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Abstract
Accurate prediction of the amount of water inflows in mines is of great significance for safe production in mining. To improve 
the accuracy of the prediction, based on the analysis of the hydrological and geological conditions of the mine, the main 
factors affecting the water inflows in mines were determined. Using entropy method, the weight values of the factors affect-
ing the water inflows in mines were calculated, and the non-linear regression fitting between the water inflows and various 
factors was carried out using multiple regression theory and MATLAB function programming. Combining with the factor 
weights determined by the entropy method, a weighted non-linear regression prediction model for water inflows in mines 
was established. The model not only takes into account the fact that the water inflows in mines are affected by multiple 
factors, but also reflects the characteristic that the importance of factors is different. By comparing with the multiple linear 
regression prediction model and the measured water inflows, it is proved that the weighted non-linear regression prediction 
model for water inflows in mines can overcome the defects of existing methods, minimize the prediction error caused by low 
degree of hydrological and geological exploration, and improve the prediction accuracy.

Keywords Mine water inflow · Multivariate nonlinear regression · Multiple factors · Entropy weighting method · Weights

Introduction

Coal is the most abundant and most widely distributed fossil 
fuel on the earth. As an important power for the rapid develop-
ment of the global economy, coal resources are increasingly 
needed (Wang et al. 2015a, b). Meanwhile, the hydrogeologi-
cal problems facing coal mining become increasingly promi-
nent. Mine water inflow refers to the quantity of surface water 
or groundwater pouring into a well lane system within unit 
time through fissures, faults or other channels in the process 

of mining (Xu and Gong 2011; Dong et al. 2021). In order to 
ensure the production safety, mine water inflow prediction is 
one of the priorities in water hazards prevention and control in 
both the prospecting stage and the mine construction and pro-
duction stage (Wu et al. 2013; Singh and Atkins 1985). Mine 
water inflow is directly related to the rationality of coal min-
ing scheme and drainage capacity designs, and more impor-
tantly, determines whether coal mining is safe (Li et al. 2022a; 
Hu and Zhao 2021; Polak et al. 2016). In order to make the 
prediction results of mine water inflow more consistent with 
reality, many researchers have conducted a lot of studies on 
mine water inflow prediction methods, establishing two types 
of prediction methods: uncertainty analysis methods and deter-
ministic mathematical models. The uncertainty methods mainly 
include correlation analysis (Qiu et al. 2020), support vector 
machine (Li et al. 2010), neural network (Zuo et al. 2011) and 
grey system theory (Wang et al. 2015a, b; Ma and Bai 2015; 
Xu et al. 2012). The deterministic methods mainly include 
numerical method (Li et al. 2015; Wu et al. 2019; Bai et al. 
2021; Krukovska and Vynohradov 2019; Bouw and Morton 
1987), and analytical method (Hou 2012; Li et al. 2014). 
Miladinović et al. (2015) used a linear correlation regression 
model to prediction and correction on the mine water inflow of 
the Štavalj Coal Mine in southwestern Serbia. Wei et al. (2011) 
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built a water inflow prediction model based on support vector 
machines, combined with the practical demands to predict the 
water inflow at the new working face, and the results were veri-
fied during the mining process of the new working face. Shao 
et al. (2014) established a non-linear artificial neural network 
prediction model and predicted the normal mine water inflow 
during mine operation, and the results were consistent with the 
actual predicted data. Ma et al. (2020) established two expo-
nentially weighted moving average modified gray water inflow 
models optimized by particle swarm optimization, and obtained 
water inflow prediction equations based on actual data from 
Buliangou coal mine. Guo et al. (2009) established a three-
dimensional numerical model of COSFLOW and simulated 
the water inflow of two mines in Australia. Singh et al. (2012) 
used the SEEP/W finite element software package to predict the 
water inflow from surface mining excavation, and compared the 
prediction results with the analytical solution for verification. Li 
et al. (2021) combined Monte Carlo methods and FLAC3D to 
generate a discrete fracture network, established an optimized 
water inflow prediction model based on the fluid–solid coupling 
method, and proposed an analytical formula for water inflow 
prediction. Chen et al. (2015) used the big water well method 
and a three-dimensional numerical model to predict the water 
inflow from the roof sandstone aquifer in coal seam mining, and 
compared and analyzed the results of the prediction methods. 
Zhang et al. (2017) used the no. 2 coal seam in the Pingding-
shan No. 10 coal mine as an example, three methods (analogue, 
big well, and numerical simulation) were used to forecast mine 
water inflow and their performance. The existing mine water 
inrush prediction methods generally emphasize a single factor 
and do not consider multiple factors that affect the occurrence 
and control of mine water inrush. They also do not integrate 
the mechanisms, positions and progress of mine water inrush 
into the mining engineering process, resulting in a prediction of 
the mine water inrush as a static quantity instead of a dynamic 
changing quantity that changes with the mining engineering. In 
recent years, with the complexity of global mining conditions, 
especially the increasing depth of mining, the complexity of 
mine hydrological and geological conditions often exceeds the 
empirical range, making some methods no longer applicable. 
Based on the analysis of typical coal mine hydrological and 
geological conditions, this paper determines the main factors 
affecting the mine water inrush. Using multivariate regression 
theory and MATLAB function programming, a multivariate 
nonlinear regression fitting of the mine water inrush and vari-
ous factors was carried out, combined with the factor weight 
determined by the entropy value method, and a weighted mine 
water inrush multivariate nonlinear regression prediction model 
was constructed. The established prediction model compensates 
for the flaw of previous prediction methods that did not consider 
the differences in the importance of each factor and can mini-
mize the prediction error caused by low survey level or lack of 
hydrological and geological parameters.

Overview of the research area

Physical geography

Wulunshan Coal Mine is located in Shuguang Town, Nayong 
County, Guizhou Province, China. Its geographic coordinates 
are 105°16′01″ ~ 105°20′35″E and 26°34′59″ ~ 26°40′15″N. The 
mine lot is 9.6 km long from south to north, and 4.6 km wide on 
average, covering an area of 44.02km2 (the geographic location 
is shown in Fig. 1). The Wulunshan Coal Mine is characterized 
by a plateau-middle mountainous topography, with an elevation 
ranging from 1,500 m to 2,000 m and a relative height differ-
ence of 300 m to 500 m. The terrain is overall higher in the 
northwest and lower in the southeast. The dominant landform 
includes river valleys and gullies. The main rivers within the 
mine area include the Shuigong River, the Sancha River, and 
the gullies on either side, which are distributed in a branching 
pattern and belong to the Wujiang River System.

Geological condition

(1) Strata and coal seam

The disclosed strata of the mine lot are sorted from old 
to new: Middle Permian Maokou Formation  (P2m), Upper 
Permian Emeishan Basalt Formation  (P3β), Upper Permian 
Longtan Formation  (P3l), Upper Permian Changxing For-
mation  (P3c), Lower Triassic Feixianguan Formation  (T1f), 
Lower Triassic Yongningzhen Formation  (T1yn) and Quater-
nary (Q). The coal-containing strata are Longtan Formation, 
composed of siltstone, fine sandstone, bioclastic limestone, 
mudstone, and coalbed. The potential mining strata are No.3, 
No.5–3, No.6–3, No.8, and No.33, and the major mining strata 
are No.3 and No.8 (see Fig. 2).

(2) Geological structure

Wulunshan Coal Mine is located in the south section of 
Jiaga anticline and the west wing of the Shuigonghe syn-
cline. The whole is a monoclinic structure, superposition of 
secondary anticlines and synclines. The stratum towards is 
130 ~ 160°, leaning to the northeast. The shallow dip angle is 
sharp, 25 ~ 40°; the deep dip angle gradually becomes gentle, 
5 ~ 20°. The faults within the mining area are mainly high 
angle normal faults with an inclination of 66 ~ 80°and fault 
throw of about 10 ~ 25 m (see Fig. 3).

Hydrogeological condition

The main groundwater source in the studied area is rainfall, 
and the groundwater level is controlled by terrain and rain-
fall. The water can be divided into carbonate karst water, 
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clasolite fissure water and loose rock pore water. No.2 
 (T1f2)and No.4(T1f4) sections of Feixianguan Formation 
and Maokou Formation(P2m) are thick limestone strata, 
which feature evident dissolution, developed karst caves, 
dissolution pores and grikes, and strong water yield capac-
ity. As a result of the Zk1 drilling water pumping test, the 
unit water inflow is 0.052L/(s m), the water temperature is 
13 ~ 16℃, and the pH is 6.8 ~ 7.74. The rest of the clasolite 
strata feature thin limestone, underdeveloped karst and weak 
water yield capacity. The scattered Quaternary (Q) residual 
diluvial loose rock formations feature strong water perme-
ability and moderate water yield capacity. The direct sources 
of water filling for coal mining are the fissured aquifers of 
Longtan Formation  (P3l) and Changxing Formation  (P3c), 
and the indirect sources of water filling are the karst water 
aquifers of Feixianguan Formation No.2 section  (T1f2) and 
Maokou Formation  (P2m). The hydrogeological profiles are 
shown in Fig. 4. In mines where the coal seams are sur-
rounded by impermeable rock formations, water inflow can 
occur through fractures and faults in the rock, which can 
serve as pathways for water to enter the mine. If the water is 

under high pressure, it can cause increased stress on the sur-
rounding rock, leading to the development of new fractures 
or the expansion of existing ones. This can increase the risk 
of rock falls and other types of rock instability, which can 
compromise the safety of the mine and its workers.

Model data for training and validation

In this study, the data used for model training and validation 
was collected from Wulunshan Coal Mine. The data used in 
this study was collected from 65 time points between 2013 
and 2017 (Table S1). Of these 65 time points, 50 were used 
for training and 15 were used for validation. The data types 
included in this study are precipitation, aquifer thickness, 
mining area, mining depth, mining thickness, driving foot-
age, and water inflow. These data types were selected for 
their potential impact on water inflow into the mine and 
their contribution to the overall understanding of the sys-
tem. The collection of this data allowed for the creation of 
models that can be used to make predictions about water 
inflow into the mine.

Fig. 1  Location of Wulunshan Coal Mine



1882 Earth Science Informatics (2023) 16:1879–1890

1 3

Correlation analysis and weight 
determination of the influencing factors

Mine water inflow is closely related to geological structure, 
engineering, hydrogeological condition, etc. Moreover the 
relationships between water inflow and the influencing fac-
tors often present a highly nonlinear complex relationship 

(Qiu et al. 2017; Liu et al. 2018; Li and Zhou 2006; Shi et al. 
2017). Predecessors have done a lot of related research on this, 
representative as Wu et al. (2017) used the vulnerability index 
method, which couples GIS with the analytic hierarchy pro-
cess, to evaluate the water inrush risk of the Gushuyuan coal 
mine No. 15 seam. Li et al. (2022b) used grey relational analy-
sis and analytic hierarchy process to establish an evaluation 

Fig. 2  Bar graph of the relation-
ship between strata and coal 
seam
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Fig. 3  Distribution of geological structure

Fig. 4  Hydrogeological profiles
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model for water inrush from the coal floor. They applied it to 
the typical working face of Yuzhou coalfield in north China to 
demonstrate the evaluation process. This paper, based on the 
results of previous studies and the hydrogeological and geo-
logical conditions of Wulunshan Coal Mine, determines the 
influencing factors of water inflow are precipitation, aquifer 
thickness, mining area, mining depth, mining thickness and 
driving footage. Besides, the author collected 65 groups of 
monthly water inflow data from the Wulunshan Coal Mine 
from July 2012 to November 2017, 50 groups of which serve 
as training samples for the prediction model, and 15 of which 
are used for testing the prediction results of the prediction 
model, as shown in Table S1 (supplementary material).

Correlation analysis theory

In the early twentieth century, the British statistician Pear-
son put forward a coefficient for calculating the linear cor-
relation between two variables, called Pearson’s correlation 
coefficient (Gross 1975; Katsaounis 2004). The coefficient 
is hereby used to analyze the correlation between mine water 
inflow and each influencing factor, as shown in Eq. (1) (Fio-
rillo and Doglioni 2010; Liu et al. 2019a, b).

Where xi is mine water inflow; yi is a factor affecting mine 
water inflow; r is the correlation coefficient.

Based on 65 groups of measured data about the mine 
water inflow of Wulunshan Coal Mine from July 2012 to 
November 2017, a correlation analysis is conducted between 
mine water inflow and each influencing factor. The results 
are shown in Table 1.

According to Table 1, the correlation coefficients between 
mine water inflow and influencing factors are between -0.76 
and 0.61. Mine water inflow is positively correlated to precip-
itation, aquifer thickness, mining area, mining depth and min-
ing thickness, and negatively correlated to driving footage.

(1)
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∑n

i=1
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1
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Entropy method theory

The entropy method is an objective assignment method. Each 
influencing factor is weighted by judging the dispersion degree 
of an influencing factor and the degree of deviation between 
data and the characteristics of the data itself (Xue et al. 2021; 
Xu et al. 2020). There are three main steps to determine the 
weight of an influencing factor using the entropy method:

The raw data matrix is normalized. Suppose the origi-
nal data matrix of m influencing factors and n months is 
A = [aij]m×n , standardize it to get Eq. (2) for influence factors 
positively correlated with mine water inflow, and Eq. (3) for 
influence factors negatively correlated with mine water inflow:

Where min{aij}
j

 is the minimum value of the ith influencing 

factor; max{aij}
j

 is the maximum value of the ith influencing 

factor.
Information entropy is defined. The information entropy 

of the ith influencing factor is as shown in Eq. (4).

Where n is the total number of months; rij is the standard 
value of the ith influencing factor in the jth month.

The weight is defined. The weight of the ith influencing 
factor is as shown in Eq. (5).

(2)rij =

aij − min{aij}
j

max{aij}
j

− min{aij}
j

(3)rij =
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j

− aij
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)ln(

rij
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)

(5)Wi =
1 − Ei

m −
∑m

i=1
Ei

Table 1  Correlation coefficient matrix of influencing factors

Indicators Precipitaion Aquifer thickness Mining area Mining depth Mining thickness Driving footage Water inflow

Precipitation 1.00
Aquifer thickness 0.61 1.00
Mining area 0.30 0.28 1.00
Mining depth 0.27 0.07 0.09 1.00
Mining thickness -0.66 -0.76 -0.35 -0.12 1.00
Driving footage -0.05 -0.04 -0.06 -0.05 -0.01 1.00
Water inflow 0.21 0.09 0.15 0.21 0.04 -0.04 1.00
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where 0 ≤ wi ≤ 1 and 
∑m

i=1
wi=1 ; m is the total number of 

influence factors; Ei is the information entropy of the ith 
influence factor.

The weights of factors influencing are determined using 
entropy method, as shown in Table 2.

It can be concluded from Table 2 that the influencing fac-
tors of mine water inflow for Wulunshan Coal Mine can be 
sorted by weight: precipitation > mining area > aquifer thick-
ness > mining thickness > mining depth > driving footage.

Building of a weighted multiple nonlinear 
regression prediction model for mine water 
inflow

Building of multiple linear regression prediction 
model

Multiple regression analysis studies the relationship 
between one dependent variable and multiple independent 
variables based on the given values of multiple explana-
tory variables (Cohen 1968; Liu et al. 2019a, b). The func-
tional expression of multiple regression analysis can be 
either linear or nonlinear depending on the causal relation-
ship between the independent or dependent variable (Oue-
draogo et al. 2019). MATLAB function programming is 
used to realize multiple linear fitting between water inflow 
and precipitation, aquifer thickness, mining area, mining 
depth, mining thickness and driving footage. The fitting 
parameters are shown in Table 3.

According to Table 3, the multiple linear regression coef-
ficients between water inflow and influencing factors are 
0.05, 0.04, 1.21, 0.02, 12.43, and -0.01. The equation of the 

water inflow multiple linear regression prediction model is 
therefore obtained, as shown in Eq. (6).

Where Q is water inflow(m3/h); P is precipitation(mm); M 
is aquifer thickness;(m) A is mining area(103m2);D is mining 
depth(m); T is mining thickness(m); L is driving footage(m).

Building of weighted multiple nonlinear regression 
prediction model

A scatter plot between influencing factors and water inflow 
shows a highly nonlinear relationship. MATLAB functional 
programming fitting is used to determine the unary nonlinear 
fitting curves between water inflow and influence factors. As 
shown in Figs. 5, 6, 7, 8, 9 and 10.

Based on the MATLAB function fitting curves, the 
influencing factor function fitting indicators are Sum of 
Squares due to Error (SSE), Coefficient of Determination 
 (R2), Adjusted Coefficient of Determination (Adjusted  R2), 
and Root Mean Square Error (RMSE). The function fitting 
indicators are shown in Table 4.

The unary nonlinear regression function relational 
expressions between water inflow and influencing factors 
are determined by function fitting indicators and function 
fitting curves. As shown in Eq. (7) to Eq. (12).

(6)
Q = 0.05P + 0.04M + 1.21A + 0.02D + 12.43T − 0.01L − 23.15

(7)Q = a1P
3 + a2P

2 + a3P + a4

Table 2  The weights of influencing factors

Factors Precipitation Aquifer thickness Mining area Mining depth Mining thickness Driving footage

Wi 0.36 0.14 0.27 0.06 0.13 0.04

Table 3  Fitting parameters for multiple linear regression

Model B Std.Error t Sig

(Constant) -23.15 26.37 -0.88 0.39
P 0.05 0.07 0.76 0.45
M 0.04 0.04 1.00 0.32
A 1.21 0.89 1.36 0.18
D 0.02 0.02 1.01 0.32
T 12.43 7.72 1.61 0.12
L -0.01 0.01 -0.78 0.44 Fig. 5  Unary nonlinear fitting curve between precipitation and water 

inflow
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Fig. 6  Unary nonlinear fitting curve between aquifer thickness and 
water inflow

Fig. 7  Unary nonlinear fitting curve between mining area and water 
inflow

Fig. 8  Unary nonlinear fitting curve between mining thickness and 
water inflow

Fig. 9  Unary nonlinear fitting curve between mining depth and water 
inflow

Fig. 10  Unary nonlinear fitting curve between driving footage and 
water inflow

Table 4  Function fitting indicators

Factors SSE R2 Adjusted  R2 RMSE

P 11,546.51 0.04 -0.02 15.84
M 11,810.66 0.02 -0.02 15.85
A 11,607.93 0.04 -0.02 15.89
D 10,001.45 0.17 0.12 14.75
T 9988.57 0.17 0.12 14.74
L 11,790.57 0.02 -0.04 16.01
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Where Q is water inflow(m3/h); P is precipitation(mm); 
M is aquifer thickness (m); A is mining area  (103m2); D is 
mining depth (m); T is mining thickness (m); L is driving 
footage(m); a, b, c, d, e, f and λ are parameters to be solved.

After obtaining the unary nonlinear regression function 
relationships, to fully consider the important difference 
of the influencing factors to water inflow, the unary non-
linear regression function relationships of the influencing 
factors are weighted and summed. As shown in Eq. (13).

Where Q is water inflow(m3/h); P is precipitation(mm); 
M is aquifer thickness;(m) A is mining area(103m2);D is 
mining depth(m); T is mining thickness(m); L is driving 
footage(m); a, b, c, d, e, f and λ are parameters to be solved.

Using statistical analysis, a weighted multiple nonlin-
ear regression prediction model is established when the 
residual sum of squares of the fitted value and the meas-
ured value is minimum. The parameter estimations for the 
influencing factors are shown in Table 5.

The fitting parameter estimations of influencing factors 
are substituted into Eq. (13) to get the weighted multiple 
nonlinear regression prediction model equation, as shown 
in Eq. (14).

Where Q is water inflow(m3/h); P is precipitation(mm); M is 
aquifer thickness (m); A is mining area(103m2); D is mining 
depth(m); T is mining thickness(m); L is driving footage (m).

Result

In order to evaluate the accuracy of the prediction results 
of the prediction model proposed herein, Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error 

(8)Q = b1sin(b2M + b3)

(9)Q =
c1A + c2

A2 + c3A + c4

(10)Q = d1 + d2cos(�D) + d3sin(�D)

(11)Q = e1T
3 + e2T

2 + e3T + e4

(12)Q = f1L
3 + f2L

2 + f3L + f4

(13)
Q = 0.36(a1P

3 + a2P
2 + a3P + a4) + 0.14(b1sin(b2M + b3))

+0.27(
c1A+c2

A2+c3A+c4
) + 0.06(d1 + d2cos(�D) + d3sin(�D))

+0.13(e1T
3 + e2T

2 + e3T + e4) + 0.04(f1L
3 + f2L

2 + f3L + f4)

(14)
Q = 0.16P + 0.99sin(0.73M + 3.6) +

1.99A−0.04

(A−0.68)2−0.29

+0.08cos(0.95D) + 2.69sin(0.95D)

+1.29T((T + 0.49) + 0.07L − 12.92

(RMSE) are selected to compare the prediction results of 
the multiple linear regression prediction model, and the 
weighted multiple nonlinear regression prediction model 
with the measured values of mine water inflow. The error 
calculation formulas are Eqs. (15) and (16).

Where ŷi is the predicted value; yi is the measured value; n 
is the number of samples.

The test sample data in Table S1 (supplementary mate-
rial) are respectively substituted into the multiple linear 
regression prediction model Eq.  (6), and the weighted 
multiple nonlinear regression prediction model Eq. (14) to 
obtain the water inflow prediction values of the two predic-
tion models, as shown in Table 6.

(15)MAPE =
100%

n

n∑

i=1

|
ŷi − yi

yi
|

(16)RMSE =

√√√√1

n

n∑

i=1

(ŷi − yi)
2

Table 5  Parameter estimations of the multiple nonlinear fitting func-
tion

Factors Parameters Estimate Std.Error 95% Confidence 
Interval

Lower Upper

P a1 0.00 0.00 0.00 0.00
a2 0.00 0.01 -0.07 0.05
a3 0.43 1.60 -4.59 6.07
a4 7.11 59.84 -237.28 250.61

M b1 6.18 20.93 -94.06 123.13
b2 0.73 0.03 0.69 0.82
b3 3.60 10.26 -2.86 7.44

A c1 8.03 7.80 -10.20 27.10
c2 -5.16 2.46 -10.96 8.47
c3 -1.35 0.32 -1.83 -0.54
c4 0.15 0.18 -0.03 0.73

D d1 -64.04 51.52 -238.25 816.28
d2 0.35 7.48 -418.71 432.73
d3 50.61 7.89 -70.55 718.09
λ 0.95 0.10 0.60 1.02

T e1 9.56 240.27 -484.62 501.37
e2 1.85 10.79 -85.39 93.65
e3 3.19 45.04 -602.56 610.35
e4 -41.91 202.68 -6937.99 6944.26

L f1 0.00 0.00 0.00 0.00
f2 0.00 0.00 -0.01 0.00
f3 1.70 0.78 -1.30 1.91
f4 -785.50 17.02 -1223.86 34.83
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According to the measured values and predicted values in 
Table 6, comparative curves for the two prediction models 
are made, as shown in Fig. 11.

The measured and predicted values in Table 6 are 
substituted into Eqs. (15) and (16) to produce the error 
analysis tables for the two prediction models, as shown 
in Table 7.

According to Fig. 11, the predicted values of the mul-
tiple linear regression prediction model are basically 
larger than the measured values, and the overall trend 
of the prediction results is not consistent with the meas-
ured trend. However, the predicted values of the weighted 
multiple nonlinear regression prediction model agree 
well with the measured values, and the overall trend of 
the predicted results is almost in line with the measured 
trend. On the other hand, we found that the model fit 
accuracy is poor when predicting high water inflow. 

This may be due to the lack of extreme water inflow data 
under extreme conditions in our training samples, leading 
to the neglect of some extreme situations during training. 
The error analysis results in Table 7 show that the MAPE 
of the weighted multiple nonlinear prediction model is 
16.44%, a great improvement compared to 45.88% of the 
multiple linear regression prediction model. The RMSE 
of the weighted multiple nonlinear prediction model is 
only 4.67, significantly lower than that of the multiple 
linear regression model.

Conclusion

This article analyzes the typical hydrogeological conditions 
in coal mines and, based on previous research, determines 
the main factors affecting the mine water flow to be rainfall, 
thickness of the aquifer, mining area, mining depth, mining 
thickness, and excavation length. Through correlation anal-
ysis, it is further concluded that the excavation length has a 
negative correlation with mine water flow, while the other 
factors have a positive correlation. Based on entropy value 
calculation, the weight of the impact factors on mine water 
flow is sorted as follows: rainfall > mining area > aquifer 

Table 6  The water inflow 
prediction values of the two 
prediction models

Test sample 
number

Measured value of 
water inflow

Multiple linear regression 
prediction model

Weighted multiple nonlinear 
regression prediction model

1 9.59 21.55 3.81
2 13.40 24.05 13.68
3 14.08 20.13 17.69
4 14.83 19.31 15.05
5 15.67 23.29 16.84
6 16.57 26.24 15.56
7 17.35 25.33 16.02
8 18.59 27.85 14.62
9 18.80 16.14 21.37
10 19.80 29.86 24.96
11 20.70 25.29 22.76
12 23.30 26.90 24.44
13 23.97 29.56 31.98
14 44.20 31.86 41.45
15 60.21 27.61 47.93

Fig. 11  Comparative curves for the two prediction models

Table 7  Error analysis of predicted values

Evaluation 
indicators

Multiple linear regres-
sion prediction model

Weighted multiple nonlinear 
regression prediction model

MAPE 45.88% 16.44%
RMSE 11.56 4.67
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thickness > mining thickness > mining depth > excavation 
length. Using multivariate regression theory, scatter analy-
sis and MATLAB function programming, the article builds 
a weighted multivariate non-linear regression model for 
predicting mine water flow based on the calculated factor 
weights. This model considers both the impact of multi-
ple factors on mine water flow and the differences in fac-
tor importance. The comparison analysis of the weighted 
multivariate non-linear regression model, the multivariate 
linear regression model, and the measured values of water 
flow shows that the newly established water flow prediction 
model can overcome the shortcomings of existing methods, 
minimize the prediction error caused by low hydrogeologi-
cal survey degree, and improve the prediction accuracy.
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