
superpixel-based AL for HSIs classification. The author 
chooses samples from unlabeled datasets based on diversity 
and uncertainty in the proposed work. Superpixels are cho-
sen and given pseudo labels among these selected samples, 
while human experts label the remaining samples. Xue et al. 
(2018) introduced batch mode AL to choose uncertain and 
diversified samples based on superpixels for HSIs classifica-
tion. The candidate selects only one sample per superpixel 
for the batch to ensure the selection of more diverse samples 
for the annotation.

Determining the number of superpixels and the super-
pixel map is a challenging task. The superpixel map highly 
influences the classification result.

Cluster based AL

Unsupervised machine learning techniques such as clustering 
allow for identifying groups of related data. The clustering 
algorithm is attractive since it is quick, easy, and unsuper-
vised. As a result, numerous researchers used a clustering 
approach to address classification issues with hyperspectral 
images (Qin et al. 2019; Zhang et al. 2016b), and (Hajiani 
et al. 2021). Clustering methods can quickly search and 
identify informative and diverse samples. Zhao et al. (2019) 
defined a semisupervised clustering-based Generative adver-
sarial net for HSIs classification. Lu et al. (2017) defined the 
AL framework using committee-based criteria along with BT 
and spectral clustering to choose an informative and diverse 
sample selection to train the DL model for the HSIs classi-
fication. Patel et al. (2021) selected a sample for annotation 
using clustering and BvSB active learning technique to train 
the CNN model with the limited training dataset. Ding et al. 
(2022) use K-means clustering to define the pseudo label to 
train a deep neural network. To create a pixel cluster, Dong 
et al. (2021) retrieved the spectral-spatial characteristics of a 
pixel. Based on the pixel cluster pseudo label is generated to 
train the CNN model.

Feature‑based AL

Hyperspectral image contains spectral-spatial data cubes. 
Numerous studies have described a cutting-edge tech-
nique for identifying and merging spectral-spatial informa-
tion, which can significantly boost the performance of AL 
approaches. The boundary pixels of HSIs are the overlapping 
regions of different classes where the traditional AL will per-
form inadequately. Liu et al. (2017) proposed feature-driven 

AL where the discriminative features rearrange the original 
data to target the overlapping region problem. The authors 
selected features created by the Gabor filter using two cru-
cial feature selection criteria: overall error probability and 
Fisher ratio. Spatial coordinates are also an essential param-
eter for pixel classification. Combining spectral and spatial 
features with spatial coordinates, Mu et al. (2020) extracted 
the features for HSIs classification. Uncertainty-based AL 
with SVM classifier selects the samples for manual labelling.

To address the problem of training DNN with a limited 
training dataset, Deng et al. (2018) propose batch mode 
AL with deep spectral-spatial features fusions. The author 
defines separate subnetworks to extract deep spectral and 
spatial features and fuse them seamlessly. Uncertainty-based 
AL expands the training set to fine-tune the DNN model. 
Most heuristics-based AL techniques constrained by the lack 
of training examples are formed from the classifier’s output. 
To overcome this problem, Wang and Ren (2020) proposed a 
Generative adversarial network (GAN) to acquire heuristics. 
The GAN model extracts the high-level features from the 
intermediate layer of DNN.

Others

This section addresses alternative cutting-edge fuzzy-based, 
fusion-based, segmentation-based, and adversarial network 
approaches to improve conventional AL techniques.

An analysis technique, fuzzy logic, was created to include 
uncertainty in a decision model. Fundamentally, fuzzy logic 
allows for consideration of approximative rather than precise 
reasoning. Azadegan et al. (2011) discuss the different appli-
cations of fuzzy logic. Ahmad et al. (2020) proposed fuzzy 
model prediction uncertainty to select distinguished samples 
for the labelling. The author described fuzziness learning AL 
as preserving data stability and minimizing selection bias in 
the spatial domain. Ahmad (2020) proposed Fuzzy-based 
spectral-spatial discriminant information between and within 
local and global classes for HSI classification. The author 
first introduced spatial fuzzy-based misclassification sample 
information to choose valuable samples.

Utilizing images captured by multiple sensors enhance 
the accuracy of land cover classifications. Kalita et al. (2021) 
proposed a cross-sensor adaptation strategy by aerial and 
hyperspectral image datasets for the land cover classifica-
tions. The authors proposed feature extraction with sample 
stacking that can balance the cross-sensor data and a limited 
number of labelled samples.

Spatial information carries important information when 
extracting features of HSIs. Zhang et al. (2015) proposed 
HSIs classification with hierarchical segmentation as an 
iterative AL process.

Pixels near the edge of an object are difficult to identify. 
Samat et al. (2019) proposed the AL technique for resolving 
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this issue, taking into account edge gradient information 
along with uncertainty and diversity to choose the most 
informative sample.

Generative adversarial network (GAN) is becoming more 
popular and used in many image processing applications. 
Wang et  al. (2022) modify the adversarial autoencoder 
to extract deep features. Distance between an actual and 
learned distribution integrated with multi-variance posterior 
probability is used to identify the candidate sample.

Table 1 summarizes the referred advanced active learning 
approaches.

Active deep learning

The preceding section describes numerous traditional 
and cutting-edge methods for classifying HSIs based on 
AL. This section focuses on the emerging field of Active 

Deep Learning, a combination of Deep neural networks 
and active learning. It is also called the deepAL (Deep 
active learning) (Ren et al. 2021). Usually, the supervised 
ML model is used in traditional AL approaches. However, 
DL, a subset of ML, has recently outperformed other ML 
techniques, particularly for image classification. The ADL 
studies active learning with the DL model as the learner. 
Deep learning models, a subset of ML, have been increas-
ingly utilized for hyperspectral image classification, lead-
ing to notable advancements in the field. A Deep neural 
network (DNN) can automatically produce a hierarchical 
feature representation that is more reliable for classify-
ing HSIs (Zhong et al. 2018). With multilayer nonlinear 
transformation, the DNN structure may extract mean-
ingful and discriminative features (Feng et al. 2017) for 
the classification. Many DNN models (Deng et al. 2014; 
Chen et al. 2016) show significant success in hyperspectral 
image classification. Convolutional neural network (CNN), 

Table 1  Summary of advanced active learning techniques

Ref Technique Research insights and future scope

(Zhou et al. 2016) MVAL 3D -redundant wavelet transform to generate multiple views, intersection-based query selec-
tion, the singularity-based criterion for the spatial information

(Xu et al. 2017) MVAL Morphological components for multiple views, Optimal feature selection can improve the 
performance

(Hu et al. 2018) MVAL Multiple cubes generated with 3D—Gabor filter for multiple views, posterior probability, and 
inconsistencies between views as the AL strategy

(Jamshidpour et al. 2020) MVAL Genetic algorithm for multiple views and multiple learners for AL
(Xu et al. 2021) MVAL Selection of the candidate samples based on training contribution and classification confi-

dence
(Cai et al. 2021) MVAL Phase-induced Gabor filters can adjust the frequency response characteristics through P
(Guo et al. 2016) Superpixel—AL Extracts the spectral and spatial features like texture from the superpixel, generates pseudo 

labels from the active selection samples
(Liu et al. 2018c) Superpixel—AL Generate pseudo-labels for superpixels based on local similarity
(Lu and Wei 2021) Superpixel—AL Samples are selected based on uncertainty and diversity, Superpixels are identified, and 

pseudo labels generated
(Xue et al. 2018) Superpixel—AL Batch mode AL to choose uncertain and diversified samples based on superpixel and neigh-

bourhood information
(Lu et al. 2017) Clustering The committee-based AL, BT, and spectral-based clustering for AL
(Patel et al. 2021) Clustering Clustering is used for the diversity, BvSB for uncertainty for the sample selection
(Ding et al. 2022) Clustering Train a deep neural network with selected samples based on K-means clustering
(Dong et al. 2021) Clustering Create a pixel cluster based on spectral-spatial characteristics of a pixel
(Liu et al. 2017) Feature-based AL Features created by the Gabor filter are selected by overall error probability and Fisher ratio
(Mu et al. 2020) Feature-based AL Spatial coordinates along with spectral and spatial information for feature extraction
(Deng et al. 2018) Feature-based AL Separate subnetworks extract deep spectral and spatial features and fuse them seamlessly
(Wang and Ren 2020) Feature-based AL Generative adversarial network to acquire AL heuristics
(Ahmad et al. 2020) Other (fuzzy) Fuzzy model prediction uncertainty to select distinguished samples for the labelling
(Ahmad 2020) Other (fuzzy) Fuzzy-based spectral-spatial information between and within local and global classes
(Kalita et al. 2021) Other (Sensor fusion) Aerial and hyperspectral sensor images to extract features
(Zhang et al. 2015) Other (Segmentation) Hierarchical segmentation to extract spatial features for iterative AL
(Samat et al. 2019) Other (Edge gradient) Edge gradient with AL to identify the pixel near the edge
(Wang et al. 2022) Other (GAN) Deep features extracted by adversarial autoencoder for AL-based HSIs classification
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Recurrent neural network, and Autoencoder are the DNN 
models often used for HSIs classifications.

A CNN may extract distinctive features by exploiting 
spectral and spatial information from the hyperspectral 
images. 2D convolutional layers (Lee and Kwon 2017; 
Zhang et al. 2017) and 3D convolutional layers (Fang et al. 
2020) are used to extract the spectral and spatial features 
of HSIs. A recurrent neural network is a DL model with a 
memory unit that stores sequential information. Spectral-
based Long short-term memory (LSTM) (Mou et al. 2017) 
and spatial-spectral based LSTM (Liu et al. 2018a) are 
used for the HSIs classifications. Autoencoder is a simple 
DNN model which consists of an encoder and decoder. The 
encoder maps the input to the hidden representation, and the 
decoder maps the hidden representation to the reconstructed 
output. The autoencoder learning process minimizes the dif-
ference between input and reconstructed output. Abdi et al. 
(2017) and Xing et al. (2016) defined stacked autoencoder 
to learn distinguished features for the hyperspectral image 
classification.

ADL: challenges and solutions

Active deep learning is widely employed in a variety of 
domains. In the literature, the various problems are listed, 
along with their solutions for ADL. The systematic study 
discovered the following significant problems, and their 
solutions as follows:

Challenges:

• Model uncertainty: Most AL methods are based on the 
learner’s uncertainty (DL model). The prediction output 
is initially highly unreliable when the model is trained 
with very few labelled samples. Due to that, the AL 
algorithm’s performance based on the model prediction 
sometimes performs worse than the random sampling.

• Overfitting due to insufficient labelled data: The classic 
AL method updates the training set by choosing sam-
ples for annotation one at a time. DL models are greedy 
for the training data. Such little updates to training data 
could cause the model to become overfit.

• Processing sequence: Many AL algorithms are based on 
feature representation. DL model is a collective process 
during training, feature extraction, and classification opti-
mization.

In the literature, certain solutions are presented to miti-
gate the above challenges, which are defined below:

Solutions:

• Batch mode AL: Batch mode is the most frequently used 
solution for ADL in which the learner will query the 
batch (group) of unlabeled data for the annotation. Add-

ing multiple samples in every iteration will reduce the 
overfitting of the DL model during training. The batch 
mode AL will accelerate the learning process of the DL 
model.

• Adversarial Network: The iterative training process in 
AL is accelerated by the actively selected informative 
samples. Generative adversarial active learning produces 
informative synthetic samples instead of querying from 
the unlabeled pool (Zhu and Bento 2017; Tran et al. 
2019). Along with the AL method selected samples, the 
generated synthetic samples used to train the DL model 
can reduce the model uncertainty.

• Active semi-supervised learning: With a pool of labelled 
and unlabeled datasets, active semi-supervised learn-
ing trains the model. Based on the label of the actively 
selected informative sample, a pseudo label is generated 
for the most confident samples from the unlabeled data 
pool (Rottmann et al. 2018). Along with the labelled 
training dataset, the pseudo-label generated samples are 
added to increase the training dataset size to reduce the 
overfitting problem.

ADL for HSIs classification

In recent literature, the classified ability of different deep 
learning models has been combined with active learn-
ing (AL) techniques to alleviate the requirement for many 
labelled data. The following section provides a summary of 
selected scientific literature on this topic.

Lei et al. (2021) defined uncertainty and diversity by the 
k -means cluster as the candidate sample selection criteria. 
The author designed a light selector network (DL model) for 
the uncertainty prediction of the unlabeled dataset and cus-
tomized loss function. Cross-sensor remote sensing images 
contain inherent variations in spectral responses and ground 
sampling distance. Kalita et al. (2021) proposed DL-based 
cross-sensor domain adaptation for land cover classification 
with AL. Cross-sensor remote sensing can improve the clas-
sification, but at the same time, the complexity of the classi-
fier and the number of labelled sample requirements are also 
increasing. In the study conducted by Lei et al. (2021) and 
Kalita et al. (2021), the authors employed a method where 
uncertain samples were selected, and the classification task 
was performed separately to stabilize the process. However, 
it was noted that this approach led to an increase in compu-
tational costs. Adversarial networks have also given promis-
ing performance in hyperspectral image classifications (Zhu 
et al. 2018; Wang et al. 2021a). An adversarial autoencoder 
with a customized AL technique based on dictionary learn-
ing and distributional distance was proposed by Wang et al. 
(2022). The author proposed a query method that used multi-
variance in the posterior probability for the uncertainty cal-
culations and the distance between the learned distribution 
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and the true data distribution for the diversity estimation. 
The informative and representative measurement used for 
the candidate sample selection can stabilize and increase 
accuracy.

Cao et al. (2020a) proposed a 3D discrete wavelet trans-
form to alleviate the different types of noise during HSIs 
classifications. The author used the BvSB active learning 
method and the CNN classifier. The author used the BvSB 
AL technique, but the other AL methods can also improve 
the classification with the limited labelled samples. Wang 
et al. (2021b) defined customized AL with 3D wavelet fea-
tures for HSIs change detection. When the multi-temporal 
HSIs data is acquired with the sensor, certain types of noise 
can also be introduced, impairing the change detection 
performance. To overcome this problem author used 3D—
wavelet transform features as the input of the CNN model. 
The customized AL method is also designed to mitigate the 
problem of the large annotated dataset. Cao et al. (2020b) 
defined the CNN classifier with AL for HSIs classifications. 
The Markov random field (MRF) function is also used as 
the post-processing to enforce the class label smoothness. 
Data augmentation technique is used to tackle the overfit-
ting problem. The author produced detailed results for better 
comparisons. Murphy (2020) proposed a diffusion geometry 
identifier to recognize the homogeneous region of the image 
to select a sample for the query. Sometimes CNN drops in 
performance when spatial transformations are applied to the 
data. CapsNet (Sabour et al. 2017) offers a more detailed 
representation, reduced spatial variance, and improved inter-
pretability compared to CNNs. Paoletti et al. (2020) used 
AL-based CapsNet for HSI classifications. The AL iterative 
process is executed for 80 iterations, and during every itera-
tion, ten samples are selected and, after annotation, added 
to the training dataset. Deng et al. (2018) proposed active 
transfer learning by deep joint spectral-spatial feature rep-
resentation using a stacked sparse autoencoder network to 
uncover the underlying structure and context of HSIs effi-
ciently. The utilization of more advanced AL techniques can 
enhance the outcome of classification.

Ahmad et al. (2020) designed a generalized fuzziness 
extreme learning machine autoencoder with different AL 
techniques. The proposed algorithm is tested on the Salinas 
HSIs dataset. The experiment should be run on numerous 
benchmark datasets to demonstrate the viability of the sug-
gested approach. Lin et al. (2018) takes the HSIs from dif-
ferent sensors and dimensions to extract high-level features 
for deep active transfer learning. The designed framework 
is for binary classification, which can also be extended for 
multiclass classification. Haut et al. (2018) defined different 
AL techniques with Bayesian CNN classifier with spectral-
spatial features extraction. The exhaustive analysis of the 
different AL techniques with the Bayesian CNN strengthens 
the article. The computational complexity is significantly 

high but can be mitigated by exploring alternative solutions. 
Liu et al. (2016) proposed a novel AL framework, "weighted 
incremental dictionary learning," which selects samples 
based on extracted features from unsupervised RBM and 
supervised DBN model. The candidate sample selection 
is based on sparsity estimated with unsupervised learn-
ing and uncertainty computed with the supervised learn-
ing algorithm. The sparse coding technique has a relatively 
high computational complexity, resulting in the fusion AL 
method requiring extensive computation. Pixel-based HSI 
classification using a Restricted Boltzmann Machine (RBM) 
classifier and several AL strategies was proposed by Sun 
et al. (2016). In this experiment, the author solely utilized 
spectral features as input to the RBM, which could be fur-
ther enhanced by incorporating spatial information. Samat 
et al. (2016) defined AL heuristics based on pure and mixed 
pixels; pure pixels are selected based on the pixel purity 
index, and the mixed pixel is determined based on distance 
with the pure candidate. Li (2015) suggested batch mode 
AL with stacked autoencoders for HSI classification. The 
author utilized the uncertainty of unlabeled samples as the 
AL criterion. The difference between the highest two-class 
prediction probability is used to determine uncertainty. The 
exhaustive experiment with different datasets and the more 
result analysis could give better insights. Tuia et al. (2012) 
proposed hyperspectral image segmentation with queried 
samples for annotation using unsupervised clustering and 
active learning with a prune-and-label strategy.

In many methods, batch mode active learning is utilized, 
which involves selecting a batch of samples based on the 
same criteria. However, this approach may lead to includ-
ing similar samples within the batch, thereby limiting the 
performance of the AL algorithm. Furthermore, employing 
adaptive query selection criteria instead of a static one dur-
ing AL iterations has the potential to enhance the output of 
the active learning algorithm.

Table 2 summarises the referred literature with the details 
of AL techniques, features used, and the DL model.

Experiment

This section mainly conducts a comprehensive set of experi-
ments from three aspects. First, experiments are designed 
to demonstrate the advantages of Active deep learning on 
HSIs classification. Second is the comparative analysis of 
the classification performance of several frequently used 
AL methods with a customized CNN model. Third, visual-
ize the impact of batch size in a batch mode ADL for HSIs 
classifications. Three benchmark HSIs datasets are used to 
complete our experiments, i.e., Indian Pines, Pavia Univer-
sity, and Salinas Valley.
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Dataset

Indian Pines (IP), Pavia University (PV), and Salinas Valley 
(SL) are the publicly available hyperspectral images captured 
by airborne sensors. The IP dataset image, 145 Ã— 145 pixels 
and 224 spectral reflectance bands was obtained with an AVRIS 
sensor across a region of northwest Indiana. After removing 
water absorption bands, a 200 spectral band is used for further 
processing. Every pixel of an image represents 20 m of the 
earth’s surface as the spatial resolution. In this image, a total 
of 10,249 pixels contains the corresponding ground truth, i.e. 
the labelled samples. A total of 16 classes are represented in 
this image, each with a different type of crop. The PV image 
is captured with the ROSIS sensor with 610 X 610 pixels over 
Pavia University, Italy. This image contains 102 spectral band 
reflectance with 1.3 m spatial resolutions. This image includes 
nine classes with 42,776 labelled samples. The AVRIS sensor 
over Salinas Valley, California, takes the SL image. This image 
has 3.7 m spatial resolution with 204 spectral reflectance bands 
after removing noisy bands. This dataset has 54,129 labelled 
samples of 16 different classes. Table 3 summarizes the details 
of all the datasets.

DL model and Preprocessing

The hyperspectral image carries hundreds of spectral reflec-
tance bands over a wide range of wavelengths. As a result of 
these, the HSIs data is highly redundant. Principle component 
analysis is used in the experiment to reduce the redundancy of 
the data. More than 98 percent of the energy is carried by the 
first 30 PCA components of the IP dataset and the first 15 PCA 
components of the PV and SL datasets. So these selected PCA 
components are further used in the experiments.

The neighbouring pixel is highly correlated in hyperspec-
tral images. Image patches of size 5 X 5 are extracted and 
given input to the CNN model to take advantage of the spatial 
correlation.

Roy et al. (Roy et al. 2019) proposed a Hybrid Spectral 
Convolutional Neural Network (HybridSN), a combination 
of 2D and 3D convolutional layers. A 2D—CNN could not 
consider the channel-related information. A 3D—CNN carries 
a complex model that needs high computational cost, large 
memory requirements, and data quality and noise sensitivity. 
The HybridSN has three 3D convolutional layers followed 

by a 2D convolutional layer. The dense and dropout layers 
combine the extracted features from the convolutional layer. 
The HybridSN, a customized CNN model, is used for further 
experiments.

AL framework

AL is an iterative learning process. In every iteration, the set 
of samples is selected from the data pool based on the query 
selection techniques. These selected samples are labelled by 
the human annotator and added to the training dataset, and 
removed from the data pool. This iterative process is exe-
cuted until the budget is exhausted. There are many criteria 
for the termination of the iterative process, like the number 
of iterations, total labelled samples, the accuracy achieved 
and execution time. This experiment uses the number of 
labelled samples as the budget. The necessary steps for AL 
are shown in Algorithm 1. A small number of samples from 
each class are initially labelled as Dtrain , whereas Dpool refers 
to the remaining unlabeled dataset. The Dtrain dataset trains 
the CNN model. The CNN model receives Dpool samples as 
input to determine the prediction uncertainty and other statis-
tics needed by the various AL methods. The batch of samples 
identified as Dselect is chosen for manual labelling based on the 
selection criteria of the AL technique. After providing a label 
to the Dselect , samples are included in the Dtrain and removed 
from the unlabelled Dpool dataset.

Table 3  Dataset Summary Dataset Sensor Samples Classes Spectral Band Spatial resolution

Indian Pines AVIRIS 10,249 16 200 20 Meter
Pavia University ROSIS 42,776 9 103 1.3 Meter
Salinas Valley AVIRIS 54,129 16 204 3.7 Meter

Algorithm 1 Active deep learning

AL methods
The following section describes the four basic AL methods 
implemented with the CNN classifier for HSIs classification. 
Assume xi ∈ Dpool , is one of the unlabeled samples, k is the 
total number of unlabelled samples, and C is the number of 
different classes. Pj(xi) is the prediction probability of sample 
xi of class j.
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• Random Sampling (RS): RS selects a random batch of 
samples. The results of this method are used as a base-
line.

• Least Confidence (LC): LC technique selects a batch of 
samples for annotation for which the classifier is least 
confident for the class prediction.

Where PL is the maximum class prediction probability 
of sample xi.

• Breaking Tie (BT): The classifier was unable to distin-
guish between two classes, as indicated by the smaller 
difference between the highest and second-highest class 
prediction probabilities. BT chooses the samples with the 
smallest difference in class prediction probabilities.

PB and PSB are sample xi ’s highest and second-highest 
class prediction probability, respectively.

• Entropy Sampling (ES): Higher entropy indicates the 
most uncertain sample for the prediction. ES selects the 
set of samples with the higher entropy.

In multiclass classification, all class prediction probabili-
ties are used for entropy calculation. In contrast, LC used 
maximum prediction probability, and BT used maximum 
and second maximum class prediction probability for uncer-
tainty measures. So the ES is a reliable measure of uncer-
tainty compared to the LC and BT.

Hyperparameters and evaluation measures

AL model training is an iterative process. During every itera-
tion, the batch of samples (n) is added to the training set, and 

(1)min
i=1..k

PL(xi)

(2)min
i=1..k

P
B
(x

i
) − P

SB
(x

i
)

(3)max
i=1..k

−
∑

j=1..c

Pj(xi)logPj(xi)

the model gets retrained with the updated training dataset. 
This iterative training process ends with the termination 
criteria, the total number of labelled samples in this experi-
ment. Here 800 labeled samples are used as the budget. In 
every iteration, the CNN model is retrained with five epochs.

With a learning rate of 0.001, the CNN model trains itera-
tively using the Softmax activation function. Patch augmen-
tation techniques like flipping and rotation have been used 
to reduce the overfitting issue. Each patch from the training 
dataset is augmented with either flipping or rotation.

The three hyperspectral data sets under consideration are 
used in each experiment. With 32 training batch sizes, the 
Adam optimizer, and a learning rate of 0.001. The first train-
ing dataset and testing set are made before each implemen-
tation is run. Five samples from each class are taken as the 
initial training dataset for the experiment, and 30% of test 
data are used to evaluate the classifier’s performance. And 
the remaining dataset is initialized as an unlabeled dataset 
Dpool.

Overall accuracy (OA), Average accuracy (AA), and 
Cohen kappa are defined to evaluate the performance of the 
CNN model.

Result analysis

Experiment 1 This experiment examines the effects of the 
CNN model train without active learning and shows the out-
comes of four AL techniques. With 800 labelled samples, 
Table 4 shows the OA, AA and Kappa for each acquisition 
function. The experiment was repeated five times, and the 
final results were determined by averaging the outcomes 
from each repetition. Specifically focusing on the IP data set, 
the CNN classifier with ES-criterion achieves the highest 
overall accuracy compared to the other functions, reaching 
94.63% with nearly 8% of the labelled samples. In com-
parison, the LC achieves the lowest OA with 79.22%. The 
IP dataset has two classes, Oats and Alfalfa, with only 20 
and 46 total samples, respectively, even though ES achieved 
average class accuracy of 95%. The ES and BT AL meth-
ods also exhibit promising overall and average accuracy. In 
contrast, the RS and LC methods yield lower accuracy than 

Table 4  Test accuracy on IP, SL 
and PV datasets

CNN RS LC ES BT

IP OA 90.35 90.11 79.22 94.63 92.26
AA 91.85 89.38 82.82 95.00 94.04
K- Kappa 0.89 0.89 0.77 0.94 0.91

SL OA 94.72 94.94 92.92 98.66 96.16
AA 95.85 95.95 96.07 99.38 97.43
K- Kappa 0.94 0.94 0.92 0.99 0.96

PV OA 96.37 96.33 92.96 99.21 97.25
AA 95.25 95.15 91.28 98.93 96.46
K- Kappa 0.96 0.95 0.91 0.99 0.96
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the ES and BT methods. Notably, the performance of the RS 
and LC methods is even inferior to training a CNN model 
without any AL techniques.

The SL data set has similar behaviour, with ES and BT tech-
niques achieving better OA than LC. With only 1.47% of the 
labelled samples, the ES active learning can reach 98.66% 
accuracy, with LC having the lowest OA at 92.92%. The ES 
methods often produced better OA and AA with the SL data 
set than the RS and LC.

Finally, in the PV image, the ES achieves 99.21% with 
1.87% of the labelled samples as training dataset, which is 
the best OA with strong generalization capability. With 800 
labeled samples, the BT and RS techniques achieved 97.25 
and 96.33% of OA, respectively.

In Fig. 4, which depicts the evolution of the DL model 
accuracy for each acquisition function, with various Dtrain 
size. With PV and SL datasets, ES clearly outperforms other 
tested AL methods. Wherever for the IP dataset ES starts 
with similar accuracy to RS but falls behind it until around 
Dtrain size reaches 400. ES was impaired during the initial 
AL iteration, producing poor performance compared to the 
RS due to the model uncertainty. The ES method computed 
the entropy from the prediction probability of the samples. 
In the initial phase, the model might experience difficulty 
correctly identifying them due to its limited knowledge. 
Random sampling, on the other hand, covers a broader range 
of instances without considering informativeness. However, 
as more labelled samples are obtained, the performance gap 
diminishes, and ES can outperform random sampling by lev-
eraging its ability to select informative samples. Regardless 
of Dtrain size, the LC method achieves the lowest accuracy 
for all three datasets. However, the BT method performs 
slightly better than RS with most Dtrain sizes for all three 
datasets.

Experiment 2 The experiment is conducted to observe the 
effect of batch size (n) selection for active deep learning. 
Here, the batch size (n) is the number of samples selected 
for manual labelling in every iteration. The IP dataset is 
used for the observation because IP has limited samples, 
and the number of labelled samples of different classes is 
also imbalanced. As shown in experiment 1, the breaking 
tie active learning method performs consistently on all the 
datasets with various iterations. So, the BT active learning 

method is used for the comparative analysis of different 
batch sizes. Figure 5 shows testing OA with batch sizes 3, 
5, 10, and 15. As a result, the performance with batch sizes 
n = 3 and 5 is better than the n = 10 and 15. The batch size 
plays a significant role when working with a small number 
of labelled samples. This is evident in the graph, where the 
accuracy difference is significant with only 100 labelled 
samples, while the variations in accuracy become relatively 
smaller when using 400 labelled samples. Conversely, the 
small batch size will increase the computation load because 
the number of iterations will increase for the labelled sam-
ples. Based on the results, a moderate batch size of five is 
used for the experiment.

Conclusion and discussion

The article’s objective is to anticipate a broader area of 
Hyperspectral image classifications from an active learning 
perspective. Even though some deep learning techniques per-
form very well, more research is required to reach a definitive 
conclusion on the influence of active learning on the choice of 
a minimally informative set of samples for labelling in super-
vised learning paradigms. The results of the scientific studies 
show a significant improvement in accuracy rates with simple 
to advanced AL approaches, mainly when using DL models.

Fig. 4  Comparative analysis on 
IP (left), PV (middle) and SL 
(right) dataset

Fig. 5  Test OA on IP dataset with different batch size
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The first section introduces the fundamental theoretical 
ideas about the most popular AL approaches. This study 
examines the advantages and disadvantages of the above 
methods concerning the classification of hyperspectral 
images. The study concluded that the learning-based AL 
methods are gaining popularity due to their adaptability 
compared to the other basic AL methods like uncertainty-
based, margin-based, and committee-based. However, their 
primary application domains are language processing, com-
puter vision, and object detection. It is worth noting that 
learning-based AL techniques currently need to be widely 
employed in hyperspectral image classifications.

The various advancements are critically analyzed and cat-
egorized broadly to improve the AL method. Table 1 sum-
marizes different categories and tasks adopted for active 
learning in the domain of the HSIs classification based on 
advancements in AL. The Multiple Views Active Learning 
(MVAL) techniques demonstrate improved performance 
compared to basic active learning methods. However, the 
inclusion of multiple views leads to increased computation 
costs. A cost-effective MVAL solution can enhance the clas-
sification of hyperspectral images when labelled samples are 
limited. By combining pixels and generating superpixels, the 
candidate samples selected based on these superpixels can 
reduce the dependency on labelled datasets. Various meth-
ods are available for generating superpixels, which can be 
explored and applied to HSIs.

In various computer vision applications, the advanced 
deep learning methods and the complex structures that can 
extract hidden features from data play a crucial role. Table 2 
gives insights into Active deep learning approaches applied 
for the HSIs classification. Table 2 focuses on the task per-
formed, AL technique, specialized features, and classifier 
for the Active deep learning for HSIs classifications. In the 
literature, most ADL methods select batch of the sample 
in every AL iteration. The main goal of the AL framework 
is to identify the most informative and diverse samples for 
annotation. However, when multiple samples are selected 
using the same criteria, a single batch may contain similar 
samples from the same category, which could hamper the 
performance of the AL algorithm as it may not receive a 
representative set of samples from various categories. To 
overcome this issue, more research is required.

Furthermore, the experimentation section uses the deep 
learning model CNN with the different AL methods for 
the comparative analysis. The result of experimentation 
shows the improvement in the CNN model using iterative 
AL techniques. The entropy-based AL technique has been 
observed to outperform the RS, LC and BT for IP, SL, and 
PV datasets. The batch size also plays a vital role in active 
learning. The experiment aimed to determine the efficacy 
of different batch sizes for active deep learning. The inves-
tigation can explore the possibility of adjusting the batch 

size based on the learning stage of the DL model. Addi-
tionally, determining the optimal batch size selection can 
be studied to enhance the learning process of the DL algo-
rithm during AL iterations. Adopting the batch size and 
optimizing its selection is expected to improve the overall 
performance and effectiveness of the DL model within 
the AL framework. Implementing AL method within the 
Active Deep Learning framework helps to alleviate the 
reliance on labelled data. Research in this area holds great 
potential for the remote sensing community, enabling them 
to effectively utilize remote sensing data for various appli-
cations. This advancement can significantly contribute to 
remote sensing and its diverse applications.
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